Indole Alkaloid Glucosides from the Roots of *Isatis indigotica*

Yu-Feng Liu^{a,b}, Ming-Hua Chen^{a,c}, Yu-Huan Li^c, Dan-Zhang^a, Jian-Dong Jiang^{a,c}, and Jian-Gong Shi^{a,*}

^{*a*} State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; ^{*b*} Department of Pharmacy, Jining Medical University, Jining 272067, China; ^{*c*} Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Supporting Information

^{*} Corresponding author. E-mail: shijg@imm.ac.cn.

We dedicate this paper to Prof. Zhong-Jian Jia on the occasion of her 85th birthday.

List of Contents

		5
No.	Content	Page
1	ECD Calculation of 3 and 4	S 4
2	Figure S1. The re-optimized conformers of 3 and their equilibrium populations.	S5
3	Figure S2. The experimental CD spectrum (full line) of 3 (blue) and the calculated	S5
	ECD spectra (dashed line) of 3 (blue) and its enantiomer (red).	
4	Figure S3. The re-optimized conformers of 4 and equilibrium populations.	S 6
5	Figure S4. The experimental CD spectrum (full line) of 4 (blue) and the calculated	S 6
	ECD spectra (dashed line) of 4 (blue) and its enantiomer (red).	
6	Figure S5. The UV spectrum of compound 1 in MeOH.	S 8
7	Figure S6. The IR spectrum of compound 1.	S9
8	Figure S7. The ESI mass spectrum of compound 1.	S10
9	Figure S8. The (+)-HRESIMS report of compound 1, page 1	S11
10	Figure S9. The (+)-HRESIMS report of compound 1, page 2.	S12
11	Figure S10. The (+)-HRESIMS report of compound 1, page 3.	S13
12	Figure S11. The (+)-HRESIMS report of compound 1, page 4.	S14
13	Figure S12 . The ¹ H NMR spectrum of compound 1 in DMSO- d_6 (500 MHz)	S15
14	Figure S13 . The ¹³ C NMR spectrum of compound 1 in DMSO- d_6 (125 MHz).	S16
15	Figure S14 . The DEPT spectrum of compound 1 in DMSO- d_6 (125 MHz).	S17
16	Figure S15 . The COSY spectrum of compound 1 in DMSO- d_6 (500 MHz).	S18
17	Figure S16 . The HSQC spectrum of compound 1 in DMSO- d_6 (500 MHz for ¹ H).	S19
18	Figure S17 . The HMBC spectrum of compound 1 in DMSO- d_6 (500 MHz for ¹ H).	S20
19	Figure S18 . The ¹ H NMR spectrum of D-glucose in D_2O (600 MHz), isolated from the	S21
	hydrolysate of compound 1 .	
20	Figure S19. The UV spectrum of compound 2 in MeOH.	S22
21	Figure S20. The IR spectrum of compound 2.	S23
22	Figure S21. The ESI mass spectrum of compound 2.	S24
23	Figure S22. The (+)-HRESIMS report of compound 2, page 1.	S25
24	Figure S23. The (+)-HRESIMS report of compound 2, page 2.	S26
25	Figure S24. The (+)-HRESIMS report of compound 2, page 3.	S27
26	Figure S25 . The ¹ H NMR spectrum of compound 2 in DMSO- d_6 (500 MHz)	S28
27	Figure S26 . ¹³ C NMR spectrum of compound 2 in DMSO- d_6 (125 MHz).	S29
28	Figure S27. DEPT spectrum of compound 2 in DMSO- d_6 (125 MHz).	S 30
29	Figure S28. The COSY spectrum of compound 2 in DMSO- d_6 (500 MHz).	S 31
30	Figure S29 . The HSQC spectrum of compound 2 in DMSO- d_6 (500 MHz for ¹ H).	S32
31	Figure S30 . The HMBC spectrum of compound 2 in DMSO- d_6 (500 MHz for ¹ H).	S33
32	Figure S31. The ¹ H NMR spectrum of D-glucose in D ₂ O (600 MHz), isolated from the	S34
	hydrolysate of compound 2 .	
33	Figure S32. The UV spectrum of compound 3 in MeOH.	S35
34	Figure S33. The CD spectrum of compound 3 in MeOH.	S36
35	Figure S34. The IR spectrum of compound 3.	S 37
36	Figure S35. The ESI mass spectrum of compound 3.	S38
37	Figure S36. The (+)-HRESIMS report of compound 3, page 1.	S39
38	Figure S37. The (+)-HRESIMS report of compound 3, page 2.	S40
50		

40	Figure S39. The ¹ H NMR spectrum of compound 3 in $CD_3OD(600 \text{ MHz})$.	S42
41	Figure S40 . The ¹³ C NMR spectrum of compound 3 in CD ₃ OD (150 MHz).	S43
42	Figure S41. The DEPT spectrum of compound 3 in CD ₃ OD (150 MHz)	S44
43	Figure S42. The COSY spectrum of compound 3 in CD ₃ OD (600 MHz).	S45
44	Figure S43. The HSQC spectrum of compound 3 in CD ₃ OD (600 MHz for 1 H).	S46
45	Figure S44 . The HMBC spectrum of compound 3 in CD ₃ OD (600 MHz for ¹ H).	S47
46	Figure S45. The ¹ H NMR spectrum of D-glucose in D ₂ O (500 MHz), isolated from	S48
	the hydrolysate of compound 3 .	
47	Figure S46. The UV spectrum of compound 4 in MeOH.	S49
48	Figure S47. The CD spectrum of compound 4 in MeOH.	S 50
49	Figure S48. The IR spectrum of compound 4.	S51
50	Figure S49. The ESI mass spectrum of compound 4.	S52
51	Figure S50. The (+)-HRESIMS report of compound 4, page 1.	S 53
52	Figure S51. The (+)-HRESIMS report of compound 4, page 2.	S54
53	Figure S52. The (+)-HRESIMS report of compound 4, page 3.	S55
54	Figure S53. The ¹ H NMR spectrum of compound 4 in CD ₃ OD (600 MHz).	S56
55	Figure S54. The ¹³ C NMR spectrum of compound 4 in CD ₃ OD (150MHz).	S 57
56	Figure S55. The DEPT spectrum of compound 4 in CD_3OD (150 MHz).	S58
57	Figure S56. The COSY spectrum of compound 4 in CD ₃ OD (600 MHz).	S59
58	Figure S57. The HSQC spectrum of compound 4 in CD ₃ OD (600MHz for 1 H)	S 60
59	Figure S58. The HMBC spectrum of compound 4 in CD ₃ OD (600 MHz for ¹ H)	S 61
60	Figure S59. The ¹ H NMR spectrum of D-glucose in D ₂ O (600 MHz), isolated from	S62
	the hydrolysate of compound 4 .	
61	Figure S60. The UV spectrum of compound 5 in MeOH	S63
62	Figure S61. The IR spectrum of compound 5.	S64
63	Figure S62. The ESI mass spectrum of compound 5.	S65
64	Figure S63. The (+)-HRESIMS report of compound 5, page 1.	S66
65	Figure S64. The (+)-HRESIMS report of compound 5, page 2.	S67
66	Figure S65. The (+)-HRESIMS report of compound 5, page 3.	S68
67	Figure S66 . The ¹ H NMR spectrum of compound 5 in acetone- d_6 (600 MHz)	S69
68	Figure S67 The ¹³ C NMR spectrum of compound 5 in acetone- d_6 (150 MHz)	S 70
69	Figure S68 The DEPT spectrum of compound 5 in acetone- d_6 (150 MHz).	S 71
70	Figure S69. The COSY spectrum of compound 5 in acetone- d_6 (600 MHz).	S 72
71	Figure S70 . The HSQC spectrum of compound 5 in acetone- d_6 (600 MHz for ¹ H).	S 73
72	Figure S71 . The HMBC spectrum of compound 5 in acetone- d_6 (600 MHz for ¹ H).	S74
73	Figure S72. The ¹ H NMR spectrum of compound 5 in CD ₃ OD (500 MHz).	S75
74	Figure S73. The 13 C NMR spectrum of compound 5 in CD ₃ OD (125MHz).	S76
75	Figure S74 . The ¹ H NMR spectrum of D-glucose in D_2O (600 MHz), isolated from	S77
	the hydrolysate of compound 5 .	
76	Figure S75 . The ¹ H NMR spectrum of an authentic D-glucose in D_2O (500 MHz)	S78

ECD Calculation of 3 and 4.

Conformational analysis of 3 was performed on via Monte Carlo searching with the MMFF94 molecular mechanics force field using the Spartan 10 software [S1]. 14 conformers having relative energy within 2 kcal/mol were re-optimized using DFT at the B3LYP/6-31+G(d) level via Gaussian 09 program package [S2], considering the solvent effects through conductor-like polarizable continuum model (CPCM) with the dielectric constant of MeOH ($\varepsilon = 32.6$). The B3LYP/6-31G+(d) harmonic vibrational frequencies were calculated to confirm their stability. The energies, oscillator strengths, and rotational strengths of the first 40 electronic excitations of the conformers were calculated using the TDDFT methodology at the B3LYP/6-311++G (2d,2p) level in gas phase, and yield 6 conformers with relative Gibbs free energies (ΔG) under 2 kcal/mol (Figure S1). The ECD spectra of the 6 conformers were then simulated using the Gaussian function ($\sigma = 0.28$ eV), respectively. To gain the final spectrum of 3, the simulated spectra of the 6 conformers were averaged based on their Gibbs free energies (G). The ECD spectrum of the enantiomeric **3** was depicted by inverting that of **3**. In the 200-400 nm region, compared to the Cotton effects at 213, 229, 270 and 297 nm in the experimental CD spectrum, the calculated ECD spectrum showed four corresponding peaks at 203, 225, 263 and 295 nm, respectively (Figure S2).

Figure S1. The re-optimized conformers of 3 and their equilibrium populations.

Figure S2. The experimental CD spectra (full line) of 3 (blue) and the calculated ECD spectra (dashed line) of 3 (blue) and its enantiomer (red).

Conformational analysis of **4** and re-optimization were carried out using the same protocol as **3**, and afforded 11 conformers with relative Gibbs free energies (ΔG) under 2 kcal/mol (Figure S3). The ECD spectra of the 11 conformers were simulated using the Gaussian function ($\sigma = 0.28$ eV), respectively. Then, the final spectrum of **4** was fitted by averaging the spectra of the lowest energy conformers according to their Gibbs free energies (G). The ECD spectrum of the enantiomeric **4** was depicted by inverting that of **4**. In the 200-400 nm region, compared to the Cotton effects at 218, 232, and 292nm in the experimental CD spectrum of **4**, the calculated ECD spectrum of **4** showed three corresponding peaks at 229, 260, and 292 nm, respectively (Figure S4).

