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1 Introduction

The stochastic dominance (SD) via the expected utility theory has been
proved a powerful tool for ranking the distributions ([15], [30]) and it is usually
employed in various risky prospect selection problem ([1], [20], [9], [36]). Frac-
tional degree stochastic dominance ((1 + γ)-SD) rules have been developed in
[25] to reveal a preference of the investor whose utility function is not concave
everywhere by defining a new class of differential utility function as:

Uγ = {u : 0 ≤ γu′(y) ≤ u′(x), for all x, y ∈ <, x ≤ y} γ ∈ [0, 1] (1)

The (1 + γ)-SD rules play an important role in several fields, particularly in
economic and financial researches, and effectively provide economic interpre-
tations to some sensible risk preferences pioneered by [12] and [7].

However, many recent literatures provide some nontrivial empirical obser-
vations on decision behaviours which are inconsistent at all with the classi-
cal expected utility theory framework. For example, [27] present the famous
Allais-type anomalies, [18] introduce the endowment effect for risk, and the
risk comparison does not satisfy translational invariance and scaling invariance
in some cases. Thus, the fractional degree stochastic dominance rule based on
expected utility theory does not have the abilities to resolve Allais-type anoma-
lies, to capture the violation of translational invariance and scaling invariance,
and to accommodate the endowment effect for risk. This makes it meaningful
to furthermore develop the fractional degree stochastic dominance rule such
that it possesses these appealing properties.

Reference dependency theory has been introduced in [34]. It can explain
why many risk attitudes are inconsistent with the classical expected utility
theory with some different specifications of the reference point, including the
status quo, lagged status quo, and the mean of the chosen risk. The reference
dependent utility theory has been developed in [18]. For a wealth level x and a
fixed reference point r, the utility function v(x; r, u) in their theory is separated
into two terms

v(x; r, u) = u(x) + µ (u(x)− u(r)) (2)

where the term u(x) is intrinsic “consumption utility” usually assumed relevant
in economics, and the term µ (u(x)− u(r)) is the reference-dependent gain-loss
utility. This separation and interdependence of economic refer to assumptions
made previously by [2], [33], [18]. It has been widely used in modeling agents
preferences with reference points.

We develop a fractional degree reference dependent stochastic dominance
rule based on the model (2) in this paper. Reference dependent stochastic
dominance is not a new notion. Integer degree reference dependent stochastic
dominance rules has been proposed in [13] under the assumption that the
reference-dependent gain-loss utility µ(·) in model (2) satisfies

µ(x) =

{
ηx, x > 0,
ηλx, x ≤ 0.

(3)
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Fraction-degree reference dependent stochastic dominance 3

where η > 0 is the relative weight of gain-loss utility, and λ > 1 measures the
magnitude of loss aversion. With reference point r, the preference of investor
whose consumption utility is increasing is given by the first degree reference
dependent stochastic dominance (denoted by FSDr), and the increasing con-
cave consumption utility is given by the second degree reference dependent
stochastic dominance (denoted by SSDr). The fractional degree reference de-
pendent stochastic dominance corresponds to the consumption utility in Uγ .
It can help risk-averse but not absolute risk-averse decision makers to com-
pare risks relative to reference points. This paper focused on relating this new
stochastic dominance rule to some simple and tractable equivalent conditions
and discussing some practical applications of the rule in the economic and
financial fields.

This paper is organized as follows. In section 2, we introduce the basic
definition of fractional degree reference-dependent stochastic dominance and
devote to find out its equivalent integral conditions. In section 3, we explore
the relationships between the fractional degree reference dependent stochastic
dominance and the fractional degree stochastic dominance, and analyze the ef-
fects of reference point on risk choice. In section 5 and section 6, the fractional
degree stochastic dominance rule is extended to stochastic reference points.
Two applications to financial field are illustrated. Throughout paper, we as-
sume that all distributions have a finite mean and that all expected utilities
are finite.

2 Definition and basic properties

2.1 The definitions

We begin with the concept of fractional degree reference dependent stochas-
tic dominance rules. For a risky asset X and utility function v (x; r, u) with
the expression (2), define the expected reference-dependent utility function as

E [v (X; r, u)] = E
[
u(X)

]
+ E

[
µ
(
u(X)− u(r)

)]
(4)

In this paper, we assume that the reference-dependent gain-loss utility µ(·)
satisfies

µ(x) =

{
ηx, x > 0,
ηλx, x ≤ 0.

and assume that η∗ ≥ 0 and λ∗ ≥ 1 are pre-specified lower bounds for the
parameters η and λ, respectively.

Definition 1 Let X and Y be two random variables. The reference point r is
given. Then X is stochastically dominated by Y relative to r in (1 + γ) order,

denoted by X ≤r,η
∗,λ∗

(1+γ)-SD Y , if for all consumption utility u ∈ Uγ , η ≥ η∗,

λ ≥ λ∗,
E [v (X; r, u)] ≤ E [v (Y ; r, u)] (5)
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4 Yang et al

Similar as Definition 2 in [13], we impose a specific condition that r should
be given in Definition 1, which can limit the generality of the stochastic dom-
inance in the sense that the ranking results are no longer consistent with
different reference points, see the following Proposition 2. But it is rational
from the practical viewpoint because the reference point is generally a bench-
mark or a target followed by individual. When the reference point tends to
infinity, the (1 + γ)-SDr rules are reduced to (1 + γ)-SD rules.

However, (1 + γ)-SDr can not be defined for any γ > 1. Because Uγ is
empty except it contains zero function in this case. But we can define the
high-order fractional reference dependent stochastic dominance, denoted by
(n+γ)-SDr, by using the consumption utility function class introduced in [4].
In this paper, we focus on the development of (1 + γ)-SDr.

In Definition 1, γ provides a bound on how much marginal utility can
decrease as x decreases. It is obvious that

U0 = {u : u′(x) ≥ 0 for all x ∈ <}

and
U1 = {u : 0 ≤ u′(y) ≤ u′(x), for all x, y ∈ <, x ≤ y}.

Thus, 1-SDr is equivalent to FSDr, while 2-SDr is equivalent to SSDr. The
(1 + γ)-SDr establishes an interpolating between FSDr and SSDr. It is also

clear that for any 0 ≤ γ1 ≤ γ2 ≤ 1 and given reference point r, X ≤r,λ
∗,η∗

(1+γ1)-SD Y

implies X ≤r,λ
∗,η∗

(1+γ2)-SD Y because Uγ1 ⊆ Uγ2 .

The differentiability condition in Definition 1 is not critical as Definition
2.3 in [25], we can replace it by U∗γ defined as

U∗γ =

{
u : 0 ≤ γ u(x4)− u(x3)

x4 − x3
≤ u(x2)− u(x1)

x2 − x1
,∀x1 ≤ x2 ≤ x3 ≤ x4

}
(6)

[5] has considered U∗γ in term of the generalization of expected utility model.
They defined a index of greediness of utility function u(·) as

gu = sup
x1<x2<x3<x4

{
u(x4)− u(x3)

x4 − x3

/u(x2)− u(x1)

x2 − x1

}
(7)

U∗γ and Uγ are both the class of utility function with gu ≤ 1
γ .

2.2 Basic properties

We provide an equivalent integral condition for (1+γ)-SDr in the following.
Define a function

fη∗,λ∗(x; r) =

{
1+η∗λ∗

1+η∗ , if x ≤ r
1, if x > r.

