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Glycine is the simplest natural amino acid, a basic building block for various

biomaterials. Supramolecular packing of glycine molecules into three main

crystalline polymorphs allows controlling their functional properties, such as

piezoelectricity and ferroelectricity. Though piezoelectricity in glycine is well

studied and reviewed, its ferroelectric properties were not summarized and

analyzed until now. In this mini-review, we briefly discuss glycine polymorphs,

their functional properties, and phase transitions, review recent findings on

domain structure and polarization switching in β- and γ-glycine, and consider

their possible applications in biocompatible photonic and piezoelectric devices.
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Introduction

Amino acid glycine is the simplest building block of various biomaterials and is often

considered a symbol of life on our planet. Therefore, it has attracted considerable

attention in different research fields, mainly in materials science, pharmacology, and

medicine. Glycine plays a key role in many physiological processes, e.g., in cancer cell

metabolism, (Jain et al., 2012) and is used to treat various diseases, including ischemic

stroke, anxiety, insomnia, schizophrenia, benign prostatic hyperplasia, etc (Gusev et al.,

2000; Babić and Babić, 2009). It also serves as a bulking agent in pharmaceutical protein

formulations (Horn et al., 2018). On a completely different scale, glycine has been found

in the interstellar medium (Kuan et al., 2003; Ioppolo et al., 2021) and in the comas of

comets and meteorites, (Elsila et al., 2009; Altwegg et al., 2016) thus providing evidence of

the panspermia hypothesis (Wesson, 2010). As for the functional physical properties of

crystalline glycine, they largely depend on the supramolecular packing of its molecules

into three main polymorphs (α, β, and γ), resulting in different crystallographic structures

(Heredia et al., 2012; Guerin et al., 2017; Gleeson et al., 2020; Boldyreva, 2021). It has been

a long time established that the α-phase is centrosymmetric (space group P21/n), in which

only surface piezoelectricity and pyroelectricity may exist via doping or water

incorporation (Piperno et al., 2013; Meirzadeh et al., 2018; Dishon et al., 2020). On

the contrary, β and γ phases of glycine are non-centrosymmetric (space groups P21 and

P31, respectively) (Iitaka, 1960; Iitaka, 1961) and exhibit technologically significant

piezoelectric responses, as has been shown by Lemanov in 2000 (Lemanov, 2000).
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It was like that until 2012, when another important

functional property, ferroelectricity, was reported by Heredia

et al. (2012). Using a novel Piezoresponse Force Microscopy

(PFM) tool and molecular modeling, it has been shown, that

switchable polarization domains exist in γ-glycine microcrystals

grown from the solution. Polarization switching was performed

by applying DC voltage to the PFM tip at the nanoscale and

switchable domains were shown to persist for a long time. That

work attracted a wide interest of the research community in

different fields and has launched a new round of experimental

and theoretical studies of glycine (Bystrov et al., 2014; Bystrov

et al., 2015; Bystrov et al., 2016; Guerin et al., 2017; Seyedhosseini

et al., 2017; Bai et al., 2018; Tasnim et al., 2018; Hu et al., 2019;

Slabov et al., 2019; Bishara et al., 2020; Dishon et al., 2020;

Gleeson et al., 2020; Hosseini et al., 2020; Kholkin et al., 2021).

Several reviews reported piezoelectric properties of glycine (Tayi

et al., 2015; Tofail and Bauer, 2016; Guerin et al., 2017; Maiti

et al., 2019; Kim et al., 2020; Li et al., 2020; Boldyreva, 2021; Xu

et al., 2021). However, until now, its ferroelectric properties have

not been summarized and analyzed.

In this mini-review, we summarize 10 years of rigorous

research on ferroelectricity and polarization switching in β-
glycine, discuss undesirable phase transitions between

polymorphs influencing the ferroelectricity, ways of

stabilization of ferroelectric β-phase, and its possible

applications in biocompatible photonic and piezoelectric devices.

