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Abstract 26 

Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases, such as 27 

asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, GCs’ long-28 

term and/or systemic use can potentially induce unwanted adverse effects. Strikingly, some 29 

recent experimental evidence suggests that GCs may also exacerbate some diseases’ outcomes. 30 

In this review, we will summarize evidence describing how GCs promote pro-inflammatory and 31 

remodeling features in asthma, specifically in airway structural cells, and will also cover some 32 

possible solutions to these unanticipated effects of GCs. 33 
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AR Airway remodeling  

ARDS Acute respiratory distress syndrome 
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BAL Broncho-alveolar lavage  

cAMP Cyclic adenosine monophosphate  

COPD Chronic obstructive pulmonary disease  

COX-2 Cyclooxygenase-2  

ECM Extra-cellular matrix  
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1. Introduction 52 

Glucocorticoids (GCs) represent a cornerstone therapeutic approach in the treatment of 53 

inflammatory airways diseases, such as asthma. Despite proven effective anti-inflammatory and 54 

immunosuppressive effects, GCs’ long-term and/or systemic use can potentially induce unwanted 55 

adverse effects such as osteoporosis, skin atrophy, diabetes, glaucoma, hypertension and growth 56 

retardation in children among others (Buehring, Viswanathan, Binkley, & Busse, 2013; Schacke, 57 

Docke, & Asadullah, 2002; Yamashita, et al., 2010). Importantly, a subset of patients with severe 58 

asthma appears refractory to the therapeutic actions of GCs and strikingly some of the current 59 

literature has revealed some of the “unanticipated” effects of GCs with regard to their impact on 60 

several pathological responses involved in asthma. Those include modulation of cell proliferation, 61 

or induction of some pro-inflammatory mediators and receptors which all appear to be cell- and 62 

stimuli- dependent, and as such potentially contribute to a less favorable disease state outcome. 63 

To get a better understanding of the effects of GCs in airways diseases such as asthma and 64 

specifically address whether these effects could, under certain circumstance, be ineffective and/or 65 

detrimental, we will here review evidence describing how GCs modulate airway inflammation and 66 

airway remodeling features associated with disease severity and progression. We will mainly 67 

focus on airway smooth muscle (ASM) cells, pivotal cells regulating bronchomotor tone with 68 

significant immunomodulatory functions and major contributor to the remodeling features 69 

associated with asthma ({Keglowich, 2015 #152}).  70 

 71 

2. ASM cells phenotypic changes as a major contributor in airway remodeling in asthma.  72 

Unequivocally, it has been established that the ASM layer in asthmatics becomes thicker 73 

through an increase in mass, particularly in more severe cases (Carroll et al, 1993, Am Rev Respir 74 

Dis 147(2); Ebina et al, 1990, Am Rev Respir Dis 141(5 pt 1); Woodruff et al, 2004, Am J Respir 75 

Crit Car Med 169(9)). The increased mass of (contractile) ASM is a typical feature of airway 76 

remodeling (AR) and is considered a major causal feature for airway hyperreactivity and 77 
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excessive narrowing that reduces airflow in asthma (Affonce 2006, J Appl Physiol 101; Wiggs 78 

1990, J Appl Physiol 69) (Hirota, Nguyen, Schaafsma, Sharma, & Tran, 2009; Lambert, Wiggs, 79 

Kuwano, Hogg, & Pare, 1993). This is supported by evidence suggesting that targeted elimination 80 

of ASM through bronchial thermoplasty improves disease control in subjects with moderate to 81 

severe asthma (Cox et al 2007, NEJM, 356). Over the past decades, several studies have 82 

indicated that the phenotype of airway mesenchymal cells, which include ASM cells and (myo) 83 

fibroblasts, derived from asthmatic airways and propagated in cell culture is different from that of 84 

cells obtained from subjects not suffering from airway diseases, exhibiting augmented proliferative 85 

abilities (Chambers et al, 2003, AJP Lung, 285 (3); Johnson et al, 2001, AJRCCM 164(3))). These 86 

findings suggest that there is an intrinsic abnormality in the proliferation characteristics of ASM 87 

from asthmatics, and that any change in proliferation of the muscle cells over time (with increasing 88 

severity) may have robust effects on total muscle mass. Of note, it is unclear if proliferating cells 89 

are all in the same vicinity or if other mesenchymal cells migrate to the muscle bundles to 90 

contribute to the accumulating muscle mass (Henderson et al, 2007, AJP Lung, 292(4)). 91 

Paradoxically, other studies have indicated ASM cells from asthmatics are more contractile than 92 

control ASM cells (Ma et al 2002, AJP Lung 283). As suggested, ASM cells in vivo are subjected 93 

to a plethora of micro-environmental cues, in particular under conditions of transient (local) 94 

inflammation, and it is very conceivable that these cells express an intermediate phenotype that 95 

can be driven to either a more proliferative or contractile state, depending on the aforementioned 96 

intermittent profile of specific cues present (Hirota, et al., 2009; Lambert, et al., 1993). 97 

Interestingly, ASM phenotypes and functions can be altered under specific inflammatory 98 

conditions where GCs have the ability to promote/facilitate (predominantly neutrophilic) 99 

inflammation and remodeling, for instance by producing IL-8, CXCL1, G-CSF, and ECM 100 

(regulating) proteins. Furthermore, interesting data obtained from endobronchial biopsies from 101 

subjects with asthma revealed an increased expression of genes importantly involved in asthma 102 

progression and severity within the ASM bundles, including ADAM33, ADAM8 (Foley, et al., 103 
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2007), eotaxin (Ghaffar, et al., 1999), and CCL19 (D. Kaur, et al., 2006), despite these patients 104 

being treated with high dose of GCs.  105 

ASM cells gene expression program has been shown to be affected in vivo in patients with 106 

asthma after 14 days treatment with GCs. Indeed, Yick and colleagues {Yick, 2013 #121} showed 107 

that oral prednisone changed the gene expression profile of ASM layer in asthma, which was 108 

correlated with improved lung function. Notably, the gene network analysis revealed significant 109 

changes in genes associated with the network functions cellular growth, proliferation, and 110 

development, such as ERK1/2 (extracellular signal-regulated kinase 1/2), UBC (ubiquitin C), and 111 