(8)

Theorem 1 Let X and Y be two random variables with cumulative distribu-
tion functions (cdfs) F (x) and G(x), respectively. The following three condi-
tions are equivalent:
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Fraction-degree reference dependent stochastic dominance 5

[1]. X ≤r,η
∗,λ∗

(1+γ)-SD Y ;

[2]. E[v(X; r, u)] ≤ E[v(Y ; r, u)] for all functions u ∈ Uγ∗, η ≥ η∗, λ ≥ λ∗;
[3]. For all t ∈ R,∫ t

−∞

[
(G(x)− F (x))+ − γ (F (x)−G(x))+

]
fη∗,λ∗(x, r)dx ≤ 0 (9)

where (x)+ = max{x, 0}.

Theorem 1 offers a precise characterization of (1 + γ)-SDr. From Theorem
1, we can know that the fractional degree reference dependent stochastic dom-
inance rules has no translational invariance and scaling invariance, and can
obtain the following immediate consequences:

(1). Assume that lX and lY are the left support points of X and Y , respectively.

If X ≤r,η
∗,λ∗

(1+γ)-SD Y , then lX ≤ lY .

(2). Let Gi be the cdfs of random variables Yi, i = 1, 2. For α ∈ (0, 1), let

αG1 + (1 − α)G2 be the cdf of random variable Z. If Yi ≤r,η
∗,λ∗

(1+γ)-SD X,

i = 1, 2, then Z ≤r,η
∗,λ∗

(1+γ)-SD X.

(3). Let Yi, i = 1, 2, . . . be a random variable sequence. Assume that Yi→dY as

i→∞. If X ≤r,η
∗,λ∗

(1+γ)−SD Yi, i = 1, 2, . . ., then X ≤r,η
∗,λ∗

(1+γ)−SD Y .

The integral condition of Theorem 1 can be simple when F is a simple
spread of G. First, we recall the concept of simple spreads. Let X and Y be
two random variables with cdfs F (x) and G(x), respectively. X is called a
simple spread of Y if there exists a single crossing x0 ∈ < such that

F (x) ≥ G(x) on (−∞, x0] and F (x) ≤ G(x) on (x0,∞).

Corollary 1 Suppose F is a simple spread of G at x0. Given reference point
r, η∗ > 0, λ∗ > 1, denote

A =

∫ x0

−∞
(F (x)−G(x)) fη∗,λ∗(x, r)dx (10)

and

B =

∫ ∞
x0

(G(x)− F (x)) fη∗,λ∗(x, r)dx. (11)

Then, F ≤r,η
∗,λ∗

(1+γ)−SD G if and only if

γ ≥ B

A
.

Proof Define the function:

φη
∗,λ∗

γ,r (x) =

∫ x

−∞

[
γ (F (t)−G(t))+ − (G(t)− F (t))+

]
fη∗,λ∗(t, r)dt.
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6 Yang et al

If F and G satisfy the single spread condition with A and B defined in formulas
(10) and (11), the function φη

∗,λ∗

γ,r (x) is increasing in (−∞, x0) and decreasing
in (x0,∞) with

lim
x→−∞

φη
∗,λ∗

γ,r (x) = 0 and lim
x→∞

φη
∗,λ∗

γ,r (x) = γA−B.

Therefore, φη
∗,λ∗

γ,r (x) is nonnegative if and only if γA−B ≥ 0.

Note that if A = B, then the condition holds for γ = 1 and F ≤r,η
∗,λ∗

2−SD G.
If B = 0, which means F (x) ≥ G(x) everywhere, thus, F ≤1−SD G. When

0 < B < A but F (x) < G(x) for some x, then F ≤r,η
∗,λ∗

(1+γ)−SD G for γ ∈ [BA , 1].

Therefore, when F ≤r,η
∗,λ∗

2−SD G, but F 
1 G, we can always determine the

smallest γ = γ(F,G, r) such that F ≤r,η
∗,λ∗

(1+γ)−SD G. This γ(F,G, r) can be

interpreted as an index of risk aversion that makes it necessary for a decision
maker to prefer G to F relative to reference point r. From corollary 1, in the
case of a single spread of the distribution functions, γ(F,G, r) = B/A.

The following corollary generalizes the single-crossing result to the situation
where F and G cross multiple times. The proof is easy. we omit it in this paper.

Corollary 2 Suppose that there exist n ∈ N and x1 < x2 < . . . < xn with
x0 = −∞ and xn+1 = ∞ such that F (x) ≥ G(x) for xi−1 < x < xi if i is
odd and F (x) ≤ G(x) for xi−1 < x < xi if i is even, i = 1, . . . , n + 1. For
i = 1, . . . , n+ 1, define

Ai =

∫ xi

xi−1

(F (x)−G(x))+ fη∗,λ∗(x, r)dx

and

Bi =

∫ xi

xi−1

(G(x)− F (x))+ fη∗,λ∗(x, r)dx.

Then, F ≤r,η
∗,λ∗

(1+γ)−SD G if and only if, for all j = 0, 1, . . . , n,

γ ≥
∑j+1
i=1 Bi∑j+1
i=1 Ai

.

2.3 Examples

In the following, we provide some examples to illustrate our results.
Example 1 (Binary distribution). LetX and Y be two binary random variables
with probability mass functions given by

P (X = x1) = p = 1− P (X = x2) and P (Y = y1) = q = 1− P (Y = y2),

where x1 < x2 and y1 < y2. Let F and G be two cdfs of X and Y , respectively.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fraction-degree reference dependent stochastic dominance 7

– If x1 < x2 ≤ y1 < y2, then F (x) > G(x) for all x ∈ <. Thus, X ≤1−SD Y .
– If x1 < y1 < x2 < y2, then

G(x)− F (x) =


−p, x1 ≤ x < y1,
q − p, y1 ≤ x < x2,
q − 1, x2 ≤ x < y2,

0, otherwise.

Thus, for given reference point r and γ ∈ [0, 1], X ≤r,λ
∗,η∗

(1+γ)−SD Y if and

only if

γ ≥
(q − p)

∫ x2

y1
fη∗,λ∗(x, r)dx

p
∫ y1
x1
fη∗,λ∗(x, r)dx

.

– If x1 ≤ y1 < y2 ≤ x2, similarly, we have X ≤r,λ
∗,η∗

(1+γ)−SD Y if and only if

γ ≥
(q − p)+

∫ y2
y1
fη∗,λ∗(x, r)dx+ (1− p)

∫ x2

y2
fη∗,λ∗(x, r)dx

p
∫ y1
x1
fη∗,λ∗(x, r)dx+ (p− q)+

∫ y2
y1
fη∗,λ∗(x, r)dx

.

Example 2 (Uniform distribution). Let X and Y be two random variables
uniformly distributed over the intervals (a, b) and (c, d), respectively. Assume

that for any reference point r and γ ∈ [0, 1], X ≤γ,λ
∗,η∗

(1+γ)−SD Y . Based on the

formula (9), we have a ≤ c.

– If a < c and b < d, then X ≤1−SD Y .
– If a < c < d ≤ b, then

G(x)− F (x) =


−x−ab−c , a ≤ x < c,
x−c
d−c −

x−a
b−a , c ≤ x < d,

1− x−a
b−a , d ≤ x < b,

0 otherwise.

Clearly, F singlely crosses G at x0 ∈ (c, d) from the above, where

x0 = c+
(d− c)(c− a)

(b+ c− a− d)
.

Let

A :=

∫ x0

a

(F (x)−G(x)) fη∗,λ∗(x; r)dx,

and

B :=

∫ b

x0

(G(x)− F (x)) fη∗,λ∗(x; r)dx.

From Corollary 1, we have X ≤r,λ
∗,η∗

(1+γ)−SD Y if and only if

γ ≥ B

A
.
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8 Yang et al

Example 3 (Normal distribution). Let X and Y be two normal random vari-
ables with means µ1, µ2 and standard derivations σ1, σ2, respectively. Assume

that, for any reference point r and γ ∈ [0, 1], X ≤r,λ
∗,η∗

(1+γ)−SD Y . The cdfs are

single-crossing at

x0 =
µ2σ1 − µ1σ2
σ1 − σ2

.