Figure S3. The re-optimized conformers of 4 and their equilibrium populations.

Figure S4. The experimental CD spectrum (full line) of **4** (blue) and the calculated ECD spectra (dashed line) of **4** (blue) and its enantiomer (red).

References

- [S1] Spartan 10; Wavefunction, Inc.: Irvine, CA. (2010)
- [S2] Gaussian 09, Gaussian, Inc., <u>www.gaussian.com</u>.

Figure S5. The UV spectrum of compound 1 in MeOH.

Figure S6. The IR spectrum of compound 1.

Single Mass Spectrum Deconvolution Report

Figure S7. The ESI mass spectrum of compound 1.

		201	1050001.0		Sample Nam	e	BLG-L-119
Sample T	ype	Sam	nple		Position		P1-C1
Instrume	nt Name	e Inst	rument 1		User Name		
Aca Meth	od				IRM Calibrat	tion Status	
DA Metho	bd	TES	T LCMS.m		Comment		
DATIONIO		120			Comment		
User Ch	romato	ograms					0 7
	DAD1 - F	:Sia=330) 8 Ref=5	50.30 201403	0601.d		
×10.1 N	loise (Pe	eakToPe	ak) = 0.30); SNR (5.930	min) = 774.2	н	о— ОН
~10						* 5.930 HO	
6-						Н	
4 -							
							H O
2							4
-							
٥E		· · · · · · · · ·	<u></u>	····· 1			· · · · · · · · · · · · · · · · · · ·
	0.5	1 1.5	2 2.5	3 3.5 Response	4 4.5 5	5.5 6 6.5	7 7.5 8 8.5 9 9.5
Integratio	on Peak	List		i tesponse	, onito vo. Acc		<u> </u>
Peak S	Start	RT	End	Height Are	a Area %	Signal To N	bise
1	5.802	5.93	6.09	67.77 2	29.61	100	774.2
Noise Mea	asureme	nts					
Noise Typ	e	Signal D	efinition	Noise M	ultiplier	Noise Value	
Peak-to-Pea	ak	Area		1		0.296592712	
Noise Reg	gions						
Start E	End						
0.5 1	L						
5 5	5.3						
9.99 1	11						
Fragm	nentor Vo	Itage	135	Collision Energy	v 0 Io	nization Mode ES	[
5							
+	FIO/4E	14400 0	001	000001 -			
	EIC(45	9.1410) S	Scan 2014	030601.d	913min) = 452	96 1	
x10 6 N	EIC(459 loise (Pe	9.1410) S eakToPea	Scan 2014 ak) = 125	030601.d 0.28; SNR (5.9	913min) = 452	26.1	
×10 6 N	EIC(459 loise (Pe	9.1410) S eakToPea	Scan 2014 ak) = 125	030601.d 0.28; SNR (5.9	913min) = 452	26.1 * 5.913	
x10 ⁶ 1 0.8	EIC(459 loise (Pe	9.1410) S eakToPea	Scan 2014 ak) = 1250	030601.d 0.28; SNR (5.	913min) = 452	26.1 * 5.913	
x10 ⁶ N 0.8	EIC(459	9.1410) S eakToPea	Scan 2014 ak) = 125	030601.d 0.28; SNR (5.	913min) = 452	26.1 * 5.913	с
x10 6 N -1 0.8 - 0.6 -	EIC(459	9.1410) S eakToPea	Scan 2014 ak) = 125	1030601.d 0.28; SNR (5.	913min) = 452	26.1 ◆5.₽13	
x10 6 N 0.8 0.6 0.4	EIC(459 loise (Pe	9.1410) S eakToPea	Scan 2014 ak) = 1250	1030601.d D.28; SNR (5.	913min) = 452	*5.913	
x10 6 N 0.8 0.6 0.4	EIC(459	9.1410) S eakToPea	6can 2014 ak) = 1250	1030601.d D.28; SNR (5.9	913min) = 452	*5.913	
×10 6 N 0.8 0.6 0.4 0.2	EIC(459	9.1410) S eakToPea	Scan 2014 ak} = 125	1030601.d D.28; SNR (5.9	913min) = 452	*5.913	
x10 6 N 1 0.8 0.6 0.4 0.2 0	EIC(459	9.1410) S eakToPea	Scan 2014 ak) = 125	1030601.d D.28; SNR (5.9	913min) = 452	* 5.913	
x10 6 N 0.8 0.6 0.4 0.2 0	EIC(45 loise (Pe	9.1410) S eakToPea	Scan 2014 ak) = 1250	030601.d 0.28; SNR (5.9 3 3.5	913min) = 452 4 4.5 5	6.1 * 5.913 5.5_6_6.5	7 7.5 8 8.5 9 9.5
x10 6 N 0.8 0.6 0.4 0.2 0	EIC(45 loise (Pe	9.1410) S akToPea 1 1.5	Scan 2014 ak) = 125 2 2.5	030601.d 0.28; SNR (5.9 3 3.5 Count	913min) = 452 4 4.5 5 is vs. Acquisiti	26.1 * 5.913 5.5 6 6.5 on Time (min)	7 7.5 8 8.5 9 9.5
x10 6 N 0.8 0.6 0.4 0.2 0 Untegratio	EIC(45 loise (Pe	9.1410) S akToPea 1 1.5 List	Scan 2014 ak) = 125 2 2.5	030601.d 0.28; SNR (5.9 3 3.5 Count	913min) = 452 4 4.5 5 is vs. Acquisiti	26.1 * 5.913 5.5 6 6.5 on Time (min)	7 7.5 8 8.5 9 9.5
x10 6 N -1 0.8 0.6 0.4 0.2 0 - - 0 - - 0 - - 0 - - 0 - - - - - - - - - - - - -	EIC(45 loise (Pe 0.5 on Peak Start	9.1410) S akToPea 1 1.5 List RT	Scan 2014 ak} = 1250 2 2.5 End	030601.d 0.28; SNR (5.9 3 3.5 Count Height	913min) = 452 4 4.5 5 Is vs. Acquisiti Area	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig	7 7.5 8 8.5 9 9.5
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S Noise Mea	EIC(45 loise (Pe 0.5 on Peak start 5.5	9.1410) S aakToPea 1 1.5 List RT 5.913 nts	Scan 2014 ak) = 1250 2 2.5 End 6.219	030601.d 0.28; SNR (5.9 3 3.5 Count Height 1025579	913min) = 452 4 4.5 5 is vs. Acquisiti Area 5658856	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S 1 Noise Mea	EIC(45 loise (Pe 0.5 on Peak start 5.768 asureme e	9.1410) S aakToPea 1 1.5 List RT 5.913 nts Signal D	Can 2014 ak) = 1250 2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5.9 3 3.5 Count Height 1025579	913min) = 452 4 4.5 5 1s vs. Acquisiti Area 5658856 ultiplier	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S Noise Mea Noise Typ Peak-to-Pea	EIC(45 loise (Pe 0.5 on Peak start 5.768 asureme e ak	9.1410) S akToPea 1 1.5 List RT 5.913 nts Signal D Area	Scan 2014 ak) = 1256 2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5.9 3 3.5 Count Height 1025579 Noise Mu 1	913min) = 452 4 4.5 5 is vs. Acquisiti Area 5658856 ultiplier	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S Noise Mea Noise Mea Noise Mea	EIC(45 loise (Pe 0.5 on Peak start 5.768 asureme e ak jions	9.1410) S akToPea 1 1.5 List Est 5.913 nts Signal D Area	Scan 2014 ak) = 1256 2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5.9 3 3.5 Count Height 1025579 Noise Mi 1	913min) = 452 4 4.5 5 is vs. Acquisiti Area 5658856 ultiplier	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S 1 Noise Mea Noise Typ Peak-to-Pee Noise Reg Start E	EIC(45 loise (Pe 0.5 on Peak start 5.768 asureme e ak ions ind	9.1410) S akToPer 1 1.5 List RT 5.913 nts Signal D Area	2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5. Count Height 1025579 Noise Mi 1	913min) = 452 4 4.5 5 1s vs. Acquisiti Area 5658856 ultiplier	26.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S 1 Noise Mea Noise Typ Peak-to-Pee Noise Reg Start E 0.5 1	EIC(45 loise (Pe 0.5 on Peak start 5.768 asureme e ak ions ind	9.1410) S akToPer 1 1.5 List RT 5.913 nts Signal D Area	2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5. Count Height 1025579 Noise M 1	913min) = 452 4 4.5 5 1s vs. Acquisiti Area 5658856 ultiplier	26.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S 1 Noise Mea Noise Typ Peak-to-Pee Noise Reg Start E 0.5 1 5 5 5	EIC(45 loise (Pe 0.5 0.5 0.7 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	9.1410) S akToPer 1 1.5 List RT 5.913 nts Signal D Area	2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5.9 Count Height 1025579 Noise Mi 1	913min) = 452 4 4.5 5 1s vs. Acquisiti Area 5658856 ultiplier	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 - 0.6 - 0.4 - 0.2 - 0 - Integratio Peak S 1 Noise Mea Noise Typ Peak-to-Pea Noise Reg Start E 0.5 1 5 5 9.99 1	EIC(45 loise (Pe 0.5 on Peak start 5.768 asureme e ak jions i.3 1	9.1410) S akToPea 1 1.5 List RT 5.913 nts Signal D Area	Scan 2014 ak) = 1250 2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5.9 Count Height 1025579 Noise Mi 1	913min) = 452 4 4.5 5 Is vs. Acquisiti Area 5658856 ultiplier	6.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 0.6 0.4 0.2 0 Integratio Peak S 1 Noise Mea Noise Reg Start E 0.5 1 5 5 9.99 1 User Sec	0.5 on Peak start 5.768 asuremee e ak jions ind j.3 1 actro	9.1410) S akToPea 1 1.5 List RT 5.913 nts Signal D Area	Can 2014 ak) = 1250 2 2.5 End 6.219 efinition	030601.d 0.28; SNR (5.9 Count Height 1025579 Noise Mi 1	913min) = 452 4 4.5 5 Is vs. Acquisiti Area 5658856 ultiplier	26.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1
x10 6 N 0.8 0.6 0.4 0.2 0 Integratio Peak S 1 Noise Mea Noise Reg Start E 0.5 1 5 5 9.99 1 User Spe	0.5 on Peak start 5.768 asuremee e ak jions ind 5.3 1 ectra	9.1410) S akToPea 1 1.5 List RT 5.913 nts Signal D Area	2 2.5 End 6.219	030601.d 0.28; SNR (5.9 3 3.5 Count Height 1025579 Noise Mi 1	913min) = 452 4 4.5 5 Is vs. Acquisiti Area 5658856 ultiplier	26.1 * 5.913 5.5 6 6.5 on Time (min) Area % Sig 100 Noise Value 1250.277466	7 7.5 8 8.5 9 9.5 nal To Noise 4526.1

Agilent Technologies

Page 1 of 3

Printed at: 8:47 AM on: 3/6/2014

Agilent Technologies

Page 2 of 3

Printed at: 8:47 AM on: 3/6/2014

Figure S9. The (+)-HRESIMS report of compound 1, page 2.

