figshare
Browse

Influence of Water in the Synthesis of the Zirconium-Based Metal–Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH)2(DMF)2]Cl

Download (1.87 MB)
journal contribution
posted on 2020-05-14, 16:11 authored by Marco Taddei, Jeroen A. van Bokhoven, Marco Ranocchiari
We recently discovered that aging a solution of zirconium­(IV) tetrachloride (ZrCl4) in N,N-dimethylformamide (DMF) in the presence of water, followed by the addition of a terephthalic acid linker, reduces the crystallite size of the metal–organic framework UiO-66 (Chem. Commun. 2016, 52, 6411–6414). In an effort to shed light on the nature of the aging effect and on its relationship with the crystallite size of UiO-66, we report here the isolation and structural characterization of a microcrystalline zirconium-based compound of the formula [ZrCl­(OH)2(DMF)2]­Cl, which is formed during the aging process. The Zr­(IV) ions are coordinated by hydroxide, DMF, and chloride to produce a one-dimensional polymer. Thanks to the presence of two −OH groups per zirconium atom, [ZrCl­(OH)2(DMF)2]Cl is a suitable precursor for the synthesis of UiO-66 in dry DMF, affording a product having a smaller crystallite size than that obtained from a reaction mixture having the same chemical composition but using ZrCl4 as the Zr­(IV) source. By starting from ZrCl4 and generating [ZrCl­(OH)2(DMF)2]Cl in situ in solution through aging, we obtained smaller crystallites as the aging time increased, proving that [ZrCl­(OH)2(DMF)2]Cl plays a role in the aging process. The possible role of [ZrCl­(OH)2(DMF)2]Cl in the crystallization mechanism of UiO-66 is also discussed, with emphasis on its relationship with the amount of water in the reaction mixture.

History