Let

A :=

∫ x0

−∞

[
Φ

(
x− µ1

σ1

)
− Φ

(
x− µ2

σ2

)]
fη∗,λ∗(x, r)dx,

and

B :=

∫ ∞
x0

[
Φ

(
x− µ2

σ2

)
− Φ

(
x− µ1

σ1

)]
fη∗,λ∗(x, r)dx.

Thus, X ≤r,λ
∗,η∗

(1+γ)−SD Y if and only if

γ ≥ B

A
.

3 Advanced properties

3.1 Compared with fractional degree stochastic dominance

[25] have provided an equivalent integral condition for (1 + γ)-SD, that is,

X ≤(1+γ)−SD Y

if and only if, for any t ∈ <,∫ x

−∞
γ (F (x)−G(x))+ − (G(x)− F (x))+ dx ≥ 0 (12)

And since fη∗,λ∗(x; r) is positive and decreasing for any fixed reference point
r and λ∗ > 1 and η∗ > 0, The formula (12) implies that∫ x

−∞

[
γ (F (x)−G(x))+ − (G(x)− F (x))+

]
fη∗,λ∗(x; r)dx ≥ 0.

Therefore, X ≤(1+γ)-SD Y implies that X ≤r,η
∗,λ∗

(1+γ)-SD Y . But we can prove the
converse is not true.

First, we recall the definition of a γ -transfer. [25] have proved that a
decision maker’s preferences satisfy (1 + γ)-SD if and only if any γ -transfer
are acceptable.

Definition 2 ([25]) Let X and Y be two discrete random variables with cdfs
F and G, respectively. G is obtained from F via a γ - transfer if there exist
x1 < x2 ≤ x3 < x4 and ζ1, ζ2 ≥ 0 with γζ1(x2 − x1) = ζ2(x4 − x3) such that

G(x)− F (x) =

−ζ1, x1 ≤ x ≤ x2,ζ2, x3 ≤ x ≤ x4,
0, for all other values x.

(13)
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Fraction-degree reference dependent stochastic dominance 9

Proposition 1 Let X and Y be two discrete random variables with cdfs F
and G, respectively. For any γ ∈ [0, 1], if the condition (13) holds , then when
the reference point satisfies x1 < r < x4, we have

[1]. There exists a random variable Z, which satisfies that X ≤1−SD Z and

Z ≤r,η
∗,λ∗

(1+γ)−SD Y but not Z ≤(1+γ)−SD Y .

[2]. There exists a random variable W , which satisfies that W ≤1−SD Y and

X ≤r,η
∗,λ∗

(1+γ)−SD W but not X ≤(1+γ)−SD W .

The Proposition 1 illustrates that (1 + γ)- SD is just a sufficient but not a
necessary condition of (1+γ)-SDr. If we simplify the symbols (1+γ)-SDr and
(1 + γ)-SD as SDr

γ and SDγ , respectively. Then, the above relationship can
be summarized as follows:

X

W

Z

Y

SDr
γ , not SDγ

SD1

SD1

SDr
γ , not SDγ

SDγ

Further, we will give an example to illustrate Proposition 1.

Example 4 Suppose r = 0, Let X = (−10, 0.5; 10, 0.5) and Y ≡ 10α, 0 < α <
1. For γ = 1−α

α+1 , we have X ≤(1+γ)-SD Y . Set

Z = (−10, 0.5; z, 0.5) with z = 10γ

(
α+

1 + η∗λ∗

1 + η∗

)
+ 10α.

We can verify that Z ≤r,η
∗,λ∗

(1+γ)-SD Y but not Z ≤(1+γ)-SD Y . Obviously, z > 10.
Hence X ≤1-SD Z. Set

W = (−10, 0.5− ζ∗1 ; 10α, 0.5 + ζ∗1 ) with ζ∗1 =
0.5(1− α)(1 + η∗)

γ [1 + η∗λ∗ + α(1 + η∗)]
,

we can verify that X ≤r,η
∗,λ∗

(1+γ)-SD W but not X ≤(1+γ)-SD W , and W ≤1-SD Y .

3.2 Influences of reference points

Let us continue with Example 4. Let G(x) and F1(x) be the cdfs of Y and
Z, respectively. Then, we have

γ

∫ 10α

−10
(F1(x)−G(x))+ fη∗,λ∗(x; 0)dx =

∫ z

10α

(G(x)− F (x))+ fη∗,λ∗(x; 0)dx.
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10 Yang et al

Since fη∗,λ∗(x; 0) > fη∗,λ∗(x;−1) on [−1, 0] and fη∗,λ∗(x; 0) = fη∗,λ∗(x;−1)
on otherwise, it holds that

γ

∫ 10α

−10
(F1(x)−G(x))+ fη∗,λ∗(x;−1)dx

<

∫ z

10α

(G(x)− F (x))+ fη∗,λ∗(x;−1)dx.

That is, taking r = −1, Z 
r,η
∗,λ∗

(1+γ)-SD Y . This illustrates that the investor’s

preference is no longer preserved with different reference points. Furthermore,
we confirms that, given two different reference points, we always find out two
risks such that the investors cannot agree with each other on the risk choice
(see the next proposition 2).

Proposition 2 For two fixed reference points r1 and r2 where r1 6= r2, two

risks X and Y exist such that X ≤r1,η
∗,λ∗

(1+γ)−SD Y but X 
r2,η
∗,λ∗

(1+γ)−SD Y .

4 Generating process of (1 + γ) − SDr

In Theorem 1, we use the integral conditions to characterize (1 + γ)-SD
relative to the reference point r. In this section, we use the similar way in [30]
and [25] to characterize the stochastic dominance relations with dependent
reference point by some transfers of probability. For given cdfs F , G and the
reference point r, define the function Hγ,r(x) with its right derivative

H ′γ,r(x) =


1+η∗λ∗

1+η∗ , F (x) ≤ G(x) and x ≤ r,
1, F (x) ≤ G(x) and x > r,

γ 1+η∗λ∗

1+η∗ , F (x) > G(x) and x ≤ r,
γ, F (x) > G(x) and x > r.

Then, the sufficient and necessary condition of X ≤r,η
∗,λ∗

(1+γ)−SD Y can be rewrit-
ten as ∫ x

−∞
F (t)dHγ,r(t) ≥

∫ x

−∞
G(t)dHγ,r(t), for all x ∈ < (14)

Definition 3 Let X and Y be two discrete random variables with respective
cdfs F and G. r is a given reference point.

(a) G is obtained from F via an increasing transfer if there exist x1 < x2 and
ζ > 0 such that

G(x)− F (x) = −ζ on [x1, x2],

G(x)− F (x) = 0 for all other values x.
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Fraction-degree reference dependent stochastic dominance 11

(b) G is obtained from F via a (γ, r) - transfer if there exist x1 < x2 ≤ x3 < x4
and ζ1, ζ2 ≥ 0 with ζ1 [Hγ,r(x2)−Hγ,r(x1)] = ζ2 [Hγ,r(x4)−Hγ,r(x3)]
such that

G(x)− F (x) = −ζ1 on [x1, x2],

G(x)− F (x) = ζ2 on [x3, x4],

G(x)− F (x) = 0 for all other values x.

