Supporting Information

Flavonoids from the fruits of *Phyllanthus acidus* (L.) Skeels with anti- α -glucosidase activity

Abstract: Eleven flavonoids including one new flavonol glycoside, quercetin-3-O-(2- α -L-rhamnopyranosyl)- β -D-glucuronopyranosyl methyl ester (1), were isolated for the first time from the fruits of *Phyllanthus acidus* (L.) Skeels (Phyllanthaceae). Their structures were determined by extensive spectroscopic data. The known flavonoids, quercetin-3-O- β -D-glucuronide methyl ester (3), quercetin-3-O-(2"- α -L-rhamnopyranosyl-6"-O- α -L-rhamnopyranosyl)- β -D-glucopyranoside (5), myricetin (9), and 6-methoxy-naringenin (11) were isolated for the first time from the genus *Phyllanthus*. Flavonoids **4**, **6** and **9** (IC₅₀ = 6.01, 6.32, and 7.84 μM, respectively) showed stronger α -glucosidase inhibitory activities than the positive control, acarbose (IC₅₀ = 306.45 μM). The fruits of *P. acidus* might be further developed as an anti-diabetic food supplement.

Keywords:

Phyllanthaceae; *Phyllanthus acidus* (L.) Skeels; flavonoids; anti- α -glucosidase activity

Contents of Supporting Information

No.	Contents	Pages
1.	Figure S1. Key HMBC (H \rightarrow C) correlations of compound 1	3
2.	Figure S2. ¹ H NMR spectrum of compound 1	4
3.	Figure S3. ¹³ C NMR spectrum of compound 1	4
4.	Figure S4. HSQC spectrum of compound 1	5
5.	Figure S5. HMBC spectrum of compound 1	5
6.	Figure S6. ¹ H- ¹ H COSY spectrum of compound 1	6
7.	Figure S7. ROESY spectrum of compound 1	6
8.	Figure S8. Negative ESIMS spectrum of compound 1	7
9.	Figure S9. HRESIMS spectrum of compound 1	8
10.	Figure S10. CD and UV spectra of compound 1	9
11.	Table S1. α -Glucosidase inhibitory activities of compounds 2-11	10