PPP2R1B (protein phosphatase 2, regulatory subunit A, β). Additional study by Himes’s group 112 

showed that an ASM-specific transcriptomic signatures associated with GC treatment {Kan, 2019 113 

#123}. Such changes were similar in ASM cells derived from healthy donors or patients with fatal 114 

asthma. Collectively, these clinical evidence clearly highlights the role of ASM cells not only as a 115 

major contributor in the AR features in asthma but also as an in vivo target of GCs. 116 

 117 

3. Mechanisms mediating the effect of GC on different ASM functions. 118 

A number of studies using cultured human ASM cells have investigated the beneficial 119 

actions of GCs and their potential associated mechanisms. The conclusions made from different 120 

labs suggest that GCs exert a strong anti-inflammatory action on a variety of inflammatory genes 121 

induced by pro-asthmatic stimuli, although the potency/efficacy appear to be highly gene and 122 

stimuli specific. However, despite this impressive anti-inflammatory action of GC, their underlying 123 

inhibitory mechanisms have not been completely established and appear to be also complex and 124 

involve targeting both transcriptional and post-transcriptional pathways. In addition to these GC-125 

sensitive pathways, ASM is also a unique cellular model as it displays many GC-insensitive 126 

features which could therefore be potentially altered in severe asthma and be playing a major role 127 
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in the overall GC insensitive features seen in these patients (Latifa Chachi, Adelina Gavrila, Omar 128 

Tliba, & Yassine Amrani, 2015). 129 

3.1) Induction of pro-inflammatory genes by various pro-asthmatic stimuli is 130 

differentially regulated by GCs in ASM cells. A number of pro-inflammatory genes that have 131 

the potential to regulate various aspects of asthma pathogenesis have been reported to be 132 

inhibited by different GCs in human ASM cells. For example, dexamethasone (or fluticasone) 133 

suppressed TNF-induced production of various chemokines including CXCL8 (Oltmanns, et al., 134 

2008; Pang & Knox, 2000), CCL5 and IL-6 (A. Ammit, et al., 2000; A. J. Ammit, et al., 2002), 135 

CCL11 (L. Pang & A. Knox, 2001), CXCL10 (Clarke, et al., 2010) and expression of ICAM-1 136 

(Yassine Amrani, Lazaar, & Panettieri, 1999). Responses induced by IL-1, another pro-137 

inflammatory stimulus involved in asthma, such as MMP-12 expression/activity, production of 138 

CXCL10 and GM-CSF, an essential factor for eosinophils/neutrophils differentiation and activity, 139 

or expression of ICAM-1 were also reported to be inhibited by dexamethasone (Yassine Amrani, 140 

et al., 1999; Saunders, et al., 1997; Tran, et al., 2005; Xie, et al., 2005) or fluticasone (Seidel, et 141 

al., 2012). In addition, GCs were shown to be effective in inhibiting the production of pro-142 

inflammatory mediators such as IL-6 or CXCL8 stimulated by GPCR agonists such as bradykinin 143 

(Huang, Tliba, Panettieri, & Amrani, 2003; Pang & Knox, 1998; Zhu, Bradbury, Pang, & Knox, 144 

2003) or sphingosine-1 phosphate (S1P) (Rahman, et al., 2014). Ciclesonide, a GC that requires 145 

to be converted by desisobutyryl-ciclesonide by lung esterases to be clinically active, and 146 

fluticasone were equally effective in inhibiting the induction of the chemotactic mediator MCP-1 in 147 

response to TNF stimulation (Nie, Corbett, Knox, & Pang, 2005; Patel, Clifford, Deacon, & Knox, 148 

2012). Cigarette smoke was reported to stimulate the production of CXCL8 via pathways sensitive 149 

to fluticasone but not to salmeterol (Oltmanns, et al., 2008). It is interesting to mention that GCs 150 

exert a differential suppressive effect on the expression of pro-inflammatory genes in ASM cells 151 

and that not all genes are repressed with equal potency/efficacy. Induction of some genes such 152 
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as IL-6, CCL5, CXCL10 or MCP-1 appears to be strongly inhibited by dexamethasone or 153 

fluticasone (>80-90% inhibition at 10-5M), while other responses such as expression of ICAM-1, 154 

CXCL8, CCL11, or GM-CSF were found to be only partially repressed (50-60% inhibition at 10-5-155 

to-6M). Surprisingly, other genes such as IL-33, CX3CL1, TARC or CCL11 were found to be not 156 

affected by either dexamethasone or fluticasone (Chung, et al., 1999; Faffe, et al., 2003; 157 

Prefontaine, et al., 2009; Sukkar, et al., 2004).  158 

These observations led to the interesting conclusions that i) different signaling pathways 159 

regulate inflammatory gene expression and ii) GC differentially modulated these genes in a 160 

stimuli-dependent manner. These results most likely reveal the differential contribution of multiple 161 

anti-inflammatory mechanisms (transrepression vs transactivation) in the therapeutic action of 162 

GCs in ASM cells (Newton, 2014).  163 

3.2) Differential regulation of pro-inflammatory signaling pathways by GCs in ASM 164 

cells. The mechanisms by which GCs exert their anti-inflammatory action in ASM cells have not 165 

been extensively investigated. The findings that a number of genes including CXCL8 (Rahman, 166 

et al., 2014), MCP-1 (Patel et al. 2012), GM-CSF (Tran et al. 2005) were inhibited at the mRNA 167 

levels by GCs strongly suggest the involvement of transcriptional mechanisms. Several studies 168 

using selective inhibitors and gene promoter constructs have then attempted to dissect the 169 

signaling pathways driving the expression of inflammatory genes in ASM cells. Reports found that 170 

various transcription factors STAT1/2, NF-B, AP-1, IRF-1 and signaling pathways such as 171 

