ELECTRONIC SUPPLEMENTARY INFORMATION

Identification of New Oxospiro Chromane Quinoline-Carboxylate Antimalarials that Arrest Parasite Growth at Ring Stage

Ehtesham Jameel^{a,†}, Hari Madhav^{a,†}, Prakhar Agrawal^b, Md. Kausar Raza^c, Saiema Ahmedi^d, Abdur Rahman^a, Nida Shahid^e, Kashfa Shaheen^a, Chhaya Haresh Gajra^b, Ashma Khan^f, Md. Zubbair Malik^g, Md Ali Imam^h, Md. Kalamuddin^d, Jitendra Kumarⁱ, Dinesh Gupta^b, Shahid M. Nayeem^f, Nikhat Manzoor^c, Asif Mohammad^b, Pawan Malhotra^{b,*} and Nasimul Hoda^{a,*}

^aDrug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India-110025

^bInternational Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India-110067

^cDepartment of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125-7200

^dMedical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India-110025

^eDepartment of Chemistry, Jamia Millia Islamia, New Delhi-110025

^fDepartment of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India-202002

^gSchool of Computational Biology, Jawaharlal Nehru University, JNU Campus Road, New Delhi, India-110067

^hCentre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India-110025

ⁱDepartment of Chemistry, Sardar Vallabhbhai Patel College, Bhabua, Kaimur- 821101, V. K. S. U., Ara, Bihar, India-802301

[†]Joint First Authors (These authors contributed equally to the article).

*Corresponding Authors

Dr. Nasimul Hoda

Professor, Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India -110025. Email: nhoda@jmi.ac.in

Dr. Pawan Malhotra

Group Leader, Malaria Biology International Centre for Genetic Engineering and Biotechnology, New Delhi, India - 110067. Email: pawanmal@gmail.com; pawanm@icgeb.res.in

Figure S1: Sequence alignment of *Pv*NMT and *Pf*NMT. Adopted with permission from Supplementary Information of Yu, *et al.* [J. Med. Chem. 2012, 55, 20, 8879–8890]. Copyright 2012 American Chemical Society.

	select all 34 sequences selected GenPept Gr	aphics Distan	ce tree	of res	ults	Multiple alignment			MSA Viewer	
	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession	
	Plasmodium vivax N-myristoyItransferase in complex with a pyrazole sulphonamide inhibitor [Plasmodium vivax]	Plasmodium vivax	671	671	93%	0.0	80.52%	385	2YND_A	
~	Crystal structure of glycylpeptide N-tetradecanoyltransferase from Plasmodium vivax in complex with inhibitor IMP	Plasmodium vivax	671	671	93%	0.0	80.47%	405	<u>5V0W_A</u>	
~	Plasmodium vivax N-myristoyltransferase with a non-hydrolysable co- factor [Plasmodium vivax]	Plasmodium vivax	670	670	93%	0.0	80.26%	385	<u>4B10_A</u>	
~	Chain AAA. Glycylpeptide N-tetradecanoyltransferase [Plasmodium vivax]	Plasmodium vivax	670	670	93%	0.0	80.26%	388	6TW5_AAA	
~	Plasmodium vivax N-myristoyltransferase in complex with YnC12-CoA thioester [Plasmodium vivax]	Plasmodium vivax	670	670	93%	0.0	80.47%	384	2YNC_A	
~	Plasmodium vivax N-myristoyltransferase in complex with YnC12-CoA thioester [Plasmodium vivax]	Plasmodium vivax	668	668	93%	0.0	80.21%	384	2YNC_C	
<	Crystal structure of N-myristoyl transferase (NMT) G386E mutant from Plasmodium vivax [Plasmodium vivax]	Plasmodium vivax	667	667	93%	0.0	80.21%	405	6MAY_A	
~	HsNMT1 in complex with CoA and Myristoylated-GKSNSKLK octapeptide [Homo sapiens]	<u>Homo sapiens</u>	422	422	95%	5e-146	50.64%	402	509S_A	ſ
∽	Structure of Human NMT1 with products CoA and myristoyl-lysine peptide with acetylated N-terminus [Homo sapiens]	Homo sapiens	421	421	93%	7e-146	51.55%	388	6PAV_A	
~	Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and IMP-1088 inhibitor bound [Homo sapiens]	<u>Homo sapiens</u>	421	421	95%	7e-146	50.77%	391	5MU6_A	
~	Human N-myristoyltransferase isoform 2 (NMT2) [Homo sapiens]	<u>Homo sapiens</u>	421	421	94%	8e-146	51.16%	410	<u>4C2X_A</u>	
<	Human N-myristoyltransferase (NMT1) with Myristoyl-CoA co-factor [Homo sapiens]	<u>Homo sapiens</u>	421	421	95%	1e-145	50.77%	410	<u>4C2Y_A</u>	
<	Structure of Human NMT2 with myristoyl-lysine peptide and CoA products [Homo sapiens]	Homo sapiens	419	419	93%	1e-145	51.44%	383	6PAU_A	
∽	Crystal Structure of human type-I N-myristoyltransferase with bound myristoyl-CoA [Homo sapiens]	<u>Homo sapiens</u>	419	419	93%	2e-145	51.70%	383	<u>3IU1_A</u>	
~	Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and inhibitor bound [Homo sapiens]	<u>Homo sapiens</u>	419	419	93%	2e-145	51.70%	382	<u>6FZ5_A</u>	
✓	DeltaC2 C-terminal truncation of HsNMT1 in complex with MyrCoA and GNCFSKPR substrates [Homo sapiens]	<u>Homo sapiens</u>	420	420	95%	2e-145	50.51%	400	6SKJ_A	
≤	Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and inhibitor bound [Homo sapiens]	<u>Homo sapiens</u>	419	419	93%	4e-145	51.70%	403	<u>6FZ2_A</u>	
≤	Crystal structure of human myristoyl-CoA:protein N-myristoyltransferase [Homo sapiens]	<u>Homo sapiens</u>	423	423	95%	4e-145	50.89%	496	<u>1RXT_A</u>	
~	Mutant of Human N-myristoyltransferase with bound myristoyl-CoA [Homo sapiens]	<u>Homo sapiens</u>	419	419	95%	7e-145	50.13%	410	<u>6F56_A</u>	
~	C-terminal HsNMT1 deltaC3 truncation in complex with both MyrCoA and GNCFSKPR substrates [Homo sapiens]	<u>Homo sapiens</u>	418	418	95%	1e-144	50.38%	399	<u>65K3_A</u>	
~	Leismania major N-myristoyltransferase in complex with a peptidomimetic (-NH2) molecule [Leishmania major]	<u>Leishmania major</u>	342	342	93%	1e-114	40.00%	411	<u>4C7H_A</u>	
~	Structure of N-myristoyltransferase from L. donovani [Leishmania donovani]	Leishmania dono	342	342	93%	2e-114	40.00%	421	<u>2WUU_A</u>	