Polymorphic phases
and ferroelectricity

Ferroelectricity is observed for a specific polymorphic state of

the glycine—β-phase. Actually, glycine is a model material for

studying polymorphism because crystalline glycine can be easily

grown from the aqueous solution that, in principle, results in a

mixture of different polymorphs—α, β, and γ. That is due to the

Ostwald rule of stages, meaning that the less stable β-phase is

formed first, (Seyedhosseini et al., 2014) and then more stable γ-
and α-phases appear. Several papers discussed various

possibilities to grow predominantly one phase or another

(Boldyreva et al., 2003a; Lee et al., 2008; Poornachary et al.,

2008). For instance, selective growth of single-phase piezoelectric

γ-glycine can be achieved by the modification of the solution’s

pH (Boldyreva et al., 2003a; Lee et al., 2008) or addition of trace

amounts of chiral impurities into the aqueous solution,

(Poornachary et al., 2008) whereas less stable β-phase can be

preferentially grown from the solution in the presence of acetic

acid (Drebushchak et al., 2002) or glucose (Gerasimov et al.,

2022).

In general, polymorphic crystalline phases can be

distinguished by various analytical techniques such as

differential scanning calorimetry (DSC), thermogravimetric

analysis (TGA), infrared, Raman, and solid-state nuclear

magnetic resonance (NMR) spectroscopies, and powder X-ray

diffraction (Brog et al., 2013). These integral methods allow

detecting the presence of tiny amounts of phases in a mixture.

However, for local polarization switching experiments by PFM,

the polymorphic phase of an individual microcrystal should be

determined. In this case, the choice of the methods is quite

limited. Roughly, a phase of an individual crystal can be

identified by observation of crystals’ habits by optical

microscopy. Evaporation of the glycine aqueous solution

droplet on a substrate leads to the formation of rhombohedral

plate-like α-glycine crystals (Figure 1A), β-glycine forms

elongated rectangular (needle-like) crystals (Figure 1B), and γ-
glycine forms trigonal prisms (Figure 1C) (Iitaka, 1961; Bai et al.,

2018). However, this is true for as-grown phases only. Due to

polymorphic phase transitions, the crystal’s phase may change

under various external factors (temperature, gases, mechanical

treatment, etc.) (Boldyreva et al., 2003b) without habit

modification (Isakov et al., 2014). Therefore, special methods

for the phase determination of individual microcrystals should be

applied prior to studies of ferroelectricity.

This problem can be partially resolved by PFM, which allows

distinguishing the centrosymmetric α-phase (which does not

possess any piezoelectric activity) from non-centrosymmetric

β- and γ- phases (a priori piezoactive). But the distinction

between β- and γ- phases is more difficult. PFM

measurements in combination with crystal habit observation

were used in (Heredia et al., 2012); however, they have led to

an erroneous attribution of ferroelectricity to the γ-phase.
Further studies (Isakov et al., 2014; Seyedhosseini et al., 2014;

Seyedhosseini et al., 2015; Bystrov et al., 2016; Seyedhosseini

et al., 2017; Slabov et al., 2019; Vasileva et al., 2019) showed that

experimental results reported in (Heredia et al., 2012) could be

actually done on β-phase.
The discrimination between β- and γ-phases by PFM can be

done based on the determination of the components of the

piezoelectric matrix, which are different for β- and γ-phases
(Guerin et al., 2017). However, this method requires precise

measurements at different crystal faces, which are not always

accessible. Therefore, a more convenient method for the

determination of the polymorphic phase of an individual

microcrystal is confocal Raman microscopy (CRM).

Application of this fast and non-destructible method just

before the PFM measurements allows excluding possible

artifacts with phase determination. CRM is based on the

analysis of spectral fingerprints of each phase (Lee et al., 2008;

Surovtsev et al., 2011; Seyedhosseini et al., 2014) and was

successfully used for distinguishing phases in micro- and

nanocrystals of glycine (Seyedhosseini et al., 2014; Zelenovskiy

et al., 2016; Seyedhosseini et al., 2017; Slabov et al., 2019) and in

situ studying an unusual solid-state phase transition (Isakov

et al., 2014).

What is especially important is that CRM demonstrated

preferable nucleation and stabilization of individual
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microcrystals of β-glycine and its quasi-regular arrays of

nanocrystals formed via evaporative dewetting on a Pt

substrate (Figure 1D) (Seyedhosseini et al., 2014;

Seyedhosseini et al., 2017). This fact opens the way for

studying ferroelectricity in β-glycine and its applications.