MAPKs (JNK, p38 MAPK, ERK1/2), often acting in concert, were involved in the transcription of 172 

pro-asthmatic genes in human ASM cells (Alrashdan, et al., 2012; A. Ammit, et al., 2000; Yassine 173 

Amrani, et al., 1999; Clarke, et al., 2010; Hardaker, et al., 2003; Rahman, et al., 2014; Robins, et 174 

al., 2011; Sukkar, et al., 2004; Tirumurugaan, et al., 2008; O. Tliba, et al., 2008; Omar Tliba, et 175 

al., 2003; J. Zhang, et al., 2015). The study of whether GCs suppress these signaling pathways 176 

has led to some very interesting conclusions regarding the unique anti-inflammatory strategies 177 
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used by GCs in ASM cells. In contrast to the popular belief that NF-kB is a main target of GCs 178 

(Newton, 2014), studies conducted in ASM cells have revealed that the impact of GCs on NF-B 179 

function was highly complex and highly dependent on the type of activating stimuli. Indeed, 180 

dexamethasone was found to be less effective in inhibiting NF-B pathways (assessed using 181 

reporter constructs) when activated by TNF or IL-1 (Yassine Amrani, et al., 1999; Moore, et al., 182 

1999). In contrast, NF-B activation in response to either thrombin, IL-1 (Tran, et al., 2005) or 183 

even bradykinin (Zhu, et al., 2003) was found to be strongly inhibited by dexamethasone. Gerber’s 184 

lab has shown that the transcriptional cooperation between GR and NF-B as the main 185 

mechanism explaining the augmentation of TNF-induced A20 expression by dexamethasone 186 

(Sasse, et al., 2016). The impact of GCs on the function of MAPKs has been investigated and 187 

found to be variable and stimuli specific. This is an important observation as 188 

immunohistochemistry and PCR assays demonstrated that p38 MAPK was activated in vivo in 189 

ASM bundles of severe asthmatic patients taking either oral or inhaled GCs (Robins, et al., 2011). 190 

The authors showed that in cultured ASM cells, activation of p38 MAPK by either IL-1 or 191 

activation by FGF-1 (and FGF-2) was sensitive to dexamethasone or fluticasone (Fernandes, et 192 

al., 1999; Tran, et al., 2005; Willems-Widyastuti, et al., 2013) while ERK1/2 activation by TNF was 193 

found to be insensitive to GCs (Fernandes, et al., 1999; Robins, et al., 2011). In our recent study, 194 

we showed that ERK1/2 was required for dexamethasone to induce pentraxin-3, a multifunctional 195 

protein regulating both innate and adaptive immunity (J. Zhang, et al., 2019). The overall message 196 

is that the therapeutic action of GCs in ASM cells is still poorly understood and additional studies 197 

are required to determine how GCs interfere with various signaling pathways, knowing that their 198 

anti-inflammatory actions will vary according to the nature of the stimulus and the presence of 199 

other therapeutic drugs such as 2-agonists.  200 

3.3) Importance of transactivation in GC beneficial effects in ASM cells. Different 201 

studies have performed ASM transcriptomics to determine the profile of anti-inflammatory genes 202 
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induced by GCs in human cells in health and diseases (Himes, et al., 2014; Kan, et al., 2019; 203 

Masuno, et al., 2011; Misior, et al., 2009; Yick, et al., 2013). From these studies, it has emerged 204 

that budesonide or dexamethasone can stimulate the expression of a variety of induced genes 205 

that possess anti-inflammatory activities in ASM cells. Among these genes, CRISPLD2 (Cysteine-206 

rich secretory protein LCCL domain-containing 2), which has been associated with lung 207 

development and response to endotoxin, was reported to be up regulated by dexamethasone. 208 

siRNA assays showed that knockdown of CRISPLD2 protein enhanced the expression of IL-6 209 

and IL-8 induced by IL-1 and reduced the inhibitory action of dexamethasone (Himes, et al., 210 

2014). Another GC responsive gene found in ASM cells is called Kruppel Like Factor 15 (KLF15), 211 

which belongs to a KLF family of zinc finger transcriptional regulators that play a critical role in 212 

development, differentiation, and organ homeostasis. Masuno and colleagues found that KLF15 213 

expression was increased by dexamethasone at 4 and 24 hr. Knockdown experiments showed 214 

that KLF15 regulates in vitro apoptosis and proliferation in ASM cells and in vivo airway hyper-215 

responsiveness in a murine model of allergic asthma (Masuno, et al., 2011). The same group 216 

recently identified phospholipase C delta 1 as a KLF15-regulated gene that inhibits ASM cell 217 

proliferation (Sasse, et al., 2017). Similar to KLF15, induction of A20 (i.e., TNFAIP3) by GCs in 218 

human ASM cells has been later reported to act as a negative feedback mechanism to 219 

inflammatory cytokines. A20 was shown to be essential for the anti-inflammatory action of 220 

dexamethasone in repressing the expression of a number of genes (i.e., IL-1A, IL-6, CXCL8, 221 

CCL2, TNF). The mechanisms of action of A20 is likely due to its strong inhibitory action on NF-222 

B pathways (Sasse, et al., 2017). However, one of the most studied GC inducible genes in ASM 223 

cells is MKP-1 (DUPS1), a dual phosphatase that plays a pivotal role in the inhibition of p38 MAPK 224 

and JNK pathways. Studies from Ammit’s group and others have provided strong evidence 225 

supporting the implication of MKP-1 in the repression of different pro-asthmatic genes (CD38, 226 

GRO-alpha and IL-6) induced by a variety of stimuli including IL-1, TNF and S1P (Che, et al., 227 
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2014; Issa, et al., 2007; Kang, Jude, Panettieri, Walseth, & Kannan, 2008; Prabhala, Bunge, Ge, 228 