Figure S2: Blast result against PDB database for Q8ILW6, NMT_PLAF7 Glycylpeptide N-tetradecanoyltransferase of *Plasmodium falciparum*.

Perce	ent	Ident	tity	Matri	x - cr	eated b	y Clusta	l2.1				
1:	tr	A0A03	J9SLR4	4 A0A0	J9SLR4	PLAVI	100.00	100.00	100.00	100.00	100.00	100.00
2:	tr	A0A0.	39TQB 4	I A0A0	J9TQB4	PLAVI	100.00	100.00	100.00	100.00	100.00	100.00
3:	tr	A0A03	J9S6C3	3 A0A0	J9S6C3	PLAVI	100.00	100.00	100.00	100.00	100.00	100.00
4:	tr	A0A0.	J9T6X6	5 A0A0	J9T6X6	PLAVI	100.00	100.00	100.00	100.00	100.00	100.00
5:	tr	A0A10	G4HIY1	A0A1	G4HIY1	PLAVI	100.00	100.00	100.00	100.00	100.00	100.00
6:	tr	A5K1/	42 A5K	IA2 P	LAVS	_	100.00	100.00	100.00	100.00	100.00	100.00

Figure S3: Multiple Alignment Sequence using Clustal Omega (other amino acid sequence of *Pv*NMT from the organism *Plasmodium vivax* Brazil I, *Plasmodium vivax* North Korean, *Plasmodium vivax* India VII, *Plasmodium vivax* Mauritania I, *Plasmodium vivax* (malaria parasite *P. Vivax*) and *Plasmodium vivax* (strain Salvador I) respectively) showing 100% identity.

Figure S4: RMSD between 4BBH (*Plasmodium vivax*) and Robbeta Model-1. RMSD between 344 pruned atom pairs is 0.995 angstroms; (across all 384 pairs: 1.304). Blue: Robetta Model-1 and Grey: 4BBH Chain A.

Figure S5: Ramachandran Plot for Robetta Model 1.

Figure S6: Validation for drugability of obtained protein model of *Pf*NMT was done using CASTp server and CavityPlus.