In Definition 3, if we take λ∗ = 2 , η∗ = 1
2 and the reference point r = 0,

then (1/3, 0) - transfer between the mass function F and G for x1 = −2, x2 =
x3 = 1, x4 = 2 is illustrated as Fig. 1. For the general (γ, r) - transfer, the
difference G−F is a positive constant between x3 and x4, a negative constant
between x1 and x2, and zero otherwise in such a way that the area between the
graph of (G− F ) ∗H ′γ,r in [x3, x4] and the x-axis is same as the area between

the graph of (G− F ) ∗H ′γ,r in [x1, x2] and the x-axis. If r =∞ and r = −∞,
then our (γ, r)- transfer is the γ-transfer, see Definition 2. [25] employ a family
of γ-transfers to characterize their (1+γ)-SD. Theorem 3 below is in the same
spirit.

x

G − F

-2 -1 1 2

-3/20

1/3

x

H
′
1/3,0

∗ (G − F )

-2 -1 1 2

-1/3

1/3

Fig. 1 The difference G−F corresponding to (1/3, 0)-transfer (left panel) and the difference

(G− F ) ∗H
′
1/3,0

corresponding to (1/3, 0)-transfer (right panel).

Theorem 2 Suppose that X and Y have only a finite number of values. Then

X ≤r,λ
∗,η∗

(1+γ)−SD Y if and only if G can be obtained from F via a finite sequence

of (γ, r)-transfers and increasing transfers.

For continuous random variables we first show that the order ≤r,λ
∗,η∗

(1+γ)−SD
behaves well with respect to the convergence in distribution. The notation
Xn ⇒ X indicates that Xn converges to X in distribution and E[Xn] = E[X].

Theorem 3 Assume that X and Y are random variables with finite means.

Then X ≤r,λ
∗,η∗

(1+γ)−SD Y if and only if there exist two sequences {Xn} and {Yn}
with finite supports such that

Xn ⇒ X, Yn ⇒ Y, and Xn ≤r,λ
∗,η∗

(1+γ)−SD Yn.

Combing Theorem 2 and Theorem 3 yields the following corollary.
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12 Yang et al

Corollary 3 Given two random variables X and Y , X ≤r,λ
∗,η∗

(1+γ)−SD Y if and

only if there exist two sequence {Xn} and {Yn} such that for all n the distri-
bution of Yn can be obtained from the distribution of Xn via a finite sequence
of (γ, r)-transfers and increasing transfers, Xn ⇒ X and Yn ⇒ Y .

5 Extension to stochastic reference points

The generalization of model (4) is motivated by the casual observations and
psychological research. To evaluate an outcome, investors can make multiple
comparisons with several reference points such as indices of different markets,
portfolios of their friends and so on. [18] proposed that taking the reference
as a distribution is more suitable than simply assuming references to be a
single and deterministic point. In this section, we will extend our (1 + γ)-SDr

stochastic dominance rules to stochastic reference points.
As introduced by [18], we assume the investor takes reference random vari-

able R with cdf H, which is independent to the risky wealth X with cdf F .
Then the most general investor’s expected reference-dependent utility can be
written as

E [v(X;R, u)] = E [u(X) + µ (u(X)− u(r))]

=

∫ ∫
[u(x) + µ (u(x)− u(r))] dF (x)dH(r) (15)

Similar to Definition 1, we can define (1 + γ) degree stochastic dominance
relation relative to reference random variable R, abbreviated (1 + γ)-SDR.

Definition 4 Let X and Y be two random variables. The reference random
variable R with cdf H is given. Then X is stochastically dominated Y relative

to R in (1+γ) order, denoted by X ≤R,η
∗,λ∗

(1+γ)−SD Y , if for all consumption utility

u ∈ Uγ , η ≥ η∗, λ ≥ λ∗,

E [v (X;R, u)] ≤ E [v (Y ;R, u)] (16)

Define

fη∗,λ∗(x;H) =
1 + η∗λ∗

1 + η∗
− η∗(λ∗ − 1)

1 + η∗
H(x) (17)

Parallel to Theorem 1, we provide Theorem 4 below which is an integral
condition of (1 + γ)-SDR.

Theorem 4 Let X and Y be two random variables with cdfs F and G, respec-
tively. Let R be a reference random variable with cdf H, which is independent

to X and Y . Then X ≤R,η
∗,λ∗

(1+γ)−SD Y if and only if for all t ∈ <,∫ t

−∞
(G(x)− F (x))+ fη∗,λ∗(x;H)dx ≤

∫ t

−∞
γ (F (x)−G(x))+ fη∗,λ∗(x;H)dx

(18)
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Fraction-degree reference dependent stochastic dominance 13

In the following, we will give an example to illustrate the use of Theorem
4.

Example 5 (Normal distribution). Let X and Y be two normal random vari-
ables with means µ1, µ2 and standard derivations σ1, σ2, respectively. Assume
that µ1 < µ2 and the two cdfs are single-crossing at the point x0 = µ2σ1−µ1σ2

σ1−σ2
.

For any stochastic reference point R with the cdf H(x), let

A :=

∫ x0

−∞

[
Φ

(
x− µ1

σ1

)
− Φ

(
x− µ2

σ2

)]
fη∗,λ∗(x;H)dx,

and

B :=

∫ ∞
x0

[
Φ

(
x− µ2

σ2

)
− Φ

(
x− µ1

σ1

)]
fη∗,λ∗(x;H)dx.

Then, X ≤R,λ
∗, η∗

(1+γ)−SD Y if and only if

B

A
≤ γ < 1.

Furthermore, we consider a question whether the stochastic multiple ref-
erence can be reduced to a single excepted non-stochastic reference point for
the fractional degree reference dependent stochastic dominance rule, that is,
whether the following result is true. For any t ∈ < and r = E(R),∫ t

−∞
(G(x)− F (x))+ fη∗,λ∗(x,H)dx ≤

∫ t

−∞
γ (F (x)−G(x))+ fη∗,λ∗(x,H)dx

if and only if,∫ t

−∞
(G(x)− F (x))+ fη∗,λ∗(x, r)dx ≤

∫ t

−∞
γ (F (x)−G(x))+ fη∗,λ∗(x, r)dx.

But such equivalence is not generally available. Let us see the following exam-
ple.

Example 6 For given ε > 0 and x0 = γε 1+η
∗λ∗

1+η∗ , suppose that investors are

asked to choose between the risky asset X = (x0, 0.5;−ε, 0.5) and the risk-free
asset Y = 0. If the dependent-reference point is a real number r = 0, then∫ x

−∞
(γ(F (x)−G(x))+ − (G(x)− F (x))+) fη∗,λ∗(x; r)dx

=


0, x ≤ −ε
γ(x+ε)(1+η∗λ∗)

2(1+η∗) , − ε < x ≤ 0
γε(1+η∗λ∗)
2(1+η∗) −

x
2 , 0 < x ≤ x0

γε(1+η∗λ∗)
2(1+η∗) −

x0

2 , x > x0
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14 Yang et al

Clearly, X ≤r,η
∗,λ∗

(1+γ)−SD Y . Let R = (−ε, 50%; ε, 50%) with E(R) = 0. Then

when γ(1+η∗λ∗)
1+η∗ > 1, and ε < x ≤ x0,∫ x

−∞
(γ(F (x)−G(x))+ − (G(x)− F (x))+) fη∗,λ∗(x;R)dx

=
ε(γ − 1)

2

(
1 + η∗λ∗

1 + η∗
− η∗(λ∗ − 1)

2(1 + η∗)

)
− 1

2
(x− ε) < 0,

that is, X 
R,η
∗,λ∗

(1+γ)−SD Y .

6 Applications

6.1 Allais-type anomalies

[27] provide two following risk choice problems with the Allais-type anoma-
lies.