Formula	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C20 H28 N O7 S2		458.1329	458.1307	-4.83	C20 H28 N Na O7 S2	98.02
C31 H22 O2 S		458.1329	458.1341	2.46	C31 H22 Na O2 S	97.98

--- End Of Report ---

Agilent Technologies

Page 3 of 3

Printed at: 8:47 AM on: 3/6/2014

Figure S10. The (+)-HRESIMS report of compound 1, page 3.

MS Formula	Results: +	Scan	(5.913 min)	Sub (2014030601.d)
		00011		

-	m/z	lon	Formula	Abundance											
	459.1407	(M+H)+	C25 H21 N3 O6	1027863.4											
	Best	Formula (M)	Ion Formula	Calc m/z	Score t	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
٠		C22 H22 N2 O9	C22 H23 N2 O9	459.1398	99.91		458.1334	458.1325	-1.95	1.95	99.93	99.95	99.87	450 1407	UDE
	v	C25 H20 N3 O6	C25 H21 N3 O6	459.1425	99.58	110000	458.1334	458.1352	3.9	3.9	99.41	99.95	90.40	450 1407	17
۲	Г	C20 H20 N5 O8	C20 H21 N5 O8	459.1385	99.51		458.1334	458,1312	-4.89	4.89	11.00	90.00	00.2	455.1407	17.3
۲	r	C17 H24 N5 O8 S	C17 H25 N5 O8 S	459.1418	98.6		458.1334	458,1346	2.46	246	95.68	00.73	99.2	459.1407	13.5
+	Г	C29 H20 N3 O S	C29 H21 N3 O S	459.14	98.48		458.1334	458,1327	-1.57	157	94.92	99.73	99.0	459.1407	8.0
	Г	C19 H26 N2 O9 S	C19 H27 N2 O9 S	459.1432	98.41		458.1334	458 1359	54	5.4	06.25	00.77	33.32	459.1407	21.5
Đ	Г	C31 H22 O2 S	C31 H23 O2 S	459.1413	98.13		458,1334	458 1341	1 37	137	03.66	99.77	99.02	459.1407	
•	Г	C16 H28 N O12 S	C16 H29 N O12 S	459.1405	97.71		458,1334	458 1332	-0.44	0.44	93.00	99.00	99.94	459.1407	2
•	٢	C23 H26 N2 O4 S2	C23 H27 N2 O4 S2	459,1407	97.67		458 1334	458 1334	-0.0	0.44	92.21	99.74	99.99	459.1407	3.5
•	Г	C21 H24 N5 O3 S2	C21 H25 N5 O3 S2	459,1393	97.63		458 1334	459 1331	-0.00	0.00	92.17	99.59	100	459.1407	12
. []	Г	C14 H26 N4 O11 S	C14 H27 N4 O11 S	459,1392	97.14		458 1334	459 1310	-3	3 20	92.59	99.54	99.7	459.1407	12.5
	Г	C26 H24 N3 O S2	C26 H25 N3 O S2	459 1434	97.05	<u> </u>	458 1334	450.1319	-3.39	3.39	90.89	99.71	99.61	459.1407	
	Г	C34 H18 O2	C34 H19 O2	459 138	97.03	+ +	450.1334	458.1301	5.79	5.79	91.86	99.63	98.88	459.1407	16.5
				100.100	57.01	1	450.1554	458.1507	-5.98	5.98	91.65	99.87	98.8	459.1407	26
-	481 1222	ion	Formula	Abundance											
4	401.1222	(M+Na)+	C25 H20 N3 Na 06	326710.4											
	Best	Formula (M)	Ion Formula	Calc m/z	Score V	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
	Г	C22 H22 N2 O9	C22 H22 N2 Na O9	481.1218	99.07		458.1329	458.1325	-0.86	0.86	99.35	96.92	99.98	481,1222	13
•		C17 H24 N5 O8 S	C17 H24 N5 Na O8 S	481.1238	99.03		458.1329	458.1346	3.54	3.54	97.87	99.25	99.61	481,1222	8.5
۰	F	C20 H20 N5 O8	C20 H20 N5 Na O8	481.1204	98.83		458.1329	458.1312	-3.8	3.8	99.01	97.17	99.55	481,1222	13.5
۰.	r	C21 H24 N5 O3 S2	C21 H24 N5 Na O3 S2	481.1213	98.73		458.1329	458.1321	-1.92	1.92	96.1	99.56	99.89	481,1222	12 5
•		C23 H26 N2 O4 S2	C23 H26 N2 Na O4 S2	481.1226	98.62		458.1329	458.1334	1.02	1.02	95.69	99.44	99.97	481 1222	15
۲	F	C29 H20 N3 O S	C29 H20 N3 Na O S	481.1219	98.45		458.1329	458.1327	-0.48	0.48	95.64	98.73	99.99	481 1222	21.6
141													00.00	TOTICEE	
	5	C25 H20 N3 O6	C25 H20 N3 Na O6	481.1244	98.39	1 1	458.1329	458.1352	4.99	4.99	98.3	96.83	99 23	481 1222	17.5
· 🗆	P	C25 H20 N3 O6 C16 H28 N O12 S	C25 H20 N3 Na O6 C16 H28 N Na O12 S	481.1244 481.1224	98.39 98.36		458.1329	458.1352 458.1332	4.99 0.64	4.99	98.3 95.02	96.83	99.23	481.1222	17.5
	<u>จ</u> -	C25 H20 N3 O6 C16 H28 N O12 S C20 H28 N O7 S2	C25 H20 N3 Na O6 C16 H28 N Na O12 S C20 H28 N Na O7 S2	481.1244 481.1224 481.1199	98.39 98.36 98.02		458.1329 458.1329 458.1329	458.1352 458.1332 458.1307	4.99 0.64 -4.83	4.99 0.64 4.83	98.3 95.02 94.71	96.83 99.11	99.23 99.99 99.28	481.1222 481.1222 481.1222	17.5
•	ררר	C25 H20 N3 O6 C16 H28 N O12 S C20 H28 N O7 S2 C31 H22 O2 S	C25 H20 N3 Na O6 C16 H28 N Na O12 S C20 H28 N Na O7 S2 C31 H22 Na O2 S	481.1244 481.1224 481.1199 481.1233	98.39 98.36 98.02 97.98		458.1329 458.1329 458.1329 458.1329	458.1352 458.1332 458.1307 458.1341	4.99 0.64 -4.83 2.46	4.99 0.64 4.83 2.46	98.3 95.02 94.71 94.45	96.83 99.11 99.48 98.53	99.23 99.99 99.28 99.81	481.1222 481.1222 481.1222 481.1222	17.5

Figure S11. The (+)-HRESIMS report of compound 1, page 4.

Figure S12. The ¹H NMR spectrum of compound **1** in DMSO- d_6 (500 MHz).

DD2-500 13C-NMR BLG-L-119 IN dmso Feb 19 2014 sw-Probe

Figure S13. The ¹³C NMR spectrum of compound **1** in DMSO- d_6 (125 MHz).

Figure S14. The DEPT spectrum of compound 1 in DMSO-*d*₆ (125 MHz).

Figure S15. The ¹H-¹H COSY spectrum of compound **1** in DMSO- d_6 (500 MHz).

Figure S16. The HSQC spectrum of compound **1** in DMSO- d_6 (500 MHz for ¹H).

Figure S17. The HMBC spectrum of compound **1** in DMSO- d_6 (500 MHz for ¹H).

Figure S18. The¹H NMR spectrum of D-glucose in D_2O (600 MHz), isolated from hydrolysate of compound 1.

Figure S19. The UV spectrum of compound 2 in MeOH.

Figure S20. The IR spectrum of compound 2.

Figure S21. The ESI mass spectrum of compound 2.

Agilent Technologies

Page 1 of 2

Printed at: 11:45 AM on: 7/10/2013

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 11:45 AM on: 7/10/2013

Figure S23.The (+)-HRESIMS report of compound 2, page 2.

MS Formula Results: + Scan (5.073 min) Sub (2013071008.d)

m/z		lon	Formula	Abundance											
	387.1168	(M+Na)+	C17 H20 N2 Na O7	793401.9											
E	Best	Formula (M)	Ion Formula	Calc m/z	Score 👻	Cross S	Mass	Caic Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
۲	v	C17 H20 N2 O7	C17 H20 N2 Na O7	387.1163	99.96	100	364.1276	364.1271	-1.47	1.47	99.97	99.98	99.94	387,1168	9
•	Г	C22 H20 O5	C22 H20 Na O5	387.1203	98.25		364.1276	364.1311	9.59	9.59	98.32	99.93	97.36	387.1168	13
•	Г	C21 H20 N2 O2 S	C21 H20 N2 Na O2 S	387.1138	97.99		364.1276	364.1245	-8.34	8.34	96.51	99.77	98	387,1168	13
•	Г	C14 H24 N2 O7 S	C14 H24 N2 Na O7 S	387.1196	97.96		364.1276	364.1304	7.79	7.79	96	99.71	98.25	387,1168	4
•	٣	C26 H20 S	C26 H20 Na S	387.1178	97.55		364.1276	364.1286	2.71	2.71	91.92	99.82	99.79	387 1168	17
•	Г	C18 H24 N2 O2 S2	C18 H24 N2 Na O2 S2	387.1171	97.45		364.1276	364.1279	0.91	0.91	91,46	99.57	99.98	387,1168	8
•	Г	C9 H24 N4 O9 S	C9 H24 N4 Na O9 S	387.1156	96.82		364.1276	364.1264	-3.27	3.27	89.69	99.65	99.69	387 1168	0
•[Г	C29 H16	C29 H16 Na	387.1144	96.23		364.1276	364.1252	-6.54	6.54	88.94	99.92	98.76	387,1168	22

Figure S24.The (+)-HRESIMS report of compound **2**, page 3.

page 1

Figure S25. The ¹H NMR spectrum of compound **2** in DMSO- d_6 (500 MHz).