Preferable β-phase crystallization can be also achieved in

nanopores (Hamilton et al., 2008), microfluidic channels

(Bhamidi et al., 2015), or under the action of standing surface

acoustic waves (Bai et al., 2018). These are promising but more

complicated and less studied ways for the ferroelectricity

stabilization in glycine.

In 2005, the low-temperature calorimetric measurements

on β-glycine revealed an anomaly of heat capacity at 252 K

(Drebushchak et al., 2005), which was then confirmed by

incoherent inelastic neutron scattering (Bordallo et al., 2008;

Aree et al., 2013). Other polymorphs did not show such

anomaly. The calculations of enthalpy, entropy, and Gibbs

energy for all three polymorphs showed that their

thermodynamic properties (and thus macroscopic physical

properties) are affected by the arrangement of NH3
+ tails of

zwitterions rather than by the crystal structure (Drebushchak

et al., 2005). Indeed, though, in the gas phase, the zwitterionic

form of glycine molecule is less stable than the neutral one

(Palla et al., 1980), it can be stabilized in a solution through the

hydrogen bonds formation with water molecules (Basch and

Stevens, 1990). In a solid phase, the zwitterionic structure of

glycine molecules is also preserved and provides an additional

interaction between the molecules (Drebushchak et al., 2005).

Therefore, the anomaly in the heat capacity observed in β-

glycine was attributed to a second-order ferroelectric-

paraelectric phase transition (Drebushchak et al., 2005).

The detailed phenomenological analysis of this anomaly in

terms of the compressible Ising model (Kiraci, 2021) confirmed

that conclusion and also demonstrated that the critical

exponents in “ferroelectric” (T < 252 K) and “paraelectric”

(T > 252 K) phases are consistent with those predicted from

the 3D Ising model and the 2D Potts model, respectively.

However, as is shown in detail in the following section, the

main features of ferroelectricity, such as domain structures and

the ability to switch the polarization by an electric field, well

persist in β-glycine at room temperature. Therefore, the

observed anomaly at 252 K may be related not to the

ferroelectric-paraelectric phase transition but, highly likely,

to the transition between two ferroelectric phases. This

question requires additional studies.

Domain structures
and polarization switching

While piezoelectricity in γ- and β-phases originates from
their non-centrosymmetric space groups, its attribution to the

class of ferroelectrics can be done only experimentally (Lines

and Glass, 1977). PFM can serve as a perfect tool to distinguish

not only piezoelectric but also ferroelectric phases due to the

domain structure visualization and the polarization switching

in a point (Shvartsman et al., 2002; Kalinin et al., 2010; Soergel,

2011). A multitude of recent reports (Isakov et al., 2014;

FIGURE 1
Morphology of the glycine microcrystals of different polymorphs: (A) α-phase, (B) β-phase, (C) γ-phase, and (D)microislands of β-glycine. The
inset in (B) shows another common morphology of β-glycine crystals well suitable for studies of ferroelectricity. Types of as-grown domains in β-
glycine (Vasileva et al., 2019): (E) stripe domains with charged domain walls, (F) quasi-periodic ensembles of needle-like domains, and (G) irregular
shaped domains with segmental step-like domain walls. White arrows show the direction of spontaneous polarization. (H) Artificial domains
created by the application of an external electric field to the PFM tip.
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Seyedhosseini et al., 2014; Seyedhosseini et al., 2015; Bystrov

et al., 2016; Hu et al., 2019; Vasileva et al., 2019) have proven

that β-glycine is indeed ferroelectric with switchable

polarization and diverse domain structures. The as-grown

domain structure at nonpolar surfaces of β-glycine crystals,

which are usually available for PFM study, consists of three

types of domains (Vasileva et al., 2019): 1) stripe-like domains

with flat charged domain walls (Figure 1E) appeared due to the

variations of defects during the crystal growth; 2) quasi-

periodic ensembles of needle-like domains (Figure 1F)

appeared under the action of pyroelectric field occurred due

to the cooling down of the evaporating droplet; and 3) irregular

shaped domains with segmental step-like domain walls

(Figure 1G).