Example 7 (Common consequence effect)

Scenario 1. Choose between X1 = (0, 1%; 2400, 66%; 2500, 33%) and Y1 ≡ 2400

Scenario 2. Choose between X2 = (0, 67%; 2500, 33%) and Y2 = (0, 66%; 2400, 34%).

The choice set (X2, Y2) can be obtained by moving away the“common conse-
quence” of “winning 2400 with probability 0.66” from the choice set (X1, Y1).
For any utility function u, Eu(X1) ≤ Eu(Y1) if and only if Eu(X2) ≤ Eu(Y2).
By the expected utility theory, choosing the lottery Y1 in the Scenario 1 im-
plies choosing Y2 in Scenario 2. However, repeatedly confirmed experiments
show that most subjects choose Y1 in the Scenario 1 and X2 in Scenario 2.
This generates a Allais-type anomaly.

Example 8 (Common ratio effect)

Scenario 1. Choose between X1 = (0, 20%; 4000, 80%) and Y1 ≡ 3000

Scenario 2. Choose between X2 = (0, 80%; 4000, 20%) and Y2 = (0, 75%; 3000, 25%).

The ratio of the winning probabilities is the same for both choice sets. Similar
to Problem 1, for any utility function u, Eu(X1) ≤ Eu(Y1) if and only if
Eu(X2) ≤ Eu(Y2). By the expected utility theory, choosing the lottery Y1 in
the Scenario 1 implies choosing Y2 in Scenario 2. However, in experiments,
most subjects choose Y1 in the Scenario 1 and X2 in Scenario 2. This also
generates an Allais-type anomaly.

When an investor choose between two lotteries X and Y , he can also take X
or Y as the reference point. This type of reference points is called endogenous
reference point. [18] introduce the concept of personal equilibrium which is
defined as the situation that the investor’s choice between two risky prospects
X and Y coincides with the endogenous reference point itself. If the investor’s
“consumption utility” in Uγ and “reference-dependent gain-loss utility” as
3, then his personal equilibrium is depicted by the following (1 + γ)-SDPE
stochastic dominance rules.
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Fraction-degree reference dependent stochastic dominance 15

Definition 5 Let X and Y be two risky prospects. Choosing Y is a (1 + γ)-
degree stochastic dominant personal equilibrium, denoted by (1 +γ)-SDPE, if
and only if

X ≤Y,η
∗,λ∗

(1+γ)−SD Y.

We can use (1+γ)-SDPE to explain the two previous Allais-type anomalies.
[21] and [31] generalized these two choice problems in Example 7 and Example
8. Let F1, F2 and G1, G2 be the cdfs of X1, X2 and Y1, Y2. Assume that

(1). F1(x)−G1(x) = k (F2(x)−G2(x)) for some k > 0;
(2). X1 is a simple spread of Y1 with crossing point x0;
(3). G2(x) ≥ G1(x) on [−∞, x0) and G2(x) = G1(x) on [x0,∞).

Set

γ0 =

∫∞
x0

[G1(x)− F1(x)] fη∗,λ∗(x,G1)dx∫ x0

−∞ [F1(x)−G1(x)] fη∗,λ∗(x,G1)dx
.

We have the next Proposition 3 to justify the existence of Allais-type behaviour
in personal equilibrium.

Proposition 3 Assume that X1, X2 and Y1, Y2 satisfy (1)-(3). If γ0 ≤ 1,
then Y1 is a (1 + γ0)-SDPE of the choice between X1 and Y1, while Y2 is not
(1 + γ0)-SDPE of the choice between X2 and Y2.

In Example 7, let γ0
1+η∗λ∗

1+η∗ = 17
12 . If 0 < γ0 ≤ 1, then X1 ≤Y1,λ

∗,η∗

(1+γ0)−SD Y1,

but X2 �Y2,λ
∗,η∗

(1+γ0)−SD Y2. That is, all investors with consumption utility in Uγ0
will choose Y1 in personal equilibrium in the face of X1 and Y1, but may choose
X2 in personal equilibrium in the face of X2 and Y2.

6.2 The endowment effect for risk

[18] introduce the endowment effect for risk. It is a relatively new notion
in the literature of behavioral economics, and it can be used to refer to the
phenomenon “a person is less risk averse in eliminating a risk she expected to
face than in taking on the same risk if she did not expect it”. [32] supports the
existence of the endowment effect for risk by conducting some experiments,
but he provides no analytical insights. We can use the (1+γ)-degree stochastic
dominance rules relative to stochastic reference point to analytically formulate
the endowment effect for risk for the decision maker’s consumption utility in
Uγ . Let us see the following Example 9.

Example 9 For given ε > 0 and x0 = γε 1+η
∗λ∗

1+η∗ , suppose that investors are
asked to choose between

X = (x0, 50%;−ε, 50%) , Y ≡ 0.
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16 Yang et al

Taking the reference point r ≡ 0, since∫ x

−∞
(γ(F (x)−G(x))+ − (G(x)− F (x))+) fη∗,λ∗(x; r)dx

=


0, x ≤ −ε

γ(x+ε)(1+η∗λ∗)
2(1+η∗) , −ε < x ≤ 0

1
2

(
γε(1+η∗λ∗)

1+η∗ − x
)
, 0 < x ≤ x0

1
2

(
γε(1+η∗λ∗)

1+η∗ − x0
)
, x > x0

X ≤r,η
∗,λ∗

(1+γ)−SD Y . If R = (−ε, 50%; ε, 50%) and γ(1+η∗λ∗)
1+η∗ > 1, then when

ε < x ≤ x0,∫ x

−∞
(γ(F (x)−G(x))+ − (G(x)− F (x))+) fη∗,λ∗(x;R)dx

=
ε(γ − 1)

2

(
1 + η∗λ∗

1 + η∗
− η∗(λ∗ − 1)

2(1 + η∗)

)
− 1

2
(x− ε) < 0,

Thus, X 
R,η
∗,λ∗

(1+γ)−SD Y . That is, with a deterministic reference point, investors

with consumption utility in Uγ dislike the mean-increasing spread. However,
when the reference becomes R which is more disperse than r, the investors
become less averse to the spread of risk X and can choose it.

We generalize Example 9 and provide a formal statement of the endowment
effect for risk as Proposition 4.

Proposition 4 Let X and Y be two lotteries with cdfs F (x) and G(x), and
let R1 and R2 be two stochastic reference with cdfs H1(x) and H2(x). Assume
that X is a simple spread of Y with crossing point x0. Set

γ1 =

∫∞
x0

[G(x)− F (x)] fη∗,λ∗(x,H1)dx∫ x0

−∞ [F (x)−G(x)] fη∗,λ∗(x,H1)dx
.

[1]. If γ1 ≤ 1 and R2 is a simple spread of R1 with the same crossing point x0,

then X ≤R1η
∗,λ∗

(1+γ1)−SD Y , but X �R2,η
∗,λ∗

(1+γ1)−SD Y

[2]. If γ1 ≤ 1 and R1 is a simple spread of R2 with the same crossing point x0,

then X ≤R1η
∗,λ∗

(1+γ1)−SD Y , but X ≤R2,η
∗,λ∗

(1+γ1)−SD Y .

7 Conclusion

The fractional stochastic dominance introduced by [25] plays an important
role in economic and financial researches. But it can not resolve Allais-type
anomalies introduced by [27] and explain the existence of the endowment effect
for risk introduced by [18]. In this paper fractional degree reference dependent
stochastic dominance are developed. It can be used as a semi-parametric ap-
proach to compare risks relative to the reference point for decision makers
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Fraction-degree reference dependent stochastic dominance 17

whose utility function is not concave everywhere, and possesses abilities to
resolve the Allais-type anomalies and to accommodate the endowment effect
for risk. Our main contributions are listed as follows:

(1) The fractional degree stochastic dominance rules are related to some simple
and tractable equivalent integral conditions (Theorem 1 and Theorem 4).

