Fabrication of Pd/In₂O₃ Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Towards CO₂ Hydrogenation to Methanol

Zhongjie Cai,^a Meng Huang,^a Jiajun Dai,^a Guowu Zhan,^{b*} Fu-li Sun,^d Gui-Lin Zhuang,^d Yiyin Wang,^a Pan Tian,^a Bin Chen,^b Shafqat Ullah,^a Jiale Huang,^{a*} and Qingbiao Li^{a,b,c}

^a Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China

^b College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China

^c College of Food and Biology Engineering, Jimei University, 185 Yinjiang Road, Xiamen, Fujian 361021, P. R. China

^d Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China

*To whom correspondence should be addressed: <u>gwzhan@hqu.edu.cn</u> (Guowu Zhan) and <u>cola@xmu.edu.cn</u> (Jiale Huang)

Figure S1. Representative SEM images of TCPP(Pd)@MIL-68(In) at TCPP(Pd) loading content of 1.9 wt% (a-b), and (c-d) derived $Pd@In_2O_3$ catalyst.

Figure S2. Representative SEM images of TCPP(Pd)@MIL-68(In) at TCPP(Pd) loading content of 3.8 wt% (a-b), and (c-d) derived $Pd@In_2O_3$ catalyst.

Figure S3. Representative SEM images of TCPP(Pd)@MIL-68(In) at TCPP(Pd) loading content of 4.7 wt% (a-b), and (c-d) the derived Pd@In₂O₃ catalyst.

Figure S4. Representative SEM images of (a) Pd@In₂O₃ catalyst derived from Pd-TCPP@MIL-68(In) at TCPP(Pd) loading content of 2.8 wt%, (d-f) IWI-Pd-In₂O₃ catalyst prepared from using Pd²⁺@MIL-68(In) as a precursor.

Figure S5. Representative TEM images at different magnifications of $Pd@In_2O_3$ -x catalysts with different calcination temperatures. (a-c) 600 °C, (d-f) 700 °C, and (g-i) 800 °C.

Figure S6. The comparisons of CO_2 conversion and methanol selectively over the Pd@In₂O₃ catalyst under different pretreatment conditions (temperature, time, and atmospheres).

Figure S7. XRD patterns of the spent Pd/In_2O_3 and IWI- Pd/In_2O_3 catalysts.

Figure S8. (a) Raman spectra of the calcination catalyst and (b) Raman spectra of the spent catalyst.

Figure S9. The space-time yield (STY) of methanol as a function of the relative concentration of oxygen vacancy.

Figure S10. Structure diagrams of the important intermediates in the catalytic CO_2 hydrogenation on the surface of the Pd/In₂O₃ catalyst. Color codes: white, H atoms; red, O atoms; brown, In atoms; cyan, Pd atoms.

Figure S11. (a) CO_2 adsorption structure, (b) charge transfer, and (c) the catalytic pathway on the InPd/In₂O₃ catalyst.

Sample	TCPP(Pd) (mg)	H ₂ BDC (mg)	In(NO ₃) ₃ (mg)	DMF (mL)	Length (um)	Width (um)	${S_{BET}\over m^2/g}$	V _{pore} cm ³ / g
TCPP(Pd) @MIL- 68(In)	0	200	408.2	5.0	4.6±0.5	1.0±0.2	846	0.68
	10	200	408.2	5.0	6.0 ± 1.2	1.0 ± 0.2	701.5	0.46
	15	200	408.2	5.0	6.9 ± 1.0	1.4 ± 0.2	675.9	0.20
	20	200	408.2	5.0	8.1 ± 1.5	1.4 ± 0.5	156.6	0.11
	25	200	408.2	5.0	8.4 ± 1.5	1.4 ± 0.4	60.5	0.08
	30	200	408.2	5.0	8.5 ± 1.5	1.4 ± 0.6	n.a.	n.a.

Table S1 Synthetic parameters and the corresponding average length and width of the prepared
 MIL-68(In) composites.

Catalyst	T [K]	P [MPa]	$\begin{array}{c} \text{GHSV} \\ (\text{mL } \text{g}_{\text{cat}}^{-1} \\ \text{h}^{-1}) \end{array}$	S _{MeOH} (%)	$\begin{array}{c} STY_{MeOH} \\ (g_{MeOH} \ h^{\text{-1}} \\ g_x^{\text{-1}}) \end{array}$	Ref.
PdIn-In ₂ O ₃ /SiO ₂ ^a	573	5.0	63000	24	3.6	1
Pd/In ₂ O ₃ -CP ^b	553	5.0	24000	75	81.3	2
Pd/In ₂ O ₃ /SBA-15	543	5.0	15000	83.9	3.5	3
$Pd-P/In_2O_3^c$	573	5.0	21000	71	97.8	4
Pt/In ₂ O ₃	573	5.0	21000	54	52.6	5
Au/In ₂ O ₃	573	5.0	21000	67.8	23.2	6
Ir/In ₂ O ₃	573	5.0	21000	70	7.65	7
Pd/CeO ₂	513	3.0	6000	47.7	1.16	8
Pd-ZnO@ZIF-8	563	4.5	19200	78	19.8	9
$h-In_2O_3/Pd^d$	568	3.0	24000	74	41.9	10
Pd@In ₂ O ₃ -500	568	3.0	19200	74	79.2	our work
Pd@In ₂ O ₃ -600	568	3.0	19200	81	81.1	our work

Table S2 Comparison of CO₂ hydrogenation to methanol over different catalysts.