& Ammit, 2016; Quante, et al., 2008). The specific contribution of each of these different GC-229 

inducible genes in the overall potency and efficacy of GCs reported in ASM cells (see previous 230 

section) remain to be further explored. A nice study by Newton and colleagues reported that many 231 

GC-inducible genes including MKP-1 and GC-induced leucine zipper (GILZ) were enhanced by 232 

GC/2-agonist combination, providing at least one mechanisms supporting the superior clinical 233 

benefit of the combination therapies (M. Kaur, Chivers, Giembycz, & Newton, 2008). We and 234 

others have previously reported that GILZ was a GC responsive gene in ASM both in vitro in 235 

cultured cells treated with fluticasone and in vivo in lung biopsies from patients treated with inhaled 236 

budesonide (Chachi, et al., 2017; Chachi, et al., 2013; Kelly, et al., 2012). 237 

4. Impaired and unanticipated effects of GC in ASM in severe asthma.   238 

4.1) Clinical evidence of impairment of GC actions in ASM cells. Elegant studies from 239 

Martin’s lab and others have provided strong evidence that some ASM abnormalities associated 240 

with severe asthma (i.e., increased ASM mass) despite patients being treated with oral and 241 

inhaled GC therapy (Benayoun, Druilhe, Dombret, Aubier, & Pretolani, 2003; Hassan, et al., 2010; 242 

Ichikawa, et al., 2019; Pepe, et al., 2005; Ramos-Barbon, et al., 2010). Additionally, the wall 243 

thickening of the central airways of patients with asthma has been shown to be only partially 244 

responsive to inhaled corticosteroids ({Niimi, 2004 #119}). These studies have raised the 245 

possibility that severe asthma is associated with an impaired therapeutic response to GC in the 246 

lungs including in the ASM. Different studies including from our lab comparing the therapeutic 247 

action of GCs in ASM cells have indeed supported this hypothesis by showing that GC sensitivity 248 

was blunted in cells from severe asthmatics when compared to cells derived from healthy subjects 249 

(Chachi, et al., 2017; Chang, Bhavsar, Michaeloudes, Khorasani, & Chung, 2012; Chang, et al., 250 

2015; J. H. Liu, Li, Zhang, & Zhang, 2020; Perry, Baker, Gibeon, Adcock, & Chung, 2014; Roth, 251 

et al., 2004). These studies revealed that the anti-inflammatory (ability to inhibit chemokine 252 
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secretion) and anti-remodeling (ability to inhibit cell proliferation) actions were significantly 253 

reduced in ASM cells from severe asthmatics. The underlying mechanisms appear to be very 254 

complex involving multiple mechanisms affecting mostly GC receptor (GR) function including a 255 

decreased receptor expression, receptor nuclear translocation, receptor phosphorylation at 256 

serine211 or transactivation of genes (GILZ). These studies have highlighted the mechanistic 257 

complexity of GC insensitivity seen in ASM tissues in severe asthma which could reflect the 258 

heterogeneity of clinical and/or inflammatory profiles seen in these patients. Nonetheless, we 259 

have identified the protein phosphatase PP5 while others found microRNA (mir-21) as the main 260 

pathways blunting GC sensitivity in ASM cells of severe asthmatics {Chachi, 2017 #1605;Liu, 261 

2020 #1750;Bouazza, 2012 #100}. These are important findings with clinical implications as high 262 

expression of several pro-asthmatic mediators including cytokines or chemokines has been 263 

shown in the ASM bundles of asthma patients despite treatment with either oral or high doses of 264 

inhaled GCs (reviewed in (Latifa Chachi, et al., 2015)). The GC insensitive mediators produced 265 

by ASM in vivo have the capacity to regulate various aspects of asthma pathogenesis including 266 

airway remodeling, airway hyper-responsiveness and airway inflammation (reviewed in (Chachi, 267 

et al., 2017)). One study, however, failed to detect any significant difference in GC response in 268 

ASM cells between fatal asthma and healthy when assessing GC transcriptome, although the 269 

small sample size, cells isolated from tracheal tissues, experimental design and lack of clinical 270 

data may have influenced the significance of the study (Kan, et al., 2019).  271 

4.2) Unanticipated effects of GCs on airway inflammatory features. While GCs exhibit 272 

anti-inflammatory actions, such as suppressing the secretion of cytokines and chemokines in cells 273 

such as ASM cells, under certain inflammatory conditions they not only lose their anti-274 

inflammatory properties but can enhance the expression of inflammatory genes (L. Chachi, A. 275 

Gavrila, O. Tliba, & Y. Amrani, 2015; Sukkar, et al., 2004).  276 
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a) CX3CL1: Levels of CX3CL1, a chemokine implicated in cell adhesion, chemoattraction 277 

of various inflammatory cells associated with asthma, such as CD4+ T cells (Mionnet, et al., 2010) 278 

or mast cells (L. Chachi, et al., 2015), are increased in broncho-alveolar lavage (BAL) of patients 279 

with asthma (Rimaniol, et al., 2003). Further, CX3CL1 appears to mediate asthma exacerbations 280 

associated with respiratory virus infection and allergen exposure (Loxham, et al., 2018). 281 

Mechanistic studies showed that the enhancing effect of GC on CX3CL1 production in the 282 

presence of cytokines was unassociated with mRNA stability, but was due to an increased 283 

transcriptional activity (Sukkar, et al., 2004). The potentiation of CX3CL1 secretion by GC in the 284 

presence of TNF/IFN might be unique to ASM, since CX3CL1 induction by these cytokines was 285 

suppressed by GC in human bronchial epithelial cells (Bhavsar, Sukkar, Khorasani, Lee, & 286 