(2) The parameter γ is interpreted as an index of risk aversion relative to the
reference point r, and some examples are provided to illustrate how to
determine it(see Corollary 1 and Example 1-3).

(3) The proposition that the fractional degree stochastic dominance implies the
fractional degree reference dependent stochastic dominance but its converse
is not true is proved (Proposition 1).

(4) The effects of reference point on risk choice is analyzed (Proposition 2).
(5) The Allais-type anomalies and formulate the endowment effect for risk are

resolved by using the new stochastic dominance rules(Proposition 3 and
Proposition 4).

A topic for future research is to apply the fractional degree reference de-
pendent stochastic dominance to stochastic optimization and to develop a new
stochastic optimal model. The usefulness of (1 + γ)−SD in handling stochas-
tic dominance constraints have been discussed recently [36], and the results
developed here should be applicable in a similar way.

Acknowledgements J. Yang was supported by the NNSF of China (No. 11701518). S.
Han was supported by the NNSF of China (No. 12071436).

8 Appendices

8.1 Proof of Theorem 1

Proof [1]⇒ [2]. Since U∗γ is invariant under translations, any u ∈ U∗γ can be
approximated by a sequence of functions {un ∈ Uγ , n = 1, 2, · · ·} as in the
proof of Theorem 2.1 in [6]. From this result it follows that [1] implies [2].

[2]⇒ [3]. For a fixed t ∈ <, we define the consumption utility function
u(x; t) with the following right derivative:

u′(x; t) =

γ, x ≤ t and G(x) ≤ F (x),
1, x ≤ t and G(x) > F (x),
0, x > t.

Obviously, u(x; t) ∈ U∗γ . Due to the integration by part, it holds that

E [v(Y, r, u(x; t))]− E [v(X, r, u(x; t)]

=

∫ ∞
−∞

u′(x; t) (F (x)−G(x)) dx+ ηλ

∫ r

−∞
u′(x; t) (F (x)−G(x)) dx

+ η

∫ ∞
r

u′(x; t) (F (x)−G(x)) dx
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18 Yang et al

= (1 + η)

[∫ ∞
−∞

u′(x; t) (F (x)−G(x)) fη,λ(x; r)dx

]
= (1 + η)

[∫ t

−∞

[
γ (F (x)−G(x))+ − ((G(x)− F (x))+

]
fη,λ(x; r)dx

]
.

Hence, for all t ∈ <, η∗ > 0 and λ∗ > 1, E [v(Y, r, u(x; t))] ≥ E [v(X, r, u(x; t))]
implies that∫ t

−∞

[
γ (F (x)−G(x))+ − (G(x)− F (x))+

]
fη∗,λ∗(x; r)dx ≥ 0.

[3]⇒ [1]. Let u ∈ Uγ . Without loss of generality we can assume

R := sup
x∈<

u′(x) ∈ (0,∞).

For any fixed n ≥ 2, define εn = 2−n and K as the largest integer k for which

R(1− kεn) ≥ inf
x∈<

u′(x),

and define a partition of a real line into intervals [xk, xk+1] as follows: let
x0 = −∞, xK+1 =∞ and

xk = sup {x : u′(x) ≥ R(1− kεn)} , k = 1, ...,K.

Then we define

mk = sup {u′(x) : xk−1 < x ≤ xk} = R [1− (k − 1)εn] .

It follows that

γ(mk −Rεn) ≤ u′(x) ≤ mk, for x ∈ (xk−1, xk], k = 1, . . . ,K + 1.

This implies that for all 0 ≤ k ≤ K,

K∑
k=0

∫ xk+1

xk

[F (x)−G(x)]+ u
′(x)fη,λ(x; r)dx

≥ γ
K∑
k=0

(mk −Rεn)

∫ xk+1

xk

[F (x)−G(x)]+ fη,λ(x; r)dx.

and

K∑
k=0

∫ xk+1

xk

[G(x)− F (x)]+ u
′(x)fη,λ(x; r)dx

≤
K∑
k=0

mk

∫ xk+1

xk

[G(x)− F (x)]+ fη,λ(x; r)dx.
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Fraction-degree reference dependent stochastic dominance 19

Let

Tk =

∫ xk+1

xk

[
γ (F (x)−G(x))+ − (G(x)− F (x))+

]
fη,λ(x; r)dx,

and

ck =

∫ xk+1

xk

(F (x)−G(x))+ fη,λ(x; r)dx.

Thus,

E[v(Y, r, u)]− E[v(X, r, u)] =

K∑
k=0

∫ xk+1

xk

[F (x)−G(x)]+ u
′(x)fη,λ(x; r)dx

−
K∑
k=0

∫ xk+1

xk

[G(x)− F (x)]+ u
′(x)fη,λ(x; r)dx

≥
K∑
k=0

mkTk − γRεn
K∑
k=0

ck.

Set

A(x, r) =
fη,λ(x, r)

fη∗,λ∗(x, r)
=


1+ηλ
1+η

1+η∗λ∗
1+η∗

, x ≤ r
1, x > r.

Note that for all k = 0, . . . ,K + 1,

k∑
i=0

Ti =

∫ xk+1

−∞

[
γ (F (x)−G(x))+ − (G(x)− F (x))+

]
fη∗,λ∗(x, r)A(x, r)dx

and ∫ xk+1

−∞

[
γ (F (x)−G(x))+ − (G(x)− F (x))+

]
fη∗,λ∗(x, r)dx ≥ 0,

and A(x, r) is positive and noningcreasing, which implies that
∑k
i=0 Ti ≥ 0.

Furthermore, since mk is a decreasing non-negative sequences,
∑k
i=0miTi ≥ 0.

Therefore,

E[v(Y, r, u)]− E[v(X, r, u)] ≥ −γRεn
∫∞
−∞ (F (x)−G(x))+ dx.

Letting n→∞ yields part [1] holds. This completes the proof of the theorem.
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20 Yang et al

8.2 Proof of Proposition 1

Proof Let F1(x) and F2(x) be two cdfs of Z and W , respectively. The proof is
main to construct cdfs F1(x) and F2(x). When x1 ≤ r ≤ x2, define F1(x) and
F2(x) as

F1(x) =

{
F (x), x ≥ x2 or x < x1
G(x) + ζ∗1 , x1 ≤ x < x2,

(19)

and

F2(x) =

{
G(x), x ≥ x2 or x < x1
F (x)− ζ∗1 , x1 ≤ x < x2,

(20)

where ζ∗1 satisfies that

γζ∗1

[
1 + η∗λ∗

1 + η∗
(r − x1) + (x2 − r)

]
= ζ2(x4 − x3) (21)

Obviously, 0 ≤ ζ∗1 ≤ ζ1. Hence, F1(x) ≤ F (x) and F2(x) ≥ G(x) for all x ∈ <,
that is, X ≤1−SD Z and W ≤1−SD Y . From (13), (19), we have that Z is

simple spread of Z. Combing with (21), it holds that Z ≤r,η
∗,λ∗

(1+γ)−SD Y but not

Z ≤(1+γ)−SD Y . And since X is also a simple spread of W based on (13),

(20), X ≤r,η
∗,λ∗

(1+γ)−SD W but not X ≤(1+γ)−SD W by (21).

When x2 < r ≤ x3, we also define cdfs F1(x) as (19) and F2(x) as (20).
But ζ∗1 satisfies that

γζ∗1 (x2 − x1)
1 + η∗λ∗

1 + η∗
= ζ2(x4 − x3) (22)

Similarly, we can obtain X ≤1−SD Z, W ≤1−SD Y , Z ≤r,η
∗,λ∗

(1+γ)−SD Y but not

Z ≤(1+γ)−SD Y and X ≤r,η
∗,λ∗

(1+γ)−SD W but not X ≤(1+γ)−SD W .