Domains can also be created in β-glycine crystals by the

application of an external electric field by the PFM tip

(Figure 1H). Computer modeling based on density

functional theory and molecular-dynamic simulations

showed for β-glycine an average coercive field of about 1 V/

nm (103 kV/mm) (Bystrov et al., 2015; Bystrov et al., 2016),

which corresponds to 60 V applied to the PFM tip

(Seyedhosseini et al., 2015). In principle, polarization

switching in γ-glycine may also be possible, but it requires

4–8 times bigger electric fields (Heredia et al., 2012; Bystrov

et al., 2015). Moreover, the maximum value of the electric field

near the apex of the PFM tip with the applied voltage of 100 V is

about 3 V/nm only (Seyedhosseini et al., 2015). Higher voltages

lead to the electric breakdown of the crystal. Therefore, a single

molecule switching in γ-glycine remains a theoretical

possibility. Such a big difference in threshold fields for β-
and γ-glycine is due to the mechanism of the polarization

reversal. As computer modeling demonstrated, (Hu et al.,

2019) the spontaneous polarization of β-glycine oriented

along the polar crystallographic axis b stems from an

ordered arrangement of the −NH3
+ groups, whereas the

polarization switching occurs via the change of a dihedral

angle between the −NH3
+ groups and the plane of the

carboxyl (−COO−) groups (Figure 2A). At the same time,

polarization reversal of γ-glycine requires the rotation of

glycine molecules by 180° around an axis perpendicular to

the polar c-axis (Hu et al., 2019) (Figure 2B), which makes

the polarization reversal of γ-glycine much more difficult than

that of β-phase.
The artificial needle-like domains created by the PFM tip

propagate far outside the field area due to the kinks interaction

(Vasileva et al., 2019), and their length depends on the applied

voltage and pulse duration (Seyedhosseini et al., 2015). PFM

tip movement during the voltage application allows the

creation of tailored domain structures with different types

of domain walls: neutral and charged head-to-head and tail-

to-tail (Vasileva et al., 2019). Usually, tail-to-tail domain walls

are flat and oriented normally to the polar axis, whereas head-

to-head ones are rough and inclined (Vasileva et al., 2019).

That allows suggesting that tail-to-tail domain walls possess

higher conductivity, accelerating the screening of the

depolarization fields created by the bound charges (Schröder

et al., 2012; Schröder et al., 2014; Lu et al., 2015). This

assumption is supported by the quantum chemical

calculations that showed tail-to-tail walls are around seven

times more stable than head-to-head ones (Bystrov et al.,

2016).

Applications and perspectives

As recently demonstrated (Seyedhosseini et al., 2015;

Vasileva et al., 2019), the polarization switching and the

evolution of the domain structures in β-glycine crystals are

qualitatively similar to those found in uniaxial inorganic

ferroelectrics. This observation opens up the possibility of

applying the methods of domain engineering developed

earlier for the creation of tailored micro- and nanodomain

structures in inorganic ferroelectrics (Shur and Ye, 2008) for

organic ones, which are highly demanded elements of

biocompatible photonic devices. It is known that organic

nonlinear optical materials have an advantage over their

inorganic counterparts due to their big molecular

FIGURE 2
Schemes of the polarization reversal in (A) β- and (B) γ-
glycine. Green arrows show the direction of the spontaneous
polarization. Molecular color scheme: carbon—grey, oxygen—red,
nitrogen—blue. Hydrogen atoms are not shown for clarity.
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polarizability and the ability to tune their properties by

chemical modifications (Humar et al., 2017). In the case of

crystalline organic ferroelectrics, such as β-glycine, the

nonlinear optical properties can be additionally improved

by the methods of domain engineering (Shur and Ye, 2008)

by the creation of a periodical domain structure. Periodically

poled β-glycine crystal can significantly enhance the

effectiveness of the second harmonic generation and optical

parametric oscillation, (Scrymgeour et al., 2014) thus allowing

the usage of glycine in biocompatible photonic devices

for quantitative tissue imaging and diseases diagnosis

(Campagnola, 2011).