DD2-500 13C-NMR BLG-L-47 IN dmso Jun 14 2013 coldprobe-Probe

Figure S26. ¹³C NMR spectrum of compound **2** in DMSO- d_6 (125 MHz).

Figure S27. DEPT spectrum of compound 2 in DMSO-*d*₆ (125 MHz).

Figure S28. The ¹H-¹H COSY spectrum of compound **2** in DMSO- d_6 (500 MHz).

Figure S29. The HSQC spectrum of compound 2 in DMSO- d_6 (500 MHz for ¹H).

Figure S30. The HMBC spectrum of compound 2 in DMSO- d_6 (500 MHz for ¹H).

Figure S31. The¹H NMR spectrum of D-glucose in D₂O (600 MHz), isolated from hydrolysate of compound 2

Figure S32. The UV spectrum of compound 3 in MeOH.

Figure S33. The CD spectrum of compound 3 in MeOH.

Figure S34. The IR spectrum of compound 3.

Single Mass Spectrum Deconvolution Report

Analysis Name: liuyf178.d Method: TEST.MS Sample Name: BLG-L-20a-1 Analysis Info: Instrument: LC-MSD-Trap-SL Operator: Operator Print Date: 8/22/2013 10:43:11 AM Acq. Date: 8/22/2013 10:32:39 AM

Acquisition Parameter:

Mass Range Mode	Std/Normal Positive	Trap Drive Octopole RF Amplitude	53.0 171.0 Vpp	Scan Begin Scan End	100 m/z 450 m/z
Ion Source Type	ESI	Capillary Exit	-121.0 Volt	Averages	5 Spectra
Dry Temp (Set)	330 °C	Skimmer	-40.0 Volt	Max. Accu Time	200000 µs
Nebulizer (Set)	15.00 psi	Oct 1 DC	-12.00 Volt	ICC Target	204
Dry Gas (Set)	6.00 l/min	Oct 2 DC	-1.70 Volt	Charge Control	on

MSD Trap Report v 4 (A4-Opt2)

Page 1 of 1

Agilent Technologies

Figure S35. The ESI mass spectrum of compound 3.

ta Filename mple Type strument Name	2013071001.c Sample	d Sampl Positio	e Name on Iame	P1-C1	
Method		IRM C	alibration Status	aligned, sto	
Method	TEST LCMS.m	Comm	ent		
er Chromato	ograms				
DAD1 - D Noise (Pe):Sig=280,8 Ref=5 eakToPeak} = 0.25	550,30 2013071001.d 5; SNR (5.719min) = 3	32.4		
8-			* 5.719		
			1		
4					
2					
0-					
-2					
-4-		- <u>1</u>		<u> </u>	
1	1 2	3 4 5 Response Units v	6 7 s. Acquisition Time	8 9 10 (min)	
egration Peak	List				
ak Start	RT End	Height Area Ar	rea % Signal T	o Noise	
1 5.643	5.719 5.831	2.45 8.24	100	32.4 NC	OCH
se Type	Signal Definition	Noise Multiplier	Noise Value		
k-to-Peak	Area	1	0.254154205	HO O S-	- T
se Regions				но-он	Ň
rt lena l					
1				:	3
1 5.3 9 11				:	3
1 5.3 9 11 Fragmentor Vo	ltage 135	Collision Energy 0) Ionization Mode	ESI	3
1 5.3 9 11 Fragmentor Vol	Itage 135	Collision Energy) Ionization Mode	ESI	3
1 5.3 9 11 Fragmentor Vol	Itage 135 3.0940) Scan 2013	Collision Energy 0) Ionization Mode	ESI	3
1 5.3 9 11 Fragmentor Vol 10 5 + EIC(400	Itage 135 3.0940) Scan 2013	Collision Energy 0	 Ionization Mode * 5.705 	ESI	3
1 5.3 9 11 Fragmentor Vol 10 5 1 + EIC(403 1 1.5	ltage 135 3.0940) Scan 2013	Collision Energy 0 3071001.d	 Ionization Mode * 5.705 	ESI	3
1 5.3 9 11 Fragmentor Vol 10 5 + EIC(403 1 1.5	Itage 135 3.0940) Scan 2013	Collision Energy 0	 Ionization Mode * 5.705 	ESI	3
1 5.3 9 11 Fragmentor Vol 10 ⁵ 1.5- 1-	Itage 135 3.0940) Scan 2013	Collision Energy	 Ionization Mode * 5.705 	ESI	3
1 5.3 9 11 Fragmentor Vol 10 5 1.5- 1- 0 5	Itage 135 3.0940) Scan 2013	Collision Energy 0 3071001.d	 Ionization Mode * 5.705 	ESI	3
1 5.3 9 11 Fragmentor Vol 10 5 1 + EIC(403 1 1.5 1.5 1 0.5	Itage 135 3.0940) Scan 2013	Collision Energy 0	 Ionization Mode * 5.705 	ESI	3
1 5.3 9 11 Fragmentor Vol 10 5 1 + EIC(403 1 1.5 1.5 1.5 0.5	Itage 135 3.0940) Scan 2013	Collision Energy 0	• Ionization Mode * 5.705	ESI	3
1 5.3 9 11 Fragmentor Vo 10 5 1 + EIC(403 1.5 1.5 1 0.5 0 1	Itage 135 3.0940) Scan 2013	Collision Energy 0 3071001.d 3 4 5 Counts vs. Ad	5.705	ESI 8 9 10	3
1 5.3 9 11 Fragmentor Vo 10 5 + EIC(400 1.5 - 1 - 0.5 - 0	Itage 135 3.0940) Scan 2013 2 List End	Collision Energy 0 3071001.d 3 4 5 Counts vs. Ac	Ionization Mode * 5.705 6 7 cquisition Time (min	ESI 8 9 10	3
1 5.3 11 Fragmentor Vo 0 5 1.5 1 0.5 1 0.5 1 1.5 1	Itage 135 3.0940) Scan 2013 3.0940) Scan 2013 3.0940) Scan 2013 3.0940) Scan 2013 5.005 6.06	Collision Energy O 3071001.d 3 3 4 5 Counts vs. Ad 5 Height Area 186017 112070	5.705 5.705 6 7 cquisition Time (min) Area % Sign 100 Infin	ESI 8 9 10) nal To Noise hity	3
1 5.3 9 11 Fragmentor Vo 10 5 + EIC(403 1.5 - 1 - 0.5 - 0	Itage 135 3.0940) Scan 2013 3.0940) Scan 2013 5.705 6.06 ants	Collision Energy Collision Energy <thcollision energy<="" th=""> <thcollision energy<="" t<="" td=""><td>ionization Mode</td><td>ESI 8 9 10) nal To Noise nity</td><td>3</td></thcollision></thcollision>	ionization Mode	ESI 8 9 10) nal To Noise nity	3
1 5.3 9 11 Fragmentor Vo 10 5 1.5 1 0.5 1 0.5 1 0 1 egration Peak 1 k Start 1 5.593 se Measureme se Type	Itage 135 3.0940) Scan 2013 Itage 2 3.0940) Scan 2013 Scan 2013 Elst 2 Elst 2 Elst 2 Elst 2 Signal Definition	Collision Energy 0 3071001.d	Ionization Mode S.705 G 7 cquisition Time (min) Area % Sign 100 Infir Noise Value	ESI 8 9 10 nal To Noise nity	3
1 5.3 9 11 Fragmentor Vo 10 5 + EIC(403 1.5 - 1.5 - 1 - 0.5 - 0 - 1 egration Peak k Start 1 5.593 se Measureme se Type k-to-Peak	Itage 135 3.0940) Scan 2013 3.0950) Scan 2013 3.0950 Scan 2013 3.0940) Scan 2013 3.0940] Scan 2013 3.0	Collision Energy O 3071001.d 3071001.d 3 4 5 Counts vs. Action 5 Height Area 186017 112029 Noise Multiplier 1	Ionization Mode Solution Soluti	ESI 8 9 10 nal To Noise nity	3
1 5.3 9 11 Fragmentor Vo In 5 10 5 1.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1 5.593 se Measureme se Type k-to-Peak se Regions se Regions se Regions	Itage 135 3.0940) Scan 2013 3.0950) Scan 2013 3.0950 Scan 2013 3.0940) Scan 2013 3.0940] Scan 2013 3.0	Collision Energy 0 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d	Ionization Mode * 5.705 6 7 cquisition Time (min) Area % Sign 100 Infin Noise Value 0	ESI 8 9 10 nal To Noise nity	3
1 5.3 9 11 Fragmentor Vo In 5 10 5 1 - 1.5 - 1 - 0 - 1 - 0 - 1 5.593 se Measureme se Type k-to-Peak se Regions rt E End 1	Itage 135 3.0940) Scan 2013 3.0950) Scan 2013 3.0940) Scan 2013 3.0940 3.0940) Scan 2013 3.09400 3.0940 3.0940 3.0940 3.0940 3.09400 3.09400 3.09400 3.	Collision Energy 0 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d	Ionization Mode * 5.705 6 7 cquisition Time (min) Area % Sign 100 Infir Noise Value 0	ESI 8 9 10 nal To Noise nity	3
1 5.3 9 11 Fragmentor Vo 10 5 1 5 1.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1 5.593 se Regions t t End 1 5.3	Itage 135 3.0940) Scan 2013 3.0950) Scan 2013 3.0950 Scan 2013 3.0940) Scan 2013 3.0940] Scan 2013 3.0	Collision Energy 0 3071001.d	Ionization Mode * 5.705 6 7 cquisition Time (min) Area % Sign 100 Infir Noise Value 0	ESI 8 9 10 nal To Noise nity	3
1 5.3 9 11 Fragmentor Vo 10 5 1 5.3 10 5 1 1.5 1 - 0 - 1 5.593 se Measureme se Regions rt End 1 5.3 1 11	Itage 135 3.0940) Scan 2013 3.0950) Scan 2013 3.0950 Scan 2013 3.0940) Scan 2013 3.0940 3.0940] Scan 2013 3.0940] Scan 2	Collision Energy 0 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d 3071001.d	Ionization Mode * 5.705 6 7 cquisition Time (min) Area % Sign 100 Infir Noise Value 0	ESI 8 9 10 nal To Noise nity	3

Agilent Technologies

Page 1 of 2

Printed at: 9:32 AM on: 7/10/2013

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 9:32 AM on: 7/10/2013

Figure S37. The (+)-HRESIMS report of compound 3, page 2.