When x3 < r ≤ x4, we define

F1(x) =

{
F (x), x < x3 or x ≥ x4
G(x)− ζ∗2 , x3 ≤ x < x4

(23)

and

F2(x) =

{
G(x), x < x3 or x ≥ x4
F (x)− ζ∗2 , x3 ≤ x < x4,

(24)

where ζ∗2 satisfies that

γζ1(x2 − x1)
1 + η∗λ∗

1 + η∗
= ζ∗2

[
(r − x3)

1 + η∗λ∗

1 + η∗
+ (x4 − r)

]
(25)

Clearly, ζ∗2 ≥ ζ2. Hence, F1(x) ≤ F (x) and F2(x) ≥ G(x) for all x ∈ <.
That is, X ≤1−SD Z and W ≤1−SD Y . Based on (13), (23), (25), we have

Z ≤r,η
∗,λ∗

(1+γ)−SD Y but not Z ≤(1+γ)−SD Y . And from (13), (24), (25), it holds

that X ≤r,η
∗,λ∗

(1+γ)−SD W but not X ≤(1+γ)−SD W . Combing these three cases,

we complete the proof.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fraction-degree reference dependent stochastic dominance 21

8.3 Proof of Proposition 2

Proof Without loss of generality, we assume r1 < r2. Let X be a random
variable with probability mass function p1(x). We take x1 < x2 ≤ x3 < x4
with x2 = r1 and x4 = r2. Continue to take η1 > 0, η2 > 0, 0 < γ ≤ 1
such that γη1 (x2 − x1) 1+η∗λ∗

1+η∗ = η2(x4 − x3). Define random variable Y with

probability mass function p2(x) as

p2(x1) = p1(x1)− η1,
p2(x2) = p1(x2) + η1,

p2(x3) = p1(x3) + η2,

p2(x4) = p1(x4)− η2,
p2(x) = p1(x) for all other values x.

Let F (x) and G(x) be the cdfs of X and Y , respectively. Obviously, we
have

F (x)−G(x) =

 η1, x1 ≤ x < x2
−η2, x3 ≤ x < x4

0, otherwise

Therefore, X is a simple spread of Y with a single crossing point x2. And since
γη1 (x2 − x1) 1+η∗λ∗

1+η∗ = η2(x4 − x3), we have

γ

∫ x2

−∞
(F (x)−G(x))fη∗,λ∗(x, r1)dx =

∫ ∞
x2

(G(x)− F (x))fη∗,λ∗(x, r1)dx

Thus, X ≤r1,η
∗,λ∗

(1+γ)−SD Y . And since

fη∗,λ∗(x, r1) < fη∗,λ∗(x, r2) on [x3, x4]

and

fη∗,λ∗(x, r1) = fη∗,λ∗(x, r2) on otherwise,

we have

γ

∫ x2

−∞
(F (x)−G(x))fη∗,λ∗(x, r2)dx = γ

∫ x2

−∞
(F (x)−G(x))fη∗,λ∗(x, r1)dx

=

∫ ∞
x2

(G(x)− F (x))fη∗,λ∗(x, r1)dx

≤
∫ ∞
x2

(G(x)− F (x))fη∗,λ∗(x, r2)dx.

Thus, X 
r2,η
∗,λ∗

(1+γ)−SD Y . This completes the proof of proposition 2.
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22 Yang et al

8.4 Proof of Theorem 2

To prove Theorem 2, we need the next lemma.

Lemma 1 Given cdfs F and G, let F−1(s) = inf{x : F (x) ≥ s} and G−1(s) =

inf{x : G(x) ≥ s}. F ≤r,λ
∗,η∗

(1+γ)−SD G if and only if, for all p ∈ [0, 1],∫ p

0

Hγ,r(G
−1(s))ds ≥

∫ p

0

Hγ,r(F
−1(s))ds (26)

Proof We can use the similar proof of [25]. Define the function

t→ h(x) :=

∫ x

−∞
[F (t)−G(t)] dHγ,r(t).

Then, F ≤r,λ
∗,η∗

(1+γ)−SD G if and only if for all x, h(x) ≥ 0. Since H
′

γ,r(t) ≥ 0,

the function h assumes local minima in the points bk where the distribution
functions F and G cross, going from F ≤ G left of bk to F > G right of bk. If
we define pk := G(bk) and

h̃(p) :=

∫ p

0

[
Hγ,r(G

−1(s))−Hγ,r(F
−1(s))

]
ds,

then we have h(bk) = h̃(pk) and the function h̃ assumes its local minima in
the points pk. Therefore, h ≥ 0 if and only if h̃ ≥ 0.

Proof Based on the idea of [25], define

A1(p) :=

∫ p

0

[
Hγ,r(G

−1(s))−Hγ,r(F
−1(s))

]
+
ds

and

A2(p) :=

∫ p

0

[
Hγ,r(F

−1(s))−Hγ,r(G
−1(s))

]
+
ds.

Without the loss of generality, we assume that A2(1) > 0. Let α(a) and β(a)
be the smallest probabilities that solve

A1(α(a)) = a and A2(β(a)) = a, 0 < a < A2(1).

It follows from Lemma 1 that A1(p) ≥ A2(p). Hence, α(a) ≤ β(a) for all
0 < a < A2(1). We set

x1(a) := F−1(α(a)), x2(a) := G−1(α(a))

and

x3(a) := G−1(β(a)), x4(a) := F−1(β(a)).
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Fraction-degree reference dependent stochastic dominance 23

Since X and Y assume only finitely many values, there is a sequence 0 = a1 <
· · · < ak ≤ A2(1) such that a 7→ x1(a), · · · , x4(a) are constant on (ai−1, ai).
Denote the corresponding values of these functions as

xl,i = xl(a) for a ∈ (ai−1, ai), l = 1, . . . , 4.

Moreover, for i = 1, . . . , k, at the points x1,i and x4,i the function F has jumps
of sizes at least ζ1i and ζ2i, and at the corresponding points x2,i and x4,i the
function G has jumps of sizes at least ζ1i and ζ2i, where ζ1i and ζ2i are given
by the equation

ζ1i (Hγ,r(x2,i)−Hγ,r(x1,i)) = ζ2i (Hγ,r(x4,i)−Hγ,r(x3,i)) = ai − ai−1

For x > x4,k, we have F (x) > G(x). Thus, G is obtained from F by a sequence
of k (γ, r)-transfers described by the corresponding x’s and ζ’s above, plus a
finite number of increasing transfers moving the mass from F to G right of
x4,k. This completes the proof.

8.5 Proof of Theorem 3

Proof Note that for random variables Xn, X with distribution functions Fn,
F the convergence Xn ⇒ X mentioned in the theorem holds if and only if∫ ∞

−∞
|Fn(x)− F (x)|dx→ 0,

and since 0 < H
′

γ,r ≤
1+η∗λ∗

1+η∗ , it holds that∫ ∞
−∞
|Fn(x)− F (x)|dHγ,r(x)→ 0.

This implies that, for any t ∈ <,∫ t

−∞
(Fn(x)− F (x)) dHγ,r(x)→ 0.