PocketID	Area (SA)Å ²	Volume (SA)Å ³
1	1745.643	1091.244
2	55.026	33.704
3	104.186	28.978
4	27.757	20.361
5	36.067	15.956

Table S1: CASTp Top five pockets are as:	
--	--

No.	Pred. Max pKd	. Max pKd Pred. Avg pKd		Drugability		
1	11.72	6.84	3851.00	Strong		
2	11.93	6.71	2812.00	Strong		
3	10.93	6.36	465.00	Medium		
4	10.67	6.27	809.00	Strong		
5	8.34	5.48	-872.00	Weak		

Table S2: CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on drugability scores:

Table S3: CavPharm to predict pharmacophore class of Cavity1:

Pharmacophore class of Cavity1	X	у	Z	Radius(Å)
Positive electrostatic center (POK 4.H)	13.00	10.00	-19.00	2.00
Positive electrostatic center (POK 4.H)	17.50	16.00	-17.00	2.00
H-bond donor center (POK 2.N)	19.50	18.00	-28.00	1.00
H-bond root (POK 3.F)	17.14	17.05	-27.32	1.50
H-bond donor center (POK 2.N)	16.00	7.00	-17.00	1.00
H-bond root (POK 3.F)	16.25	8.19	-19.13	1.50
H-bond acceptor center (POK 2.0)	18.00	25.50	-25.00	1.00
H-bond root (POK 3.F)	18.93	23.26	-26.25	1.50
H-bond donor center (POK 2.N)	12.50	11.00	-19.00	1.00
H-bond root (POK 3.F)	12.70	13.01	-16.92	1.50
H-bond acceptor center (POK 2.0)	20.50	20.50	-25.00	1.00
H-bond root (POK 3.F)	20.75	22.75	-24.98	1.50
H-bond donor center (POK 2.N)	10.00	7.50	-12.50	1.00
H-bond root (POK 3.F)	8.69	9.76	-12.40	1.50
H-bond acceptor center (POK 2.0)	17.00	19.50	-12.00	1.00
H-bond root (POK 3.F)	15.25	20.96	-10.51	1.50
H-bond acceptor center (POK 2.0)	9.00	7.50	-15.00	1.00
H-bond root (POK 3.F)	6.62	9.01	-14.71	1.50
H-bond acceptor center (POK 2.0)	18.50	18.50	-29.50	1.00

Pharmacophore class of Cavity1	X	у	Z	Radius(Å)
H-bond root (POK 3.F)	16.89	17.11	-30.05	1.50
H-bond acceptor center (POK 2.0)	22.50	16.00	-26.50	1.00
H-bond root (POK 3.F)	23.93	17.65	-28.28	1.50
Hydrophobic center (POK 2.C)	17.50	24.50	-20.00	1.50
Hydrophobic center (POK 2.C)	24.00	25.00	-20.50	1.50
Hydrophobic center (POK 2.C)	20.00	19.50	-19.50	1.50
Hydrophobic center (POK 2.C)	9.50	23.00	-19.50	1.50
Hydrophobic center (POK 2.C)	2.50	22.00	-16.50	1.50
Hydrophobic center (POK 2.C)	20.50	28.50	-19.50	1.50
Hydrophobic center (POK 2.C)	7.50	16.00	-18.50	1.50
H-bond acceptor center (POK 2.O)	20.00	16.50	-22.00	1.00
H-bond root (POK 3.F)	19.87	15.10	-23.63	1.50
H-bond acceptor center (POK 2.0)	12.00	27.00	-21.50	1.00
H-bond root (POK 3.F)	10.13	25.75	-22.35	1.50
H-bond acceptor center (POK 2.O)	5.50	15.00	-20.50	1.00
H-bond root (POK 3.F)	3.43	14.43	-19.82	1.50
H-bond donor center (POK 2.N)	16.00	26.00	-24.50	1.00
H-bond root (POK 3.F)	14.36	28.27	-24.66	1.50
H-bond donor center (POK 2.N)	17.00	28.00	-20.00	1.00
H-bond root (POK 3.F)	14.91	29.21	-19.70	1.50
H-bond donor center (POK 2.N)	9.50	25.50	-19.50	1.00
H-bond root (POK 3.F)	10.13	25.75	-22.35	1.50
H-bond donor center (POK 2.N)	5.00	23.00	-19.50	1.00
H-bond root (POK 3.F)	2.22	22.07	-20.06	1.50
H-bond donor center (POK 2.N)	17.00	18.50	-19.50	1.00
H-bond root (POK 3.F)	15.43	17.59	-20.77	1.50
H-bond acceptor center (POK 2.0)	5.00	22.00	-19.00	1.00
H-bond root (POK 3.F)	6.57	21.66	-16.76	1.50
H-bond acceptor center (POK 2.0)	17.00	29.00	-19.50	1.00
H-bond root (POK 3.F)	14.91	29.21	-19.70	1.50
H-bond donor center (POK 2.N)	16.00	18.50	-14.50	1.00
H-bond root (POK 3.F)	15.73	20.75	-15.46	1.50
Negative electrostatic center (POK 4.S)	17.50	26.50	-25.50	2.00