MS Formula Results: + Scan (5.705 min) Sub (2013071001.d)

	m/z	lon	Formula	Abundance											
	381.1113	(M+H)+	C25 H17 O4	20223.9											
Г	Best	Formula (M)	Ion Formula	Calc m/z	Score 5	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
	Г	C17 H20 N2 O6 S	C17 H21 N2 O6 S	381.1115	98.42		380.104	380.1042	0.53	0.53	98.47	95.2	99.99	381.1113	9
•	A	C25 H16 O4	C25 H17 O4	381.1121	98.4		380.104	380.1049	2.27	2.27	95.02	99.61	99.83	381.1113	18
	m/z	lon	Formula	Abundance											
	403.0939	(M+Na)+	C25 H16 Na O4	185989											
Г	Best	Formula (M)	Ion Formula	Calc m/z	Score 5	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
•	Г	C17 H20 N2 O6 S	C17 H20 N2 Na O6 S	403.0934	99.94		380.1047	380.1042	-1.36	1.36	99.95	99.91	99.95	403.0939	9
	Г	C13 H20 N2 O11	C13 H20 N2 Na O11	403.0959	98.34		380.1047	380.1067	5.24	5.24	96.05	99.4	99.2	403.0939	5
۲	Г	C22 H20 O4 S	C22 H20 Na O4 S	403.0975	98.2		380.1047	380.1082	9.23	9.23	97.84	99.99	97.52	403.0939	13
•	Г	C14 H24 N2 O6 S2	C14 H24 N2 Na O6 S2	403.0968	98.13		380.1047	380.1076	7.51	7.51	96.55	99.56	98.36	403.0939	4
•	Г	C21 H20 N2 O S2	C21 H20 N2 Na O S2	403.0909	97.99		380.1047	380.1017	-7.94	7.94	96.28	99.7	98.16	403.0939	13
•	Г	C18 H24 N2 O S3	C18 H24 N2 Na O S3	403.0943	97.62		380.1047	380.1051	0.92	0.92	92.22	99.41	99.97	403.0939	8
	S	C25 H16 O4	C25 H16 Na O4	403.0941	97.52		380.1047	380.1049	0.37	0.37	92.23	98.91	100	403.0939	18
۲	Г	C9 H24 N4 O8 S2	C9 H24 N4 Na O8 S2	403.0928	97.22		380.1047	380.1036	-3.09	3.09	91.28	99.33	99.72	403.0939	0
	Г	C26 H12 N4	C26 H12 N4 Na	403.0954	96.18		380.1047	380.1062	3.89	3.89	88.24	98.97	99.56	403.0939	23
÷	Г	C13 H24 N4 O3 S3	C13 H24 N4 Na O3 S3	403.0903	95.92		380.1047	380.1011	-9.67	9.67	90.93	99.19	97.28	403.0939	4
۲	Г	C15 H28 N2 O S4	C15 H28 N2 Na O S4	403.0977	93.88		380.1047	380.1084	9.78	9.78	83.89	99.17	97.22	403.0939	3

page 1

Figure S38. The (+)-HRESIMS report of compound 3, page 3.

Figure S39. The ¹H NMR spectrum of compound **3** in CD₃OD (600 MHz).

Figure S40. The 13 C NMR spectrum of compound **3** in CD₃OD (150 MHz).

Figure S41. The DEPT spectrum of compound 3 in CD₃OD (150 MHz).

Figure S42. The ¹H-¹H COSY spectrum of compound **3** in CD₃OD (600 MHz).

Figure S43. The HSQC spectrum of compound 3 in CD₃OD (600 MHz for ¹H).

Figure S44. The HMBC spectrum of compound 3 in CD₃OD (600 MHz for ¹H).

Figure S46. The UV spectrum of compound 4 in MeOH.

Figure S47. The CD spectrum of compound 4 in MeOH.

Figure S48. The IR spectrum of compound 4.

Single Mass Spectrum Deconvolution Report

Analysis Name: liuyf179.d Method: TEST.MS Sample Name: BLG-L-20a-2 Analysis Info: Instrument: LC-MSD-Trap-SL Operator: Operator Print Date: 8/22/2013 10:43:42 AM Acq. Date: 8/22/2013 10:34:22 AM

Acquisition Parameter:

Mass Range Mode	Std/Normal	Trap Drive	53.0	Scan Begin	100 m/z
Ion Polarity	Positive	Octopole RF Amplitude	171.0 Vpp	Scan End	450 m/z
Ion Source Type	ESI	Capillary Exit	-121.0 Volt	Averages	5 Spectra
Dry Temp (Set)	330 °C	Skimmer	-40.0 Volt	Max. Accu Time	200000 µs
Nebulizer (Set)	15.00 psi	Oct 1 DC	-12.00 Volt	ICC Target	380
Dry Gas (Set)	6.00 l/min	Oct 2 DC	-1.70 Volt	Charge Control	on

MSD Trap Report v 4 (A4-Opt2)

Page 1 of 1

Agilent Technologies

Figure S49. The ESI mass spectrum of compound 4.

Data Filename Sample Type Instrument Name Acq Method DA Method 2013071002.d Sample Instrument 1

TEST LCMS.m

Sample Name Position User Name IRM Calibration Status Comment

BLG-L-20a2 P1-C2

User Chromatograms

Agilent Technologies

Page 1 of 2

Printed at: 9:48 AM on: 7/10/2013

Frag	gment 13	or Vo 35	ltage		Collision Energ	IY I	oniz	ation Mode Esi		
×10.2	+ Sc	an (S	5.724	min) 2	2013071002.d s	Subtract				
1-									403	3.0943
									(MH	+Na)+
0.8-										1.0
0.6-										
0.4 -										
				81 11	22					
0.2				(M+H)	+					
									398.1397	
04	376	37	8 3	80 3	32 384 386	388 390	39	92 394 396	6 398 400 402	404 406 408
Deals Lie					Co	ounts (%) v	s. M	ass-to-Charg	e (m/z)	
m/z	50	z	Abu	nd IF	ormula		Ion			
187.0327	7		7837	4						
211.0957	7		2270	5						
349.0856	5	1	1051	73						NC- OCH3
350.0881		1	2023	7	and the second secon					
354.1014	ł		3894	6					HO-	
381.1122	2		3098	9 C	25 H17 O4		(M+	H)+	HO	N N
403.0943	3	1	2484	33 C	25 H16 Na O4		(M+	Na)+	Ò	н й 🎽
404.0963	3	1	5247	2 C	25 H16 Na O4		(M+	Na)+		4
405.0944		1	1798	6 C	25 H16 Na O4		(M+	Na)+		
783.1982	2		2424	6			<u>`</u>			
Formula	Calc	ulate	or Ele	ment	Limits					
Element	:	Min	-	Max	-					
С			3	100	_					
Н			0	500						
0			0	90	_					
N			0	5						
S			0	5						
CI			0	2	4					
Br			0	0	_					
51	-		0	0						
F			0	0						
Formula	Calc	ulate	Dr Re	sults						
Formula		anarci		Best	Mass	Tgt Mass		Diff (ppm)	Ion Species	Score
C17 H20	N2 06	5 S			380.1051	380.1	042	-2.23	C17 H20 N2 Na O6 9	S 99.86
C22 H20	04 S				380.1051	380.1	082	8.36	C22 H20 Na O4 S	98.59
C13 H20	N2 01	1			380.1051	380.1	067	4.36	C13 H20 N2 Na O11	98.14
C14 H24	N2 06	5 S2			380.1051	380.1	076	6.63	C14 H24 N2 Na O6 9	S2 98.06
C21 H20	N2 O	S2			380.1051	380.1	017	-8.82	C21 H20 N2 Na O S2	2 97.93
C25 H16	04			TRU	380.105	380.1	049	-0.5	C25 H16 Na O4	97.84
C18 H24	N2 O	S 3			380.1051	380.1	051	0.05	C18 H24 N2 Na O S3	3 97.58
C17 H20	N2 06	ŝS			380.105	380.1	042	-1.96	C17 H21 N2 O6 S	98.87
C13 H20	N2 01	1			380.1049	380.1	067	4.63	C13 H21 N2 O11	98
C25 H16	04			TRU	380.1049	380.1	049	-0.23	C25 H17 O4	97.48
C22 H20	04 S				380.105	380.1	082	8.63	C22 H21 O4 S	97.39
C14 1124	NI2 04	52			380 105	380.1	076	6.9	C14 H25 N2 O6 S2	97.05

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 9:48 AM on: 7/10/2013

Figure S51.The (+)-HRESIMS report of compound 4, page 2.

MS Formula Results: + Scan (5.724 min) Sub (2013071002.d)