Notes: S_{MeOH} represents the selectivity of methanol, and STY_{MeOH} represents the space-time yield of methanol-based on the weight of the supported noble metals such as Pd, Pt, Au, and Ir, etc.

^a: Both PdIn alloy and In_2O_3 were supported on SiO₂.

^b: Pd-In₂O₃ catalyst was synthesized by co-precipitated (CP).

^c: Pd was supported on In₂O₃ by using the peptide as a modifier (Pd-P).

^d: Pd nanoparticles were supported on hollow-tube structure In₂O₃ (*h*-In₂O₃).

Catalyst	Noble metal	Temp.	Pressure	H_2/CO_2	Catalytic performance		Ref.
	loading (wt%)	(K)	(MPa)		CO_2 conv. (%)	Methanol selec. (%)	
					()	()	
Pd/In_2O_3	0.93	573	5.0	4	20	71	4
Pd/In ₂ O ₃	0.75	553	5.0	4	9.2	78	2
Pd/In ₂ O ₃	1.36	568	3.0	3	10.5	72.4	10
Pd/In ₂ O ₃	5.0	523	3.	3	1.9	72	10
Pt/In ₂ O ₃	1.07	573	5.0	4	17.3	54	10
Au/In ₂ O ₃	2.0	573	5.0	4	11.7	67.8	10
Ir/In ₂ O ₃	1.0	573	5.0	4	11.6	70	10
Pd@In ₂ O ₃	0.5	568	3.0	3	8.1	81.1	our work

Table S3 Comparision of the M/In_2O_3 catalysts with different noble metals loading contents on In_2O_3 support for CO_2 hydrogenation.

References

1. Snider, J. L.; Streibel, V.; Hubert, M. A.; Choksi, T. S.; Valle, E.; Upham, D. C.; Schumann, J.; Duyar, M. S.; Gallo, A.; Abild-Pedersen, F.; Jaramillo, T. F., Revealing the Synergy between Oxide and Alloy Phases on the Performance of Bimetallic In–Pd Catalysts for CO₂ Hydrogenation to Methanol. *ACS Catal.* **2019**, *9* (4), 3399-3412.

2. Frei, M. S.; Mondelli, C.; Garcia-Muelas, R.; Kley, K. S.; Puertolas, B.; Lopez, N.; Safonova, O. V.; Stewart, J. A.; Curulla Ferre, D.; Perez-Ramirez, J., Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation. *Nat. Commun.* **2019**, *10* (1), 3377.

3. Jiang, H.; Lin, J.; Wu, X.; Wang, W.; Chen, Y.; Zhang, M., Efficient hydrogenation of CO₂ to methanol over Pd/In₂O₃/SBA-15 catalysts. *Journal of CO₂ Utilization* **2020**, *36*, 33-39.

4. Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C.-j., CO₂ hydrogenation to methanol over Pd/In₂O₃: effects of Pd and oxygen vacancy. *Appl. Catal. B* **2017**, *218*, 488-497.

5. Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C.-J., A highly active Pt/In₂O₃ catalyst for CO₂ hydrogenation to methanol with enhanced stability. *Green Chem.* **2020**, *22* (15), 5059-5066.

Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S. D.; Rodriguez, J. A.; Liu, C.-J., Hydrogenation of CO₂ to Methanol on a Au^{δ+}–In₂O_{3-x} Catalyst. *ACS Catal.* 2020, *10* (19), 11307-11317.

7. Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C.-j., Highly Active Ir/In₂O₃ Catalysts for Selective Hydrogenation of CO₂ to Methanol: Experimental and Theoretical Studies. *ACS Catal.* **2021**, *11* (7), 4036-4046.

8. Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X., Insights into the Influence of CeO₂ Crystal Facet on CO₂ Hydrogenation to Methanol over Pd/CeO₂ Catalysts. *ACS Catal.* **2020**, *10* (19), 11493-11509.

9. Li, X.; Liu, G.; Xu, D.; Hong, X.; Edman Tsang, S. C., Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO₂ hydrogenation to methanol. *J. Mater. Chem. A* **2019**, *7* (41), 23878-23885.

10. Cai, Z.; Dai, J.; Li, W.; Tan, K. B.; Huang, Z.; Zhan, G.; Huang, J.; Li, Q., Pd Supported on MIL-68(In)-Derived In₂O₃ Nanotubes as Superior Catalysts to Boost CO₂ Hydrogenation to Methanol. *ACS Catal.* **2020**, *10* (22), 13275-13289.

11 Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosinov, N.; Filot, I. A. W.; Rabeah, J.; Bruckner, A.; Hensen, E. J. M., Ni-In Synergy in CO₂ Hydrogenation to Methanol. *ACS Catal* **2021**, *11* (18), 11371-11384.