Chung, 2008). 287 

b) G-CSF: GCs can also increase the plasma levels of Granulocyte Colony stimulating 288 

factor (G-CSF) in healthy individuals (Jilma, et al., 1998), likely through its production and release 289 

from mononuclear cells (Witek-Janusek & Mathews, 1999). Interestingly, others investigated the 290 

impact of GC-induced G-CSF on neutrophilic lung inflammation using murine model of lung injury 291 

(Banuelos, et al., 2017). In this model, LPS challenge increased the number of BAL neutrophils, 292 

which was then further enhanced by dexamethasone exposure. Dexamethasone also maintained 293 

LPS-induced airway G-CSF while suppressing TNF and IL-6. Interestingly, in situ hybridization 294 

revealed that epithelial cells, ASM cells, and infiltrating leukocytes were the source of G-CSF in 295 

the lungs. When BEAS-2B bronchial epithelial cells, A549 lung epithelial cells, human monocyte-296 

derived macrophages, and human neutrophils were used, dexamethasone and pro-inflammatory 297 

stimuli (IL-1 or TNF) synergistically induced G-CSF (Banuelos, et al., 2017; Files, et al., 2015). 298 

These observations clearly show that GCs enhance the production of some pro-asthmatic 299 

mediators with a potential to regulate neutrophilic asthma, one of the important granulocyte-based 300 

inflammatory phenotypes in severe asthma (O. Tliba & Panettieri, 2019).  301 



15 
 

c) CCL20: CCL20, another pro-inflammatory mediator induced by GCs, is increased in 302 

human bronchial epithelial cells (Zijlstra, et al., 2014). The clinical relevance of CCL20 in asthma 303 

is supported by the strong correlation observed between the levels of CCL20 found in the sputum, 304 

sputum neutrophil counts (Zijlstra, et al., 2014), mucus hypersecretion (Faiz, et al., 2018) and the 305 

dose of inhaled GC (budesonide) used. This is not entirely surprising as CCL20 is a neutrophil 306 

and Th17-cell chemoattractant and Th17-mediated neutrophilic airway inflammation has been 307 

associated with asthma severity including poor response to GC therapy. Interestingly, ASM cells 308 

derived from subjects with moderate asthma produce more CCL20 than cells derived from 309 

subjects with mild asthma suggesting that ASM as a potential source of CCL20 in asthma (Faiz, 310 

et al., 2018). However, whether CCL20 directly affects the therapeutic response to GC remains 311 

to be further explored. Additional mechanistic studies revealed that budesonide increased TNF-312 

induced release of CCL20 by primary bronchial epithelial cells, while suppressing CXCL8 313 

secretion, suggesting that the effects of GCs on the expression of chemokines are gene-specific 314 

(Zijlstra, et al., 2014). Although TNF-induced CCL20 secretion requires the activation of signaling 315 

pathways such as ERK, p38 and STAT3, none of these pathways were affected by budesonide. 316 

Furthermore, this GC action was only inhibited when GR was inhibited (Zijlstra, et al., 2014), 317 

suggesting the involvement of GR dependent mechanisms. It would be interesting to examine the 318 

common mechanisms by which GCs drive the expression of CCL20 and G-CSF.  319 

 320 

d) TLRs: GCs also have the capacity to modulate the innate immune response by affecting 321 

the expression of Toll-like receptors (TLRs). For instance, dexamethasone enhanced the 322 

expression of TLR2 induced by TNF and IFN in ASM cells (Sukkar, et al., 2006), while in alveolar 323 

macrophages budesonide enhanced the expression of TLR2 induced by TLR ligands (Ji, et al., 324 

2016). These observations strongly suggest that the modulation of TLR2 by GC could amplify the 325 

inflammatory responses in the airways (Manetsch, et al., 2012). In contrast, it is worth to mention 326 

that in primary human airway epithelial cells, dexamethasone decreased the expression of TLR2 327 
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induced by cytokines (Winder, et al., 2009). In human lung epithelial A549 cells, TNF and GCs 328 

were shown to cooperatively regulate components of innate immunity such as TLR2 (Hermoso 329 

2004, Mol Cell Biol, 24(11)). Indeed, while dexamethasone repressed IL8 mRNA, it enhanced 330 

TLR2 mRNA expression in TNF-treated cells.  Further mechanistic studies showed that TNF and 331 

dexamethasone activated unique intracellular mechanisms promoting the transcription of the 332 

TLR2 gene. Although dexamethasone alone did not appear to induce TLR2 promoter activity, 333 

may be due to  the presence of only one single GRE site in the promoter region of TLR2 gene, 334 

such single binding site was required for the synergistic induction of TLR2-dependent gene 335 

expression to occur between TNF and GC (Hermoso 2004, Mol Cell Biol, 24(11)).  Collectively, 336 

these studies show that the modulation of TLRs by GCs is highly dependent on the cell type and 337 

nature of the stimulus used. 338 

e) MAPKs: Several studies have shown that treatment with GCs results in a loss of MAPK 339 

activity (ERK, p38, JNK) in a variety of cells, including mast cells (Kassel et al EMBO 2001 20)), 340 

HeLa cells (Lasa 2002 Mol Cell Biol 22), and human pulmonary epithelial A549 cells (Shah 2014 341 

JBC 289). Although sustained stimulation (several hours) with GC does not activate MAPK 342 

signaling pathway, short-term acute GC treatment has been shown to activate such inflammatory 343 

pathways in some other cell types (reviewed in Panettieri & Tliba, 2019 {Panettieri, 2019 #114}). 344 

For instance, in PC12 cells (cell line derived from rat adrenal gland), corticosterone induced rapid 345 

activation (within 15 min) of ERK1/2, p38, and JNK in a PKC-dependent manner (Li, et al., 2001; 346 