m/z		lon	Formula	Abundance											
381	.1122	(M+H)+	C25 H17 O4	30988.5											
Best		Formula (M)	Ion Formula	Calc m/z	Score	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
Г		C17 H20 N2 O6 S	C17 H21 N2 O6 S	381.1115	98.87		380.105	380.1042	-1.96	1.96	99.88	95.63	99.87	381.1122	
Г		C13 H20 N2 O11	C13 H21 N2 O11	381.114	98		380.1049	380.1067	4.63	4.63	94.87	99.14	99.3	381.1122	
	111 102	- C25 H16 O4	C25 H17 O4	381.1121	97.48	1.1.1.1	380.1049	380.1049	-0.23	0.23	91.47	99.65	100	381.1122	1
Г		C22 H20 O4 S	C22 H21 O4 S	381.1155	97.39		380.105	380.1082	8.63	8.63	97.93	96.29	97.6	381.1122	1:
Г		C14 H24 N2 O6 S2	C14 H25 N2 O6 S2	381.1149	97.05		380.105	380.1076	6.9	6.9	97.41	93.81	98.46	381.1122	
m/z		ion 1	Formula	Abundance											
403	1.0943	(M+Na)+	C25 H16 Na O4	Abundance 248433.3											
m/z 403 Best	0.0943	(M+Na)+ Formula (M)	C25 H16 Na O4	Abundance 248433.3 Calc m/z	Score	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
m/z 403 Best	1.0943	ion (M+Na)+ Formula (M) C17 H20 N2 O6 S	Formula C25 H16 Na O4 Ion Formula C17 H20 N2 Na O6 S	Abundance 248433.3 Calc m/z 403.0934	Score 99.86	Cross S	Mass 380.1051	Calc Mass 380.1042	Diff (ppm) -2.23	Abs Diff (ppm) 2.23	Abund Match 99.88	Spacing Mat 99.83	Mass Match 99.85	m/z 403.0943	DBE
m/z 403 Best	0.0943	(M+Na)+ Formula (M) C17 H20 N2 O6 S C22 H20 O4 S	C25 H16 Na O4 Ion Formula C17 H20 N2 Na O6 S C22 H20 Na O4 S	Abundance 248433.3 Calc m/z 403.0934 403.0975	Score 99.86 98.59	Cross S	Mass 380.1051 380.1051	Calc Mass 380.1042 380.1082	Diff (ppm) -2.23 8.36	Abs Diff (ppm) 2.23 8.36	Abund Match 99.88 98.68	Spacing Mat 99.83 99.74	Mass Match 99.85 97.96	m/z 403.0943 403.0943	DBE
m/z 403 Best	8.0943	ion (M+Na)+ Formula (M) C17 H20 N2 O6 S C22 H20 O4 S C13 H20 N2 O11	Formula C25 H16 Na C4 Ion Formula C17 H20 N2 Na C6 S C22 H20 Na C4 S C13 H20 N2 Na C11	Abundance 248433.3 Calc m/z 403.0934 403.0975 403.0959	Score 99.86 98.59 98.14	Cross S	Mass 380.1051 380.1051 380.1051	Calc Mass 380.1042 380.1082 380.1067	Diff (ppm) -2.23 8.36 4.36	Abs Diff (ppm) 2.23 8.36 4.36	Abund Match 99.88 98.68 95.31	Spacing Mat 99.83 99.74 98.92	Mass Match 99.85 97.96 99.44	m/z 403.0943 403.0943 403.0943	DBE 1
m/z 403 Best	8.0943	(M+Na)+ Formula (M) C17 H20 N2 06 S C22 H20 04 S C13 H20 N2 011 C14 H24 N2 06 S2	Formula C25 H16 Na O4 Ion Formula C17 H20 N2 Na O6 S C22 H20 Na O4 S C13 H20 N2 Na O11 C14 H24 N2 Na O6 S2	Abundance 248433.3 Calc m/z 403.0934 403.0975 403.0959 403.0968	Score 99.86 98.59 98.14 98.06	Cross S	Mass 380.1051 380.1051 380.1051 380.1051	Calc Mass 380.1042 380.1082 380.1067 380.1076	Diff (ppm) -2.23 8.36 4.36 6.63	Abs Diff (ppm) 2.23 8.36 4.36 6.63	Abund Match 99.88 98.68 95.31 95.58	Spacing Mat 99.83 99.74 98.92 99.71	Mass Match 99.85 97.96 99.44 98.71	m/z 403.0943 403.0943 403.0943 403.0943	DBE 1
m/z 403 Best	0.0943	Ion (M+Na)+ Formula (M) C17 H20 N2 06 S C22 H20 04 S C13 H20 N2 011 C14 H24 N2 06 S2 C21 H20 N2 0 S2	Formula C25 H16 Na O4 Ion Formula C17 H20 N2 Na O6 S C22 H20 Na O4 S C13 H20 N2 Na O11 C14 H24 N2 Na O6 S2 C21 H20 N2 Na O S2	Abundance 248433.3 Calc m/z 403.0934 403.0975 403.0959 403.0968 403.0909	Score 99.86 98.59 98.14 98.06 97.93	Cross S	Mass 380.1051 380.1051 380.1051 380.1051 380.1051	Calc Mass 380.1042 380.1082 380.1067 380.1076 380.1077	Diff (ppm) -2.23 8.36 4.36 6.63 -8.82	Abs Diff (ppm) 2.23 8.36 4.36 6.63 8.82	Abund Match 99.88 98.68 95.31 95.58 96.74	Spacing Mat 99.83 99.74 98.92 99.71 99.75	Mass Match 99.85 97.96 99.44 98.71 97.74	m/z 403.0943 403.0943 403.0943 403.0943 403.0943	DBE
m/z 403 Best Г Г		Ion (M+Na)* Formula (M) C17 H20 N2 O6 S C22 H20 O4 S C13 H20 N2 O11 C14 H24 N2 O6 S2 C21 H20 N2 O S2 C21 H20 N2 O S2 C25 H16 O4	Formula C25 H16 Na O4 C17 H20 N2 Na O6 S C22 H20 Na O4 S C13 H20 N2 Na O11 C14 H24 N2 Na O S2 C21 H20 N2 Na O S2 C21 H20 N2 Na O S2 C25 H16 Na O4	Abundance 248433.3 Caic m/z 403.0934 403.0959 403.0959 403.0958 403.0968 403.0909	Score 99.86 98.59 98.14 98.06 97.93 97.84	Cross S	Mass 380.1051 380.1051 380.1051 380.1051 380.1051 380.1051	Calc Mass 380.1042 380.1082 380.1067 380.1076 380.1017 380.1019	Diff (ppm) -2.23 8.36 4.36 6.63 -8.82 -0.5	Abs Diff (ppm) 2.23 8.36 4.36 6.63 8.82 0.5	Abund Match 99.88 98.68 95.31 95.58 96.74 93.92	Spacing Mat 99.83 99.74 98.92 99.71 99.75 98.24	Mass Match 99.85 97.96 99.44 98.71 97.74 99.99	m/z 403.0943 403.0943 403.0943 403.0943 403.0943 403.0943	DBE

Figure S52. The (+)-HRESIMS report of compound **4**, page 3.

page 1

Figure S53. The ¹H NMR spectrum of compound 4 in CD₃OD (600 MHz).

VNS-600 CARBON BLG-20a-2 IN cd3od Jun 1 2013

Figure S54. The ¹³C NMR spectrum of compound 4 in CD₃OD (150 MHz).

Figure S55. The DEPT spectrum of compound 4 in CD₃OD (150 MHz).

Figure S56. The ¹H-¹H COSY spectrum of compound 4 in CD₃OD (600 MHz).

Figure S57. The HSQC spectrum of compound 4 in CD₃OD (600 MHz for ¹H).

Figure S58. The HMBC spectrum of compound 4 in CD₃OD (600 MHz for ¹H).

Figure S59. The¹H NMR spectrum of D-glucose in D₂O (600 MHz), isolated from hydrolysate of compound 4.

Figure S60. The UV spectrum of compound 5 in MeOH.

Figure S61. The IR spectrum of compound 5.

Single Mass Spectrum Deconvolution Report

wangx058.d **Analysis Name:** TEST.MS Method: Sample Name: BLG-66 Analysis Info:

Instrument: LC-MSD-Trap-SL **Operator:** Operator

Print Date: 7/3/2012 12:29:22 PM Acq. Date: 7/3/2012 12:24:42 PM

Acquisition Parameter:

Mass Range Mode	Std/Normal	Trap Drive	49.1	Scan Begin	100 m/z
Ion Polarity	Positive	Octopole RF Amplitude	161.9 Vpp	Scan End	700 m/z
Ion Source Type	ESI	Capillary Exit	-104.1 Volt	Averages	5 Spectra
Dry Temp (Set)	330 °C	Skimmer	-40.0 Volt	Max. Accu Time	200000 µs
Nebulizer (Set)	15.00 psi	Oct 1 DC	-12.00 Volt	ICC Target	20000
Dry Gas (Set)	5.00 l/min	Oct 2 DC	-1.70 Volt	Charge Control	on

MSD Trap Report v 4 (A4-Opt2)

Page 1 of 1

Agilent Technologies

Figure S62. The ESI mass spectrum of compound 5.

Data Filename20Sample TypeSaInstrument NameInAcq MethodTEDA MethodTE

2012071703.d Sample Instrument 1 TEST LCMS.m Sample Name Position User Name IRM Calibration Status Comment BLG-66 P1-D9

User Chromatograms

Agilent Technologies

Page 1 of 2

Printed at: 12:31 PM on: 7/17/2012

Element	Min	Max					
S	0	2]				
CI	0	0]				
Br	0	0]				
Si	0	0	1				
Formula Cal	culator Re	sults	-				
Formula		Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C16 H21 N O6	i S	TRUE	355.1088	355.109	0.47	C16 H21 N Na O6 S	99.98
C17 H17 N5 O	2 S		355.1088	355.1103	4.23	C17 H17 N5 Na O2 S	99.56
C20 H21 N O	S2		355.1088	355.1065	-6.58	C20 H21 N Na O S2	98.23
C12 H21 N O1	.1		355.1088	355.1115	7.52	C12 H21 N Na O11	97.83
C19 H17 N O6	;		355.1088	355.1056	-9.02	C19 H17 N Na O6	97.64
C20 H13 N5 O)2		355.1088	355.1069	-5.26	C20 H13 N5 Na O2	97.62
C13 H25 N O6	52		355.1088	355.1123	9.95	C13 H25 N Na O6 S2	97.51
C25 H13 N3			355.1088	355.1109	6.08	C25 H13 N3 Na	95.74

--- End Of Report ---

HO HOюн н₃со́

5

Agilent Technologies

Page 2 of 2

Printed at: 12:31 PM on: 7/17/2012

Figure S64 The (+)-HRESIMS report of compound 5, page 2.

MS Formula Results: + Scan (5.652 min) Sub (2012071703.d)