The if-part thus follows from (14).
For the only-if-part, if X,Y are are bounded, then the proof is similar to

[25]. We can define for any n ∈ N

Xn =
i

n
, if

i

n
≤ X <

i+ 1

n
, i ∈ Z

and

Yn =
i+ 1

n
, if

i

n
≤ Y <

i+ 1

n
, i ∈ Z.
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24 Yang et al

Then Xn and Yn have finite support with Xn ≤1−SD X and Y ≤1−SD Yn.
Therefore,

Xn ≤r,λ
∗,η∗

(1+γ)−SD X ≤r,λ
∗,η∗

(1+γ)−SD Y ≤r,λ
∗,η∗

(1+γ)−SD Yn

and Xn ⇒ X and Yn ⇒ Y .
If X and Y are unbounded, then we define

Xn :=

x∗n, if X < −n,
X, if − n ≤ X ≤ n,
n, if n < X,

(27)

and

Yn :=

−n, if Y < −n,
Y, if − n ≤ Y ≤ n,
n, if n < Y,

(28)

where x∗n satisfies that

Hγ,r(x
∗
n) = Hγ,r(−n)−

∫ −n
−∞ F (x)dHγ,r(x)

P (X < −n)
.

An easy calculation for the corresponding distribution functions Fn, Gn shows
that∫ t

−∞
(Fn(x)−Gn(x)) dHγ,r(x)

=


0, t ≤ x∗n,
P (X < −n) (Hγ,r(t)−Hγ,r(x

∗
n)) , x∗n < t ≤ −n,∫ t

−∞ (F (x)−G(x)) dHγ,r(x) +
∫ −n
−∞G(x)dHγ,r(x), −n < t ≤ n,

0, t > n.

Thus X ≤r,λ
∗,η∗

(1+γ)−SD Y , that is,

∫ t

−∞
(F (x)−G(x)) dHγ,r(x) ≥ 0, for all t ∈ R

implies that ∫ t

−∞
(Fn(x)−Gn(x)) dHγ,r(x) ≥ 0 for all t ∈ R.

Then, it follows that X ≤r,λ
∗,η∗

(1+γ)−SD Y implies that Xn ≤r,λ
∗,η∗

(1+γ)−SD Yn, and

obviously Xn, Yn are bounded and Xn ⇒ X, and Yn ⇒ Y .
For each fixed n we can approximate Xn and Yn by sequences {Xnn} and

{Ynn} as in (27) and (28). Then, the sequences {Xnn} and {Ynn} fulfill the
conditions of the theorem. This completes the proof.
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8.6 Proof of Theorem 4

To prove Theorem 4, we need Lemma 2.

Lemma 2 Define

A(x;H) =
fη,λ(x;H)

fη∗,λ∗(x;H)
(29)

Then, A(x;H) is nonegative and nonincreasing.

Proof Obviously, A(x;H) is greater than zero. Since

A(x;H) =
η(λ− 1)(1 + η∗)

η∗(λ∗ − 1)(1 + η)
+

1+ηλ
1+η −

(1+η∗λ∗)η(λ−1)
(1+η)η∗(λ∗−1)

fη∗,λ∗(x;H)

and cdf H(x) is nondecreasing in x, to prove A(x;H) is nonincreasing is just
to prove

1 + ηλ

1 + η
− (1 + η∗λ∗)η(λ− 1)

(1 + η)η∗(λ∗ − 1)

is less than zero.

1 + ηλ

1 + η
− (1 + η∗λ∗)η(λ− 1)

(1 + η)η∗(λ∗ − 1)

=
1

η∗(1 + η)(λ∗ − 1)
[η∗(λ∗ − 1)− η(λ− 1)− ηη∗(λ− λ∗)] .

From η ≥ η∗ ≥ 0, λ ≥ λ∗ ≥ 1, we have

1 + ηλ

1 + η
− (1 + η∗λ∗)η(λ− 1)

(1 + η)η∗(λ∗ − 1)
≤ 0.

This completes the proof of Lemma 2.

Proof Let X ∨R = max {X,R} and X ∧R = min {X,R} with cdfs FX∨R(x)
and FX∧R(x), respectively. Then,

E [v(X;R, u)]

= E [u(X) + ηu(X ∨R) + ηλu(X ∧R)− η(1 + λ)u(R)]

=

∫ ∞
−∞

u(x)dF (x) + η

∫ ∞
−∞

u(x)dFX∨R(x) + ηλ

∫ ∞
−∞

u(x)dFX∧R(x)

− η(1 + λ)

∫ ∞
−∞

u(x)dH(x)

=

∫ ∞
−∞

u(x)dF (x) + η

∫ ∞
−∞

u(x)d [F (x)H(x)]− η(1 + λ)

∫ ∞
−∞

u(x)dH(x)

+ ηλ

∫ ∞
−∞

u(x)d [F (x) +H(x)−H(x)F (x)]

=

∫ ∞
−∞

u(x)d [F (x) (1 + ηλ− η(λ− 1)H(x))]− η
∫ ∞
−∞

u(x)dH(x)

=

∫ ∞
−∞

u(x)d [F (x)(1 + η)fη,λ(x,H)]− η
∫ ∞
−∞

u(x)dH(x).
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26 Yang et al

Thus,

E [v(X;R, u)]− E [v(Y ;R, u)] = (1 + η)

∫ ∞
−∞

u(x)d [(F (x)−G(x)) fη,λ(x,H)]

Combing with Lemma 2, the equivalent integral condition of

E [v(X;R,H)] ≤ E [v(Y ;R,H)]

for all u ∈ Uγ , and η ≥ η∗, λ ≥ λ∗ follows in a similar manner of the proof of
Theorem 1.

8.7 Proof of Proposition 3

Proof Since X1 is a simple spread of Y1 with crossing point x0 and

γ0

∫ x0

−∞
[F1(x)−G1(x)] fη∗,λ∗(x,G1)dx

=

∫ ∞
x0

[G1(x)− F1(x)] fη∗,λ∗(x,G1)dx

it holds that X1 ≤Y1,η
∗,λ∗

(1+γ0)−SD Y1. But we have∫ ∞
x0

[G2(x)− F2(x)] fη∗,λ∗(x,G2)dx

= k

∫ ∞
x0

[G1(x)− F1(x)] fη∗,λ∗(x,G1)dx

= kγ0

∫ x0

−∞
[F1(x)−G1(x)] fη∗,λ∗(x,G1)dx

≥ γ0
∫ x0

−∞
[F2(x)−G2(x)] fη∗,λ∗(x,G2)dx.

That is, X2 �Y2,η
∗,λ∗

(1+γ0)−SD Y2. This completes the proof.

8.8 Proof of Proposition 4

Proof Since X is a simple spread of Y with crossing point x0 and γ1 ≤ 1, we

have X ≤R1η
∗,λ∗

(1+γ1)−SD Y . For case [1], it holds that H2(x) ≥ H1(x) on [−∞, x0)

and H2(x) ≤ H1(x) on [x0,∞). Thus, we have

γ1

∫ x0

−∞
[F (x)−G(x)] fη∗,λ∗(x,H2)dx

≤ γ1
∫ x0

−∞
[F (x)−G(x)] fη∗,λ∗(x,H1)dx
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=

∫ ∞
x0

[G(x)− F (x)] fη∗,λ∗(x,H1)dx (30)

≤
∫ ∞
x0

[G(x)− F (x)] fη∗,λ∗(x,H2)dx.

That is, X �R2,η
∗,λ∗

(1+γ1)−SD Y . For case [2], it holds that H2(x) ≤ H1(x) on

[−∞, x0) and H2(x) ≥ H1(x) on [x0,∞). Thus, in contrast to (30), we have

γ1

∫ x0

−∞
[F (x)−G(x)] fη∗,λ∗(x,H2)dx ≥

∫ ∞
x0

[G(x)− F (x)] fη∗,λ∗(x,H2)dx.

That is, X ≤R2,η
∗,λ∗

(1+γ1)−SD Y . This completes the proof.
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