Qiu, et al., 2001). The activation of MAPK pathways following GC treatment appears to be 347 

mediated by the putative membrane GR, since corticosterone-BSA can rapidly (within 15 min) 348 

activate all MAPKs (Li, et al., 2001; Qiu, et al., 2001). Similarly, in rat vascular smooth muscle 349 

cells, dexamethasone either alone or in combination with norepinephrine, rapidly (within 10 min) 350 

induces ERK1/2 and p38 MAPK activities (T. Zhang, et al., 2013). Interestingly, we recently 351 

showed that the stimulation of human ASM with dexamethasone increased mRNA and protein 352 

levels of pentraxin-3 (PTX3), a soluble pattern receptor involved in both innate and adaptive 353 
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immunity, which was markedly reduced by inhibition of p42/44 ERK (but not p38 or JNK) and GR 354 

blockade (ZHANG 2019 PloS One 14(8) suggesting the involvement of MAPK in PTX3 induction 355 

by GC. PTX3 expression has been shown to be increased in bronchial biopsies and BAL of severe 356 

asthmatics, and was shown to potently inhibit ASM migration induced by fibroblast growth factor-357 

2 (FGF-2) and to augment CCL11/eotaxin-1 release (ZHANG 2012, PloS One, 7(4)). In addition, 358 

PTX3 deficient mice exhibit enhanced inflammation, AHR and mucus production following 359 

ovalbumin sensitization and challenge (Balhara 2017,  Clin Immunol 139(3)). These findings 360 

implicate a possible dual role for PTX3 in asthma, and suggest GCs can modulate PTX3 levels in 361 

a GR and ERK dependent fashion. Since airway inflammation has generally been associated with 362 

the activation of MAPK signaling pathways (Y. Amrani, Ammit, & Panettieri, 2001; Baraldo, et al., 363 

2003; Hallsworth, Moir, Lai, & Hirst, 2001), future investigations are warranted to explore the rapid 364 

effects of GCs on MAPK signaling in different airway structural cells derived from patients with 365 

various stages of asthma severity and to determine whether such non-genomic acute effects of 366 

GC affect asthma pathogenesis (reviewed in {Panettieri, 2019 #114}). 367 

f) Additional examples from non-ASM cells. Interestingly, further evidence from immune 368 

cells and non-ASM cells demonstrated that GCs also upregulate certain inflammatory molecules 369 

such as inflammasome and Serpin A3.  370 

Under certain conditions, GCs have been shown to exacerbate inflammatory response, 371 

by upregulating the expression of inflammasome regulators such as nucleotide-binding domain 372 

and leucine-rich repeat protein-3 (NLRP3). NLRP3 is a member of NOD-like receptors (NLRs), 373 

which activates an inflammasome complex in response to elevated levels of various molecules 374 

released in disease states, including extracellular ATP. For instance, treatment with either 375 

dexamethasone or cortisol rapidly enhanced NLRP3 mRNA and protein expression in THP-1 376 

cells. Interestingly, such increase enhanced cell sensitivity to extracellular ATP and augmented 377 

the production of pro-inflammatory cytokines (2). In HMEC-1 cells, dexamethasone increased the 378 
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mRNA expression of IL-6, via a GR-dependent mechanism. Such increase was due to the 379 

upregulation of purinergic P2Y2 receptor (P2Y2R) expression, a Gq protein-coupled receptor, 380 

activated by ATP and UTP, with a particularly high affinity for ATP. Interestingly, pre-incubation 381 

with dexamethasone enhanced ATP-induced transcription of adhesion molecules ICAM-1, 382 

VCAM-1, and SELE, and the release of IL-8. These results suggest that exogenous GCs may 383 

enhance pro-inflammatory responses induced by ATP binding to the P2Y2R receptor (3). 384 

Interestingly, in human ASM cells, studies from Ammit’s group ({Hirota, 2013 #116} {Prabhala, 385 

2015 #117}) showed that TNF induced IL6 secretion in an inflammasome-independent manner 386 

and that TLR-2 treatment of ASM cells does not activate the inflammasome. Further studies are 387 

still needed to characterize the role inflammasome in ASM cells and importanty whether GCs 388 

potentiate inflammasome regulators as seen in immune cells.  389 

An additional gene that was shown to be co-regulated by GCs and inflammatory cytokines 390 

is Serpin A3 (α-1 antichymotrypsin), an acute phase protein released during inflammatory 391 

processes. Indeed, Cidlowski group showed, using microarray analysis in A549 lung cells, that 392 

dexamethasone and TNF coregulate, rather than antagonistically regulate many genes involved 393 

in inflammatory disease such as SerpinA3. Such finding was confirmed in vivo, when treatment 394 

of C57BL/6 mice with dexamethasone and TNF led to an additive increase in SerpinA3 mRNA 395 

levels in the liver and the lung, although to a lesser extent than in the cell culture model. 396 

Furthermore, ChIP analysis suggested that GR binding at the serpinA3 transcriptional start site 397 

increased slightly when A549 cells were treated with either dexamethasone or TNF alone, but 398 

was markedely enhanced by their combination (4). 399 

Collectively, these data suggest that the unanticipated effects of GCs in inflammatory 400 

features described above, may participate in the pathogenesis of severe asthma where GCs 401 

actions are impaired. 402 
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4.3) Unanticipated effects of GCs on ASM proliferation and airway remodeling. 403 

a) GC, cAMP/PKA signaling, and ASM proliferation. Inhaled -agonists constitute the most 404 

effective therapy for reversing acute bronchoconstriction associated with an asthma attack. 405 

Protein kinase A (PKA) has been identified as the primary cyclic adenosine monophosphate 406 

(cAMP) effector molecule in -agonist-mediated relaxation of ASM (Morgan et al 2014, 407 

JBC,289(33)).  408 

The impact of GCs versus cAMP/ PKA stimulating agents on ASM proliferative function 409 

has been well documented and provided key information regarding the sensitivity of ASM 410 

proliferation responses to current anti-asthma drugs. For instance, PKA stimulating agents 411 

generally suppress mitogen-induced growth of ASM cells in culture (Bonacci & Stewart, 2006; 412 