m/z	lon	Formula	Abundance											
378.098	(M+Na)+	C16 H21 N Na O6 S	406273.2											
Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
1	C16 H21 N O6 S	C16 H21 N Na O6 S	378.0982	99.98	100	355.1088	355.109	0.47	0.47	99.96	99.97	99.99	378.098	
Г	C17 H17 N5 O2 S	C17 H17 N5 Na O2 S	378.0995	99.56		355.1088	355.1103	4.23	4.23	99.33	99.99	99.49	378.098	1
F	C20 H21 N O S2	C20 H21 N Na O S2	378.0957	98.23		355.1088	355.1065	-6.58	6.58	95.94	99.91	98.76	378.098	1
Г	C12 H21 N O11	C12 H21 N Na O11	378.1007	97.83		355.1088	355.1115	7.52	7.52	96.07	98.85	98.38	378.098	
Г	C19 H17 N O6	C19 H17 N Na O6	378.0948	97.64		355.1088	355.1056	-9.02	9.02	96.85	98.49	97.68	378.098	1
	C20 H13 N5 O2	C20 H13 N5 Na O2	378.0961	97.62		355.1088	355.1069	-5.26	5.26	94.13	98.62	99.21	378.098	1
5	C13 H25 N O6 S2	C13 H25 N Na O6 S2	378.1016	97.51		355.1088	355.1123	9.95	9.95	96.08	99.87	97.18	378.098	
1	C25 H13 N3	C25 H13 N3 Na	378.1002	95.74		355.1088	355.1109	6.08	6.08	88.29	98.26	98.94	378.098	2
	m/z 378.098	m/z lon 378.098 (M+Na)+ Best Formula (M) 17 C16 H21 N 06 S 17 C17 H17 N5 02 S 17 C10 H21 N 05 Z 17 C12 H21 N 05 Z 17 C12 H21 N 05 Z 17 C12 H21 N 01 17 C19 H17 N 06 17 C19 H17 N 06 17 C13 H25 N 06 S2 17 C13 H31 N3	m/z Ion Formula 378.098 (M+Na)+ C16 H21 N Na O6 S Best Formula (M) Ion Formula I/7 C16 H21 N O6 S C16 H21 N Na O6 S I/7 C16 H21 N O5 S C16 H21 N Na O6 S I/7 C16 H21 N O5 S C16 H21 N Na O6 S I/7 C10 H17 N S02 S C17 H17 NS Na 02 S I/7 C20 H21 N O S2 C20 H21 N Na O1 I/7 C19 H17 N O1 C12 H21 N Na O1 I/7 C19 H17 N O5 C19 H17 N Na O6 I/7 C19 H17 N O5 C20 H21 N Na O5 I/7 C19 H17 N O5 C19 H17 N Na O6 I/7 C20 H3 N5 O2 C20 H3 N5 Na O2 I/7 C13 H25 NO 652 C13 H25 N Na O5 I/7 C13 H25 NO 652 C13 H25 N Na O5 I/7 C25 H13 N3 C25 H13 N3 Na	m/z Ion Formula Abundance 378.098 (M+Na)+ C16 H21 N Na O6 S 406273.2 Best Formula (M) Ion Formula Calc m/z I/2 C16 H21 N O6 S C16 H21 N Na O6 S 378.0662 I/7 C17 H17 N5 O2 S C17 H17 N5 Na O2 S 378.0662 I/7 C20 H21 N O S2 C20 H21 N Na O5 2 378.0662 I/7 C212 H1 N O S2 C20 H21 N Na O5 2 378.0662 I/7 C12 H21 N O11 C12 H21 N Na O1 378.0067 378.0067 I/7 C19 H17 N O6 C19 H17 N Na O1 378.007 378.0048 I/7 C20 H31 NS O2 C20 H31 NS Na O2 378.0948 I/7 C20 H13 NS O2 C20 H13 NS Na O2 378.0948 I/7 C13 H2S N O6 S2 C13 H2S N Na O6 S2 378.0106 I/7 C13 H2S N O6 S2 C13 H2S N Na O6 S2 378.1002 I/7 C25 H13 N3 C25 H13 NS Na 378.1002	m/z Ion Formula Abundance 378.098 (M+Na)+ C16 H21 N Na O6 S 406273.2 Best Formula (M) Ion Formula Calc m/z Score I/Z C16 H21 N O6 S C16 H21 N Na O6 S 378.0962 99.98 I/T C17 H17 N5 O2 S C17 H17 NS Na O2 S 378.0967 99.58 I/T C20 H21 N O S2 C20 H21 N Na OS S 378.0967 98.23 I/T C17 H17 NS O2 S C20 H21 N Na OS S 378.0967 98.23 I/T C19 H17 N O6 C19 H17 N Na O1 1 378.1007 97.83 I/T C19 H17 N O6 C19 H17 N Na O1 378.1007 97.68 I/T C20 H3 N5 O2 C20 H13 N5 Na O2 378.0961 97.62 I/T C20 H13 N5 O2 C20 H13 N5 Na O2 378.0961 97.62 I/T C13 H25 N O6 S2 C13 H25 N Na O6 S2 378.1016 97.61 I/T C25 H13 N5 C25 H13 N5 Na Na 378.1002 99.54	m/z Ion Formula Abundance 378.098 (M+Na)* C16 H21 N Na O6 S 406273.2 Beal Formula (M) Ion Formula Calc m/z Score Icros S I/7 C16 H21 N 06 S C16 H21 N Na O6 S 378.0992 99.96 I/7 C16 H21 N 06 S C16 H21 N Na O6 S 378.0995 99.56 I/7 C17 H17 N5 02 S C17 H17 NS Na 02 S 378.0995 99.56 I/7 C20 H21 N 0 S2 C20 H21 N Na O5 Z 378.0967 98.23 I/7 C12 H21 N O1 1 C12 H21 N Na 01 1 378.1007 97.83 I/7 C19 H17 N 06 C19 H17 N Na 06 378.0948 97.64 I/7 C19 H13 N 502 C20 H13 N S Na 02 378.0948 97.64 I/7 C20 H13 N S No 6 S2 C13 H25 N Na 06 S2 378.0948 97.61 I/7 C20 H13 NS No 6 S2 C13 H25 N Na 06 S2 378.1016 97.51 I/7 C13 H25 N Na 06 S2 C13 H25 N N	m/z Ion Formula Abundance 378.098 (M+Na)* C16 H21 N Na O6 S 406273.2 Beal Formula (M) Ion Formula 406273.2 G/g C16 H21 N Na O6 S 378.0982 Gross S Mass G/g C16 H21 N Na O6 S 378.0982 99.95 355.1088 G/g C16 H21 N O6 S C16 H21 N Na O2 S 378.0995 99.56 355.1088 G/f C20 H21 N O5 Z C20 H21 N Na O2 Z 378.0975 98.23 355.1088 G/f C12 H21 N O1 1 C12 H21 N Na O1 1 378.007 97.83 355.1088 G/f C19 H17 N O6 C19 H17 N Na O6 378.0948 97.64 355.1088 G/f C19 H13 N 50 Z C20 H13 N S Na O2 378.0948 97.64 355.1088 G/f C20 H13 N SO G2 C13 H25 N Na O6 S2 378.0948 97.51 355.1088 G/f C13 H25 N Na O6 S2 C13 H25 N Na O6 S2 378.1016 97.51 355.1088	m/z Ion Formula Abundance 378.098 (M+Na)+ C16 H21 N Na O6 S 406273.2 Best Formula (M) Ion Formula Calc m/z Score Cross S Mass Calc Mass I/7 C16 H21 N O6 S C16 H21 N Na O6 S 378.0995 99.98 355.108 355.108 I/7 C17 H17 NS O2 S C17 H17 NS O2 S 378.0995 99.56 355.108 355.108 I/7 C20 H21 N O3 C C20 H21 N Na OS 2 378.0997 99.83 355.108 355.108 I/7 C12 H21 N O11 C12 H21 N Na O11 378.1007 99.83 355.108 355.108 I/7 C19 H17 N Na C19 H17 N Na O6 378.094 97.64 355.108 355.108 I/7 C20 H3 N5 O2 C20 H13 N5 Na O2 378.0961 97.62 355.108 355.108 I/7 C20 H13 N5 O2 C23 H13 N5 Na O2 378.1002 95.74 355.108 355.113 I/7 C13 H25 N G8 2 C13 H25 N Na O8 378.1002 95.74	m/z lon Formula Abundance 378.098 (M+A)+ C16 H21 N Na O6 S 406273.2 Beal Formula (M) Ion Formula Calc m/z Score I cross S Mass Calc Mss Dtlf (pom) I/7 C16 H21 N O6 S C16 H21 N Na O6 S 378.0982 99.96 335.108 335.109 0.47 I/7 C16 H21 N O5 Z C17 H17 NS Na O2 S 378.0995 99.56 355.108 355.1103 4.23 I/1 C20 H21 N O 5 Z C20 H21 N Na O2 S 378.0995 99.56 355.108 355.1103 4.23 I/1 C20 H21 N O 5 Z C20 H21 N Na O5 Z 378.0976 99.56 355.108 355.1105 4.23 I/1 C12 H21 N O 1 C12 H21 N Na O5 Z 378.0976 99.56 355.108 355.1105 4.55 I/1 C12 H21 N Na O5 Z C378.0961 97.51 355.108 355.1105 4.56 I/1 C12 H21 N O1 C12 H21 N Na O5 Z 378.0104 97.64 355.108 355.1105 <td< td=""><td>m/z lon Formula Abundance 378.098 (M+Na)+ C16 H21 N Na O6 406273.2 Best Formula (M) Ion Formula Calc m/z Ross Mass Calc Mass Diff (ppm) Abundance \$\vec{V}\$ C16 H21 N Na O6 Calc m/z Score Cross Mass Calc Mass Diff (ppm) Abundance \$\vec{V}\$ C16 H21 N O6 Calc m/z Score Cross Mass Calc Mass Diff (ppm) Abundance \$\vec{V}\$ C17 H17 NS 02 C17 H17 NS Na O2 378.0962 99.69 S55.108 355.105 4.23 4.23 \$\pmathcal{C}\$ C20 H21 N 0.52 C20 H21 N 0.52 S78.096 99.65 S55.108 S55.115 7.52 7.52 \$\pmathcal{C}\$ C19 H17 N Na O2 S78.096 97.64 S55.108 S55.115 7.52 7.52 \$\pmathcal{C}\$ C19 H17 N Na O2 S78.096 97.64 S55.108 S55.106 9.52 5.526 \$\pmathcalmathcal{C}\$ C13 H25 N Na O6 2<td>m/z lon Formula Abundance 378.08 (M+Na)+ C16 H21 N Na O6 408273.2 Beat Formula (M) C16 H21 N Na O6 Calc m/z Score Cross S Mass Calc Mass Diff (ppm) Abund Match if C16 H21 N O6 C16 H21 N Na O6 S C36.092 99.98 Cass S108 Calc Mass Diff (ppm) Abund Match if C17 H17 NS O2 S C17 H17 NS Na O2 S 378.0962 99.98 S55.108 355.105 4.23 4.23 99.33 if C20 H21 N O 52 C20 H21 N Na O2 S 378.0967 98.25 S55.108 355.1105 4.23 4.23 99.33 if C12 H21 N O 11 C12 H21 N Na O2 S 378.0967 98.25 S55.108 355.1105 4.23 4.23 99.33 if C12 H21 N O 11 C12 H21 N Na O5 378.0967 98.25 S55.108 355.1115 7.52 7.52 96.07 if C19 H17 N Na O C19 H17 N Na O 378.096 97.64 355.108</td><td>m/z lon Formula Abundance 378.09 (M+A)* C16 H21 N NA 06 3 40623.3 Beal Formula (M) C16 H21 N NA 06 5 40623.3 G/G C16 H21 N OS 2 C16 H21 N NA 06 5 Score 1 Cass 3 Mass 355.108 Olff (ppm) Aba Diff (ppm) Abund Math Space Math G/G C16 H21 N OS 2 C16 H21 N NA 05 2 378.0992 99.56 385.108 355.103 A.4.2 A4.23 99.33 99.99 C/T C10 H21 N NG 2 C10 H17 N NA 02 2 378.0992 99.56 355.108 355.105 A.4.23 A4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 02 378.096 99.56 355.108 355.105 A.5.3 G.4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 02 378.096 99.56 355.108 355.105 A.5.3 G.4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 05 378.091 97.64 355.108 35</td><td>m/z lon Formula Abundance 378.08 (M404) C16H21 NA06 S 4082732 Beat Formula (M) C16H21 NA06 S Calc m/z No Mass Calc Mass Diff (pm) Abund Math Spaing Math Spaing Math \$\vec{V}\$ C16H21 NA06 S Calc m/z Socor Cass No Socor S Mass Calc Mass Diff (pm) Abund Math Spaing Math Mass Math \$\vec{V}\$ C16H21 NA06 S Calc m/z Socor Socor Socor S Mass Calc Mass Diff (pm) Abund Math Spaing Math Mass Math \$\vec{V}\$ C17H17 NS02 S C17H17 NS04 S Socor S Socor S Socor S Socor S Socor S 4.23 4.23 4.93 9.99 9.994 \$\vec{V}\$ C20H21 N O S2 C20H21 N O S2 Socor S 985.08 Socor S Socor S Socor S Socor S 4.23 4.23 4.93 9.994 9.949 \$\vec{V}\$ C20H21 N O S2 C20H21 N O S2 Socor</td><td>m/z (non) Formula (Non) Abundance 378.09 C16H21 NN aO6 C406273. Beal Formula (M) Ion Formula Calc m/z Name Calc Mass Diff (pm) Abundance Name Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Mass Spacing Mass Mass</td></td></td<>	m/z lon Formula Abundance 378.098 (M+Na)+ C16 H21 N Na O6 406273.2 Best Formula (M) Ion Formula Calc m/z Ross Mass Calc Mass Diff (ppm) Abundance \$\vec{V}\$ C16 H21 N Na O6 Calc m/z Score Cross Mass Calc Mass Diff (ppm) Abundance \$\vec{V}\$ C16 H21 N O6 Calc m/z Score Cross Mass Calc Mass Diff (ppm) Abundance \$\vec{V}\$ C17 H17 NS 02 C17 H17 NS Na O2 378.0962 99.69 S55.108 355.105 4.23 4.23 \$\pmathcal{C}\$ C20 H21 N 0.52 C20 H21 N 0.52 S78.096 99.65 S55.108 S55.115 7.52 7.52 \$\pmathcal{C}\$ C19 H17 N Na O2 S78.096 97.64 S55.108 S55.115 7.52 7.52 \$\pmathcal{C}\$ C19 H17 N Na O2 S78.096 97.64 S55.108 S55.106 9.52 5.526 \$\pmathcalmathcal{C}\$ C13 H25 N Na O6 2 <td>m/z lon Formula Abundance 378.08 (M+Na)+ C16 H21 N Na O6 408273.2 Beat Formula (M) C16 H21 N Na O6 Calc m/z Score Cross S Mass Calc Mass Diff (ppm) Abund Match if C16 H21 N O6 C16 H21 N Na O6 S C36.092 99.98 Cass S108 Calc Mass Diff (ppm) Abund Match if C17 H17 NS O2 S C17 H17 NS Na O2 S 378.0962 99.98 S55.108 355.105 4.23 4.23 99.33 if C20 H21 N O 52 C20 H21 N Na O2 S 378.0967 98.25 S55.108 355.1105 4.23 4.23 99.33 if C12 H21 N O 11 C12 H21 N Na O2 S 378.0967 98.25 S55.108 355.1105 4.23 4.23 99.33 if C12 H21 N O 11 C12 H21 N Na O5 378.0967 98.25 S55.108 355.1115 7.52 7.52 96.07 if C19 H17 N Na O C19 H17 N Na O 378.096 97.64 355.108</td> <td>m/z lon Formula Abundance 378.09 (M+A)* C16 H21 N NA 06 3 40623.3 Beal Formula (M) C16 H21 N NA 06 5 40623.3 G/G C16 H21 N OS 2 C16 H21 N NA 06 5 Score 1 Cass 3 Mass 355.108 Olff (ppm) Aba Diff (ppm) Abund Math Space Math G/G C16 H21 N OS 2 C16 H21 N NA 05 2 378.0992 99.56 385.108 355.103 A.4.2 A4.23 99.33 99.99 C/T C10 H21 N NG 2 C10 H17 N NA 02 2 378.0992 99.56 355.108 355.105 A.4.23 A4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 02 378.096 99.56 355.108 355.105 A.5.3 G.4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 02 378.096 99.56 355.108 355.105 A.5.3 G.4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 05 378.091 97.64 355.108 35</td> <td>m/z lon Formula Abundance 378.08 (M404) C16H21 NA06 S 4082732 Beat Formula (M) C16H21 NA06 S Calc m/z No Mass Calc Mass Diff (pm) Abund Math Spaing Math Spaing Math \$\vec{V}\$ C16H21 NA06 S Calc m/z Socor Cass No Socor S Mass Calc Mass Diff (pm) Abund Math Spaing Math Mass Math \$\vec{V}\$ C16H21 NA06 S Calc m/z Socor Socor Socor S Mass Calc Mass Diff (pm) Abund Math Spaing Math Mass Math \$\vec{V}\$ C17H17 NS02 S C17H17 NS04 S Socor S Socor S Socor S Socor S Socor S 4.23 4.23 4.93 9.99 9.994 \$\vec{V}\$ C20H21 N O S2 C20H21 N O S2 Socor S 985.08 Socor S Socor S Socor S Socor S 4.23 4.23 4.93 9.994 9.949 \$\vec{V}\$ C20H21 N O S2 C20H21 N O S2 Socor</td> <td>m/z (non) Formula (Non) Abundance 378.09 C16H21 NN aO6 C406273. Beal Formula (M) Ion Formula Calc m/z Name Calc Mass Diff (pm) Abundance Name Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Mass Spacing Mass Mass</td>	m/z lon Formula Abundance 378.08 (M+Na)+ C16 H21 N Na O6 408273.2 Beat Formula (M) C16 H21 N Na O6 Calc m/z Score Cross S Mass Calc Mass Diff (ppm) Abund Match if C16 H21 N O6 C16 H21 N Na O6 S C36.092 99.98 Cass S108 Calc Mass Diff (ppm) Abund Match if C17 H17 NS O2 S C17 H17 NS Na O2 S 378.0962 99.98 S55.108 355.105 4.23 4.23 99.33 if C20 H21 N O 52 C20 H21 N Na O2 S 378.0967 98.25 S55.108 355.1105 4.23 4.23 99.33 if C12 H21 N O 11 C12 H21 N Na O2 S 378.0967 98.25 S55.108 355.1105 4.23 4.23 99.33 if C12 H21 N O 11 C12 H21 N Na O5 378.0967 98.25 S55.108 355.1115 7.52 7.52 96.07 if C19 H17 N Na O C19 H17 N Na O 378.096 97.64 355.108	m/z lon Formula Abundance 378.09 (M+A)* C16 H21 N NA 06 3 40623.3 Beal Formula (M) C16 H21 N NA 06 5 40623.3 G/G C16 H21 N OS 2 C16 H21 N NA 06 5 Score 1 Cass 3 Mass 355.108 Olff (ppm) Aba Diff (ppm) Abund Math Space Math G/G C16 H21 N OS 2 C16 H21 N NA 05 2 378.0992 99.56 385.108 355.103 A.4.2 A4.23 99.33 99.99 C/T C10 H21 N NG 2 C10 H17 N NA 02 2 378.0992 99.56 355.108 355.105 A.4.23 A4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 02 378.096 99.56 355.108 355.105 A.5.3 G.4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 02 378.096 99.56 355.108 355.105 A.5.3 G.4.23 99.33 99.99 C/T C10 H17 N NG 2 C10 H17 N NA 05 378.091 97.64 355.108 35	m/z lon Formula Abundance 378.08 (M404) C16H21 NA06 S 4082732 Beat Formula (M) C16H21 NA06 S Calc m/z No Mass Calc Mass Diff (pm) Abund Math Spaing Math Spaing Math \$\vec{V}\$ C16H21 NA06 S Calc m/z Socor Cass No Socor S Mass Calc Mass Diff (pm) Abund Math Spaing Math Mass Math \$\vec{V}\$ C16H21 NA06 S Calc m/z Socor Socor Socor S Mass Calc Mass Diff (pm) Abund Math Spaing Math Mass Math \$\vec{V}\$ C17H17 NS02 S C17H17 NS04 S Socor S Socor S Socor S Socor S Socor S 4.23 4.23 4.93 9.99 9.994 \$\vec{V}\$ C20H21 N O S2 C20H21 N O S2 Socor S 985.08 Socor S Socor S Socor S Socor S 4.23 4.23 4.93 9.994 9.949 \$\vec{V}\$ C20H21 N O S2 C20H21 N O S2 Socor	m/z (non) Formula (Non) Abundance 378.09 C16H21 NN aO6 C406273. Beal Formula (M) Ion Formula Calc m/z Name Calc Mass Diff (pm) Abundance Name Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Cals Mass Diff (pm) Abund Math Spacing Mass Mass Mass Mass Spacing Mass Mass