Stabilization of β-glycine crystals by Pt substrate

(Seyedhosseini et al., 2014), strong piezoelectric activity

exceeding that of classical perovskite piezoelectric ceramics

(Heredia et al., 2012; Guerin et al., 2017), and nonlinear

susceptibility much higher than that of γ-glycine (Gleeson et

al., 2020), make β-glycine a promising functional material for

various biomedical applications such as wearable and

implantable sensors (Bishara et al., 2020; Hosseini et al., 2020;

Li et al., 2020), energy harvesting, (Guerin et al., 2017) and

nonlinear optical devices (Seyedhosseini et al., 2014; Gleeson

et al., 2020). Recently, the combination of chitosan fibers with β-
glycine allowed the creation of a new biodegradable sensor for

sub-bandage pressure monitoring with quite high sensitivity in

the range from 5 to 60 kPa (Hosseini et al., 2020). However,

obtained spherulite-like β-glycine crystal structures demonstrate

mainly shear piezoresponse that limits the applicability and

sensitivity of the sensor. Another configuration of a sensor

with β-glycine crystals confined in the cylindrical nanopores

with the polar axis oriented along the pores provided pressure

sensitivity as low as 1 Pa (Bishara et al., 2020). The application of

inkjet printing suggests additional ways of designing the next-

generation biosensors (Buanz and Gaisford, 2017; Slabov et al.,

2019).

Though ferroelectricity in γ-glycine still remains a

theoretical possibility, it also could be interesting for

developing wearable and implantable bioelectronic devices

even regardless of its slightly weaker piezoelectric response

(Guerin et al., 2017). That is due to its phase stability and

the pronounced positive therapeutic effect on cognitive

functions and neural activity, as compared with α-glycine
(Markel et al., 2011; Malakhin et al., 2012). As far as we

know, the biological activity of the β-glycine was not studied

yet. The combination of outstanding functional properties,

inherent biocompatibility, stability, and direct therapeutic

effect can endow γ-glycine-based sensors with additional

multi-aspect functions. Recently, they have been grown as

wafer-scale films in combination with PVDF (Yang et al.,

2021) and demonstrated much higher sensitivity than PVDF

polymer patches (Okosun et al., 2021).

Moreover, we suppose that humidity-controlled phase

transitions (Isakov et al., 2014) allow, in principle, the

creation of β-γ and β-α “chimera” crystals with the

combination of two or even three polymorphic phases in one

crystal. Such a combination of phases and thus functional

properties may additionally expand possible applications of

glycine and other amino acid crystals. At the same time, such

devices would be able to disintegrate and resorb after completing

their work cycle without any adverse long-term effects (Hosseini

et al., 2021).

The idea of the control of functional properties via

supramolecular packing (Guerin et al., 2017) can probably be

also extended to β′, δ, ε, and ζ phases of glycine existing at high

pressures (Boldyreva et al., 2005; Dawson et al., 2005; Goryainov

et al., 2005; Goryainov et al., 2006). Thus, ε-glycine at about 4.3 GPa
belongs to piezoelectric space group Pn, (Dawson et al., 2005)

whereas δ-glycine belongs to the centrosymmetric space group P21/

a (Dawson et al., 2005). Recent computer modeling (Guerra et al.,

2020) revealed threemore potentially piezoelectric phases of glycine:

m, t, and o (space groups P21, P43, and P212121, respectively) that

were not observed experimentally yet. These exotic glycine

polymorphs are not stable under ambient conditions. However,

the possibility of finding ways for their stabilization in further

research (as it happened with metastable β-glycine) cannot be

ruled out. The authors foresee that such a simple molecule as

glycine will bring many more surprises in the future.

Conclusion

In this mini-review, we summarized the recent findings

on ferroelectric properties and polarization switching of β-
and γ-phases of glycine. We demonstrated that due to the

transitions between polymorphic phases, the crystal habit is

not a reliable method for choosing the appropriate crystals

for the research, and additional phase confirmation by

confocal or micro-Raman spectroscopy is highly

recommended. Recent experimental and computer

simulation studies of domain structures and polarization

switching undoubtedly confirmed ferroelectricity in β-
glycine, whereas a single molecule switching in γ-glycine
still remains a theoretical possibility. Regardless of the

metastability of the β-phase, its stabilization inside

nanopores or microfluidic channels, as well as at the Pt

substrates, allows considering its usage in various

applications, whereas the outstanding nonlinear optical

properties and the ability to create stable periodical

domain structures make β-glycine a promising material for

biocompatible photonic devices. We suppose that the

combination of two or three polymorphic phases in one

crystal is potentially achievable due to the humidity-

controlled phase transitions, and searching the ways for

effective stabilization of high-pressure polymorphic phases

can open new ways for applications of crystals of this

remarkable amino acid.
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