Pharmacophore class of Cavity1	X	У	Z	Radius(Å)
Negative electrostatic center (POK 4.S)	18.00	22.00	-23.00	2.00
Negative electrostatic center (POK 4.S)	21.00	16.50	-29.50	2.00
Negative electrostatic center (POK 4.S)	17.50	20.00	-13.00	2.00

The residues in pocket 1:

PHE:8:A, VAL:9:A, ASP:12:A, LEU:13:A, LEU:16:A, ILE:17:A, ARG:18:A, ASN:19:A, ALA:20:A, LYS:21:A, ASP:22:A, LYS:23:A, ILE:24:A, LYS:25:A, ILE:26:A, ASP:27:A, TYR:28:A, LYS:29:A, PHE:30:A, TRP:31:A, THR:92:A, ASP:93:A, ASN:94:A, TYR:95:A, VAL:96:A, GLU:97:A, ASP:98:A, ASP:99:A, ASP:100:A, ASN:101:A, VAL:102:A, PHE:103:A, ARG:104:A, PHE:105:A, ASN:106:A, TYR:107:A, PHE:111:A, LEU:112:A, ALA:115:A, VAL:160:A, ASN:161:A, PHE:162:A, LEU:163:A, CYS:164:A, VAL:165:A, HIS:166:A, LYS:167:A, SER:168:A, LEU:169:A, ARG:170:A, SER:171:A, LYS:172:A, ARG:173:A, LEU:174:A, ALA:175:A, PRO:176:A, LEU:178:A, ILE:179:A, TYR:196:A, THR:197:A, ALA:198:A, GLY:199:A, VAL:200:A, TYR:201:A, LEU:202:A, PRO:203:A, TYR:211:A, PHE:212:A, HIS:213:A, ILE:224:A, GLY:225:A, PHE:226:A, SER:227:A, CYS:228:A, TYR:242:A, TYR:315:A, LEU:317:A, PRO:318:A, SER:319:A, LYS:320:A, LEU:322:A, LEU:330:A, ASN:331:A, ALA:332:A, PHE:334:A, SER:335:A, PHE:336:A, VAL:363:A, PHE:364:A, ASN:365:A, ALA:366:A, LEU:367:A, GLU:368:A, PHE:381:A, GLY:382:A, GLU:383:A, GLY:384:A, ASP:385:A, GLY:386:A, SER:387:A, LEU:388:A, LYS:389:A, TYR:390:A, TYR:393:A, VAL:408:A, LEU:409:A, LEU:410:A

Figure S7: 2D interactions of compound 9a with *Pv*NMT.

Figure S8: 2D interactions of compound 9b with *Pv*NMT.

Figure S9: 2D interactions of compound 9a with *Pf*NMT model protein.

Figure S10: 2D interactions of compound 9b with *Pf*NMT model protein.

Figure S11: Molecular structure of crystal bound inhibitor, E of *Pv*NMT (PDB: 4BBH).

Figure S12: Superimposed docked images of the experimental ligands (green); (a) **9a**, (b) **9b**, (c) **9n**, and (d) **9o** with control inhibitor **E** (magenta) in *Pv*NMT.

Figure S13: Correlation curve for validation of docking study. The variables in the equation of straight line defined as y = docking score; $x = \text{predicted IC}_{50}$ value.

Figure S15: ¹H NMR of **9b** in d₆-DMSO.

Figure S16: ¹H NMR of 9c in CDCl₃.

Figure S18: ¹H NMR of 9e in d₆-DMSO.

Figure S19: ¹H NMR of 9f in CDCl₃.

Figure S20: ¹H NMR of 9g in CDCl₃.

Figure S21: ¹H NMR of 9h in CDCl₃.

Figure S22: ¹H NMR of 9i in CDCl₃.

Figure S23: ¹H NMR of 9j in CDCl₃.

Figure S24: ¹H NMR of 9k in CDCl₃.

Figure S25: ¹H NMR of 9l in CDCl₃.

Figure S26: ¹H NMR of 9m in CDCl₃.

Figure S27: ¹H NMR of 9n in CDCl₃.

Figure S28: ¹H NMR of 90 in CDCl₃.