ОН H₃CO 5

Figure S65. The (+)-HRESIMS report of compound **5**, page 3.

page 1

Figure S66. The ¹H NMR spectrum of compound **5** in acetone- d_6 (600 MHz).

Figure S67. The ¹³C NMR spectrum of compound **5** in acetone- d_6 (150 MHz)..

VNS-600 DEPT-NMR BLG-66 in CD3COCD3 2012.06.25 Pulse Sequence: DEPT1

Figure S68. The DEPT spectrum of compound 5 in acetone- d_6 (150 MHz).

Figure S69. The ¹H-¹H COSY spectrum of compound **5** in acetone- d_6 (600 MHz).

Figure S70. The HSQC spectrum of compound 5 in acetone- d_6 (600 MHz for ¹H).

Figure S71. The HMBC spectrum of compound 5 in acetone- d_6 (600 MHz for ¹H).

Figure S72. The ¹H NMR spectrum of compound **5** in CD₃OD (500 MHz).

Figure S73. The ¹³C NMR spectrum of compound 5 in CD₃OD (125 MHz).

Figure S74. The¹H NMR spectrum of D-glucose in D₂O (600 MHz), isolated from hydrolysate of compound **5**.

Figure S75 The ¹H NMR spectrum of an authentic D-glucose in D₂O (500 MHz)

•