Figure S2. Key HMBC (H \rightarrow C) correlations of compound 1

Figure S3. ¹H NMR spectrum of compound 1

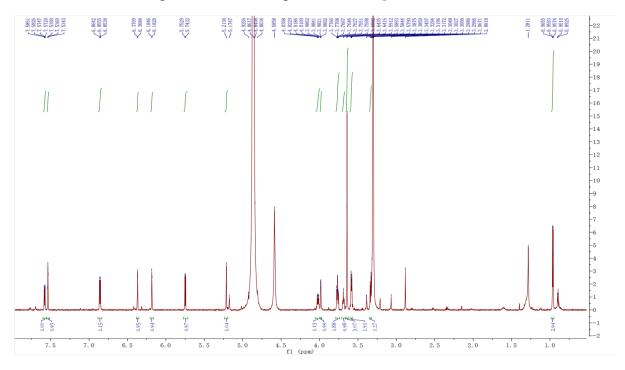


Figure S4. ¹³C NMR spectrum of compound 1

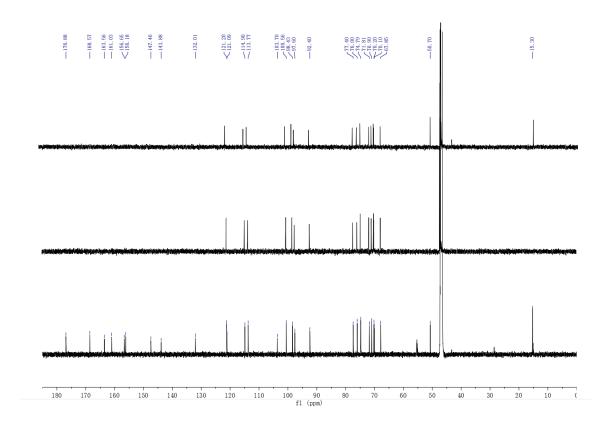


Figure S5. HSQC spectrum of compound 1

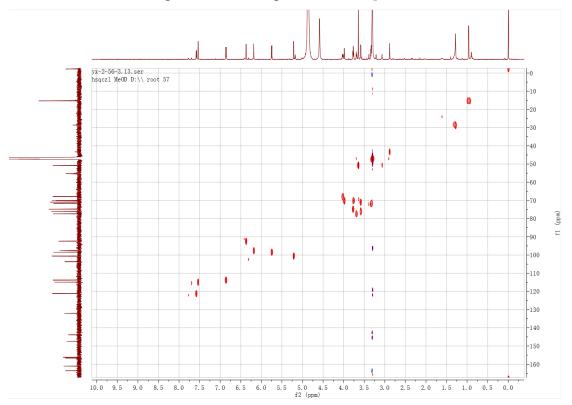


Figure S6. HMBC spectrum of compound 1

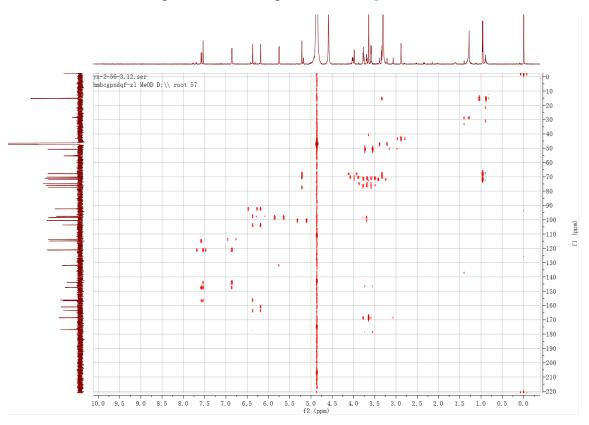


Figure S7. ¹H-¹H COSY spectrum of compound 1

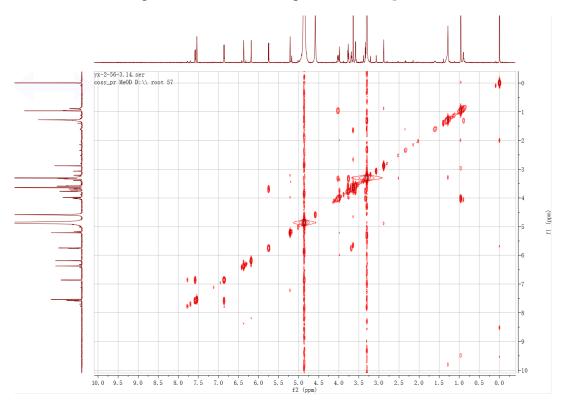


Figure S8. ROESY spectrum of compound 1

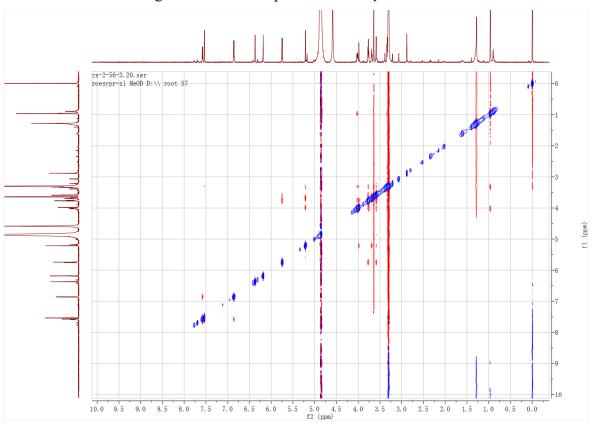


Figure S9. Negative ESIMS spectrum of compound 1

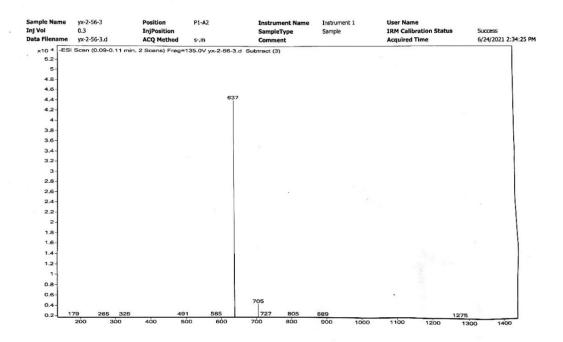


Figure S10. HRESIMS spectrum of compound 1

Qualitative Analysis Report

 Data Filename
 yx-2-56-3.d
 Sample Name
 yx-2-56-3

 Sample Type
 Sample
 Position
 P1-A2

 Instrument Name
 Instrument 1
 User Name

 Acq Method
 s-.m
 Acquired Time
 6/24/2021 2:34:25 PM

Acq Method s-.m Acquired Time 6/24/2021 IRM Calibration Status DA Method Default.m

Comment

Sample Group

Info.

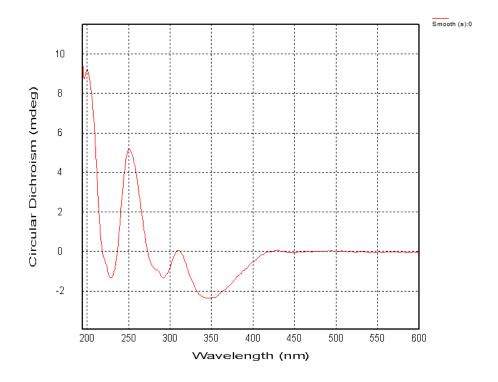
Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.01 (B5125.2)

User Spectra

Fragmentor Voltage 135	Collision Energy	Ionization Mode ESI	
10 4 -ESI Scan (0.22-0.26	min, 3 Scans) Frag=135.0V yx-2-	56-3.d	