Figure S30: ¹H NMR of 10b in d₆-DMSO.

Figure S32: 13 C NMR of **9b** in d₆-DMSO.

Figure S38: ¹³C NMR of 9h in CDCl₃.

Figure S40: ¹³C NMR of 9j in CDCl₃.

Figure S42: ¹³C NMR of 9l in CDCl₃.

Figure S44: ¹³C NMR of 9n in CDCl₃.

Figure S47: ¹³C NMR of 10b in d₆-DMSO.

Figure S48: HRMS of 9a showing molecular ion peak at 380.1254 (m/z) which corresponds to $[M+Na]^+$.

Figure S49: HRMS of 9b showing molecular ion peak at 396.1207 (m/z) which corresponds to $[M+Na]^+$.

Figure S50: HRMS of 9c showing molecular ion peak at 381.1213 (m/z) which corresponds to $[M+Na]^+$.

Figure S51: HRMS of 9d showing molecular ion peak at 397.1161 (m/z) which corresponds to $[M+Na]^+$.

Figure S52: HRMS of 9e showing molecular ion peak at 384.1009 (m/z) which corresponds to $[M+Na]^+$.

Figure S53: HRMS of **9f** showing molecular ion peak at 406.1487 (m/z) which corresponds to $[M+H]^+$.

Figure S54: HRMS of **9g** showing molecular ion peak at 315.1709 (m/z) which corresponds to $[M+H]^+$.

Figure S55: HRMS of **9h** showing molecular ion peak at 431.1969 (m/z) which corresponds to $[M+H]^+$.

Figure S56: HRMS of **9i** showing molecular ion peak at 422.1437 (m/z) which corresponds to $[M+H]^+$.

Figure S57: HRMS of 9j showing molecular ion peak at 331.1653 (m/z) which corresponds to $[M+H]^+$.

Figure S58: HRMS of 9k showing molecular ion peak at 447.1917 (m/z) which corresponds to $[M+H]^+$.

Figure S59: HRMS of 91 showing molecular ion peak at 422.1435 (m/z) which corresponds to $[M+H]^+$.

Figure S60: HRMS of **9m** showing molecular ion peak at 374.1390 (m/z) which corresponds to $[M+H]^+$.

Figure S61: HRMS of 9n showing molecular ion peak at 331.1658 (m/z) which corresponds to $[M+H]^+$.

Figure S62: HRMS of **90** showing molecular ion peak at 447.1916 (m/z) which corresponds to $[M+H]^+$.

Figure S63: HRMS of 10a showing molecular ion peak at 330.1128 (m/z) which corresponds to $[M+H]^+$.

Figure S64: HRMS of **10b** showing molecular ion peak at 346.1078 (m/z) which corresponds to $[M+H]^+$.

Figure S65: Unit cell packing diagram (a) and showing short contact bonding (b) of ethyl 6methyl-4-(naphthalen-2-yloxy)quinoline-3-carboxylate (9a). Color code: N, blue; C, black; O, red; H, white.

Figure S66: Unit cell packing diagram (a) and showing short contact bonding (b) of ethyl 6methoxy-4-(naphthalen-2-yloxy)quinoline-3-carboxylate (9b). Color code: N, blue; C, black; O, red; H, white.

Figure S67: Unit cell packing diagram (a), showing short contact bonding (b) and hydrogen bonding (c) of ethyl 6-methyl-4-(quinolin-8-yloxy)quinoline-3-carboxylate (9c). Color code: N, blue; C, black; O, red; H, white.

Figure S68: Unit cell packing diagram (a) and showing short contact bonding (b) of ethyl 6-methoxy-4-(quinolin-8-yloxy)quinoline-3-carboxylate (9d). Color code: N, blue; C, black; O, red; H, white.

Figure S69: Hemolysis caused by CQ and test compounds. Hemolysis was determined by recording absorption at 450 nm and comparing to hemolysis achieved with 1% Triton X-100 (reference for 100% hemolysis). This data is a mean of triplicate experiments. The student's t-test was used to verify statistical significance (p < 0.05).

S.No.	System	No. of Na ions	No. of water molecules	Cubic Box size Length (nm)	Total simulation time (ns)	Number of core used for simulation
1.	4BBH	2	43831	11.24	100	32
2.	4BBH_9a	2	43832	11.24	100	64
3.	4BBH_E	1	43831	11.24	100	64

Table S4: Molecular Dynamics Simulation Details

Hardware Configuration:

Processor: Intel Skylake (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz), 32 Cores per node **RAM:** 96GB

Graphics: MGA-G200 graphics chi

Operating System: CentOS Linux release 7.9.2009 (Core)