Stewart, et al., 1999). In contrast, the effects of GCs on ASM cell mitogenesis are far less 413 

consistent and appear dependent on the type of mitogenic stimulus, with inhibitory effects on 414 

growth triggered by GPCR agonists, e.g. thrombin and leukotriene D4, and little effect on 415 

proliferation induced by growth factors such as epidermal growth factor (EGF) (Schramm, Omlor, 416 

Quinn, & Noveral, 1996; Stewart, Fernandes, & Tomlinson, 1995).  417 

Interestingly, GCs could shift cytokine function from inhibitors to enhancers of mitogen-418 

induced ASM growth (Misior, et al., 2008). Cytokines such as IL-1 and TNF activate 419 

cyclooxygenase-2 (COX-2) dependent production of prostaglandin E2 (PGE2) while inhibiting 420 

EGF-induced [3H]-thymidine incorporation in ASM cells. Since exogenous PGE2 inhibits ASM 421 

growth, likely in a cAMP/PKA dependent manner, COX-2 dependent PGE2 production emerged 422 

as a likely candidate to mediate inhibition of ASM proliferation by IL-1 and TNF. Interestingly, 423 

cell pretreatment with GC (fluticasone propionate (FP)) inhibited the induction of 424 

COX2/PGE2/PKA signaling cascade and markedly promoted EGF-induced cell growth (Misior, et 425 

al., 2008). Direct inhibition of PKA via heterologous expression of PKA inhibitors PKI or RevAB, 426 

also similarly augmented mitogen-induced ASM growth in the presence of cytokines, suggesting 427 
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a role for PKA in mediating the anti-mitogenic effects of cytokines. Thus, GCs potentially enhance 428 

ASM proliferation in the presence of some inflammatory stimuli via the inhibition of COX-2-429 

dependent PKA pathways.  430 

Elegant transcriptomic studies have provided some mechanistic insight into the 431 

deleterious effects of GCs in ASM proliferation. These studies showed that the treatment of 432 

human ASM cells with cytokines (e.g. IL-1), mitogens (e.g. EGF), and GC (e.g. FP)  (i) 433 

significantly increased transcripts encoding for zinc finger-containing proteins (e.g. ZBTB16, 434 

ZNF22, and PFH17), (ii) modulated the transcripts of several proteins known to regulate 435 

transcription factor activity such as metallothionein 1M (MT1M), forkhead box O1 (FoxO1), and 436 

inhibitor of DNA binding 2 (ID2), and (iii) markedly increased the expression of several putative 437 

regulators of mitogenesis such as C10orf10, Fam107A, and Wisp1 (Misior, et al., 2009). Other 438 

studies, however, revealed that the “direct” pro-mitogenic effect of FP is limited. Indeed, when 439 

considering proliferation, the only pro-mitogenic genes regulated directly by FP were C13ORF15, 440 

CYR61, and ID2 (Misior, et al., 2009; Misior, et al., 2008) while most of the pro-mitogenic effects 441 

of FP were “indirect” through PKA inhibition. These findings are of clinical relevance, since GC 442 

activation of genes that promote pro-mitogenic ASM phenotype could be counteracted by 443 

cAMP/PKA stimulating agents such as inhaled 2-agonists explaining thereby the therapeutic 444 

benefit of GC/2-agonist combination therapy in some patients (Miller-Larsson & Selroos, 2006).  445 

b) GC, ECM, and ASM proliferation. Other evidence suggests that the extra-cellular matrix 446 

(ECM) modulates ASM phenotype (Dekkers, Schaafsma, Nelemans, Zaagsma, & Meurs, 2007). 447 

Indeed, ECM proteins surrounding ASM cells have been shown to affect the proliferative 448 

(Bonacci, Harris, & Stewart, 2003; Dekkers, Bos, Halayko, Zaagsma, & Meurs, 2010) and 449 

contractile responses (Dekkers, et al., 2007) of ASM cells. When ASM cells were treated with 450 

EGF and IL-1, FP enhanced the expression of genes closely associated with cell-ECM 451 

interactions such as MMP19, vinculin, integrins 5 and 10, collagen IV1, providing an 452 
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additional mechanism by which GCs potentially promote ASM proliferation through the modulation 453 

of cell-ECM dynamics (Misior, et al., 2009). Interestingly, in a collagen-rich environment, ASM 454 

appears to be insensitive to the anti-proliferative action of GCs (Bonacci, Harris, Wilson, & 455 

Stewart, 2003; Bonacci, Schuliga, Harris, & Stewart, 2006). Together, these studies suggest that 456 

the nature of the ECM environment not only modulate a number of ASM remodeling responses 457 

seen in asthma, including proliferation and contraction, but also determine the therapeutic 458 

responses to GCs (Parameswaran, et al., 2006). 459 

 Collectively, from these different studies it is conceivable that depending on the 460 

inflammatory and ECM micro-environment in asthma, GCs might in fact promote and/or fail to 461 

inhibit abnormal ASM proliferation, a critical component of AR associated with disease 462 

progression and severity (Prakash, et al., 2017). This GC effect may be even more pronounced 463 

under conditions where 2 adrenergic receptor/Gs/AC/cAMP/PKA pathway is impaired due to 2-464 

receptor desensitization, a feature that may develop in patients with severe asthma (Chachi, et 465 

al., 2018) or after long-term treatment with 2-agonists (Y. Amrani & Bradding, 2017). Although 466 

GCs prevent 2-receptor desensitization in various model systems, including precision-cut lung 467 

slices (Cooper & Panettieri, 2008), the clinical relevance of such in vitro observations remains to 468 

be confirmed since poor responses to 2-receptor agonists is a key feature of patients with severe 469 

asthma despite being treated with high doses of inhaled or oral corticosteroids (Chachi, et al., 470 