1-	637.1		
0.9-	([C28 H30	O17J-H)-	
0.8			
0.7-			
0.6-	4.		
0.5-			
0.4		638.1443	
0.3		([C28 H30 O17]-H)-	
0.2		639.1455	
0.1-		([C28 H30 O17]-H)-	
0		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
634.5 635	635.5 636 636.5 637	637.5 638 638.5 639 639.5 640 640.5 6 ts vs. Mass-to-Charge (m/z)	41

Peak	List

m/z	Z	Abund	Formula	Ion
68.9957		4786.2		
96.9602		4687.82		
112.9856	1	7382.49		
119.0358		3140.37		
637.1416	1	8807.66	C28 H30 O17	(M-H)-
638.1443	1	2817.79	C28 H30 O17	(M-H)-
955.9712	1	2802.36		
966.0006	1	23623.78		
967.0035	1	4847.16		
982.9904	1	9655.19		
1033.9882	1	20229.27		
1034.9912	1	4227.83 or Element		


Element	Min	Max	
С	3	60	
u	0	120	

0 0 30

Formula	CalculatedMass	CalculatedMz	Mz	Diff. (mDa)	Diff. (ppm)	DBE
C28 H30 O17	638.1483	637.1410	637.1416	-0.60	-0.94	14.0000

⁻⁻⁻ End Of Report ---

Figure S11. CD and UV spectra of compound 1

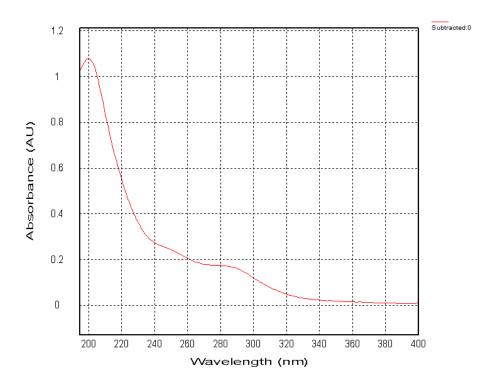


Table S1. α -Glucosidase inhibitory activities of compounds **2-11**

Compd.	Concentration (µM)	$IC_{50} (\mu M)$	Inhibition rate (%)
Acarbose	400	306.45±7.01	55.03±0.49
2	50		0.51 ± 1.17
3	50		14.16±2.52
4		6.01 ± 0.14	
5	50		-5.45±1.89
6		6.32 ± 0.31	
7	50		-3.41±3.18
8	50		24.46±2.17
9		7.84 ± 0.33	
10	50		20.89±2.35
11	50		9.37±2.59