2018). 471 

 472 

5. Alternative strategies to modulate the therapeutic actions of GCs in ASM cells. As 473 

discussed previously, the potency/efficacy of GCs in suppressing the expression of pro-474 

inflammatory genes is greatly influenced by the type of stimulus and associated signaling 475 

pathways. Investigators have looked at ways to enhance the anti-inflammatory actions of GCs or 476 

to treat the GC-insensitive features. Several studies in human ASM cells have demonstrated the 477 
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therapeutic value of combining GCs with 2-agonists in the regulation of hyaluronan metabolism 478 

(Papakonstantinou, et al., 2012), and suppression of various inflammatory genes such as CCL5 479 

(A. J. Ammit, et al., 2002), CXCL8 (Pang & Knox, 2000), or CCL11 (L. Pang & A. J. Knox, 2001). 480 

Interestingly, expression of other genes such as MCP-1 (Patel, et al., 2012) or IL-16 (A. J. Ammit, 481 

et al., 2002) were not affected by drug combination. Features of ASM remodeling are also 482 

synergistically repressed by GCs/2-agonists combination (Dekkers, et al., 2012; Roth, et al., 483 

2002). Combination therapy has also been reported to prevent some of the deleterious effects of 484 

2-agonist monotherapy such as the increased expression of M3 muscarinic receptor/signaling 485 

(Y. H. Liu, Wu, Wang, Huang, & Liu, 2015), or receptor desensitization and hyper-responsiveness 486 

(Nino, Hu, Grunstein, & Grunstein, 2010). The mechanisms underlying the superior therapeutic 487 

effect of GCs/2-agonists combination in ASM cells has been attributed to epigenetic changes at 488 

target gene promoters (Nie, Knox, & Pang, 2005), increased and/or restoration of GC-dependent 489 

transactivation (M. Kaur, et al., 2008; Rider, King, Holden, Giembycz, & Newton, 2011) including 490 

MKP-1 (Manetsch, et al., 2013) or A20 (Altonsy, Mostafa, Gerber, & Newton, 2017), decreased 491 

cellular uptake of 2-agonists via GC-induced inhibition of the organic cation transporter (OCT3) 492 

(Horvath, et al., 2007). Inhibition of NF-B using selective IKK inhibitors has also been proposed 493 

as an alternative strategy to inhibit GC sensitive and insensitive genes in ASM cells (Catley, et 494 

al., 2006). Targeting the transcription factor IRF-1 or the protein phosphatase PP5 could also 495 

represent novel therapeutic option in ASM cells to suppress GC insensitive features (Latifa 496 

Chachi, et al., 2015). 497 

 498 

6. Conclusion and Future Perspectives. 499 

Overall, a better understanding of potentially deleterious effects of GCs may provide novel 500 

insights into the design of GCs with more specific anti-inflammatory actions capable of treating 501 

patients with severe asthma without engendering any unwanted effects.  502 
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Figure Legends 513 

Figure 1. Schematic representation of the effects of GCs on ASM proliferation and airway 514 

inflammation.  Under normal conditions, GCs exhibit powerful anti-proliferative and anti-515 

inflammatory action in the lungs. However, under certain conditions, such as the presence of pro-516 

inflammatory cytokines, growth factors, or ECM proteins, treatment with GCs may activate a 517 

range of mechanisms, leading to paradoxical pro-mitogenic and pro-inflammatory responses. 518 

Abbreviations: ASM, airway smooth muscle; CCL20, C-C Motif Chemokine Ligand 20; COX2, 519 

cyclooxygenase-2; CX3CL1, C-X3-C Motif Chemokine Ligand 1; ECM, extra-cellular matrix; EGF, 520 

Epidermal growth factor; GCs, Glucocorticoids; G-CSF, Granulocyte-colony stimulating factor; IL-521 

1β, Interleukin 1 beta; IFN, Interferon gamma; PGE2, Prostaglandin E2; PKA, protein kinase A; 522 

TLR, Toll-like receptors; TNF, Tumor necrosis factor alpha. Figure was created with images 523 

adapted from Servier Medical Art (smart.servier.com/).  524 

 525 

 526 

  527 
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Table 1. Mechanisms mediating the unanticipated effects of GC on asthma features 528 

 529 

  530 

GC Conditions 
Paradoxical 

effect 
Proposed mechanism References 

 Fluticasone 

propionate 

IL-1 and TNF  

plus EGF 
ASM proliferation 

Inhibition of COX2/PGE
2
/PKA 

pathways 
 Misior, 2008 

IL-1 plus EGF 
ASM proliferation 

(potential) 

Pro-mitogenic effect  

PKA inhibition 

Misior, 2008 

Misior,2009 

IL-1 plus EGF ASM proliferation 
Modulation of cell-ECM 

dynamics 
Misior, 2009 

  

Dexamethasone 

  

  

  

 Collagen-rich 

environment 
ASM proliferation 

Failure to reduce cyclin D1 

levels 

Bonacci, 2003 

Bonacci, 2006  

TNF and IFN- 

Increase of pro-

inflammatory 

mediators  

  

Potentiation of CX3CL1 

secretion by ASM 
 Sukkar, 2004  

TNF and IFN- Pro-inflammatory  Increase of TLR2 in ASM  Sukkar, 2006  

TNF and IFN- Pro-inflammatory 

Negative regulator of 

functional TLR2 expression in 

airway epithelial cells 

Winder, 2009 

  

Dexamethasone 

  

Budesonide 

 Neutrophil activity 

and survival 

Increase of anti-apoptotic 

protein Mcl-1L 

Increase of G-CSF levels 

Increase of CCL20 

Sivertson, 2007 

Banuelos, 2017 

Faiz, 2018   

 Budesonide 

TNF 

Increase of CCL20 

levels in airway 

epithelium  

GR dependent mechanisms  Zijlstra, 2014 

TLR ligands Pro-inflammatory 
Enhanced expression of TLR2 

in alveolar macrophages   
 Ji, 2016 

Corticosterone  MAPK pathway 

activation  

Activation of putative 

membrane GR in epithelial 

cells 

 Li, 2001; Qiu, 

2001 
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