Exploring antioxidant and α-glucosidase inhibition in *Eugenia* L. extracts: A comprehensive phytochemical study

Mariana Dalmagro¹, Guilherme Donadel², Mariana Moraes Pinc³, Ana Paula Becker Viana⁴, Elissandro Jair Klein⁵, Edson Antônio da Silva⁶, Nadla Soares Cassemiro⁷, Denise Brentan Silva⁸, Arquimedes Gasparotto Junior⁹, Jessica Renata de Almeida Canoff¹⁰, Emerson Luiz Botelho Lourenço¹¹, Jaqueline Hoscheid^{12*}.

¹Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil; ²Postgraduate Program in Animal science with an emphasis on bioactive products, University of Paraná, Umuarama, Brazil; ³Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil; ⁴Postgraduate Program in Bioenergy, State University of Western Paraná, Toledo, Brazil; ⁵Graduate Program in Chemical and Biotechnological Processes (PPGQB), Federal University of Technology Paraná, Toledo, Paraná, Brazil; ⁶Postgraduate Program in Chemical Engineering, State University of Western Paraná, Toledo, Brazil; ⁷Natural Products Laboratory and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; ⁸Natural Products Laboratory and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; ⁹Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; ¹⁰Professional Master's Program in Medicinal Plants and Herbal Medicines in Primary Care, University of Paraná, Umuarama, Brazil; ¹¹Postgraduate Program in Animal science with an emphasis on bioactive products, University of Paraná, Umuarama, Brazil; ¹²Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil.

CORRESPONDING AUTHOR: Jaqueline Hoscheid. Phone number: +55(45) 30554350. Fax number:+55 (45) 33797002. e-mail address: jaqueline.hoscheid@gmail.com - https://orcid.org/0000-0002-0020-9002

ABSTRACT

This study analyzed extracts obtained from the leaves of *Eugenia uniflora*, *E. involucrata*, and *E. myrcianthes* to determine their chemical composition, antioxidative properties, and α -glucosidase inhibitory capacity. By using liquid chromatography with a diode array detector, we identified chlorogenic acids, flavonoids, tannins, proanthocyanidins, saponins, and triterpenes in the extracts. The antioxidant activities of the extracts were found to be directly related to their total phenolic, flavonoid content and enzyme inhibition. The *E. uniflora* aqueous extract showed significant inhibition of α -glucosidase (IC₅₀ 0.98 µg mL⁻¹), indicating its potential as a non-competitive inhibitor for managing Diabetes Mellitus. This study contributes to the existing knowledge on the chemical and biological aspects of *Eugenia* genus.

Keywords: E. uniflora; E. involucrata; E. myrcianthes; Myrtaceae; Pitanga.

3. Experimental

3.1. Extract processing

Leaves of *E. involucrata* (cherry tree), *E. uniflora* (pitangueira) from the red genotype, and *E. myrcianthes* (peach tree) were collected at the Zoobotanical Garden in the city of Toledo, Paraná, Brazil (24°43'31.8"S 53°44'42.3"W). The plant specimens were identified and registered by the herbarium of the State University of Western Paraná as UNOP 10444, 10445, and 10464.

The leaves were dehydrated naturally at room temperature, ground, and classified using a series of Tyler sieves. The samples were obtained from particles with an average diameter of 0.421 mm through a traditional extraction method using an oil and fat extractor known as Goldfish. Considering that the polarity of the solvent affects the extraction process, and that ethanol enhances the extraction of phenolic compounds (Oliveira et al. 2018; Garmus et al. 2014), ethanol (Neon P.A.) was used at a mass:solvent ratio of 1:10 (w/v). The extraction was conducted at 100 °C for 90 minutes with continuous heating. Then, a small amount of solvent was added at 130 °C for 60 minutes,

followed by solvent recovery for 30 minutes. The extracts were evaporated at 60 °C (using IKA® RV10 control) until the residual solvent was completely removed.

Due to the promising results obtained from in vitro assays of *E. uniflora* (see Results and Discussion section), an aqueous extract was prepared and evaluated. The extraction was performed in a 1:10 ratio (drug:solvent) using turbo extraction in four five-minute cycles. The extraction solvent used was acetone:water (7:3, v/v). The extract was then filtered and concentrated by rotary evaporation at 40 °C and 150 rpm using Laborota 4000 (Heidolph). The concentrate was subjected to freeze-drying at -64 °C and 0.006 mBar using ALPHA 1-2 LDplus (Fisher Scientific, France) and stored at 4 °C.

3.2. Phytochemical screening

3.2.1. LC-DAD-MS analysis

The samples were analyzed using a liquid chromatograph (Shimadzu, Kyoto, Japan) connected to a diode array detector and a high-resolution mass spectrophotometer (LC-DAD-MS) equipped with an electrospray ionization source (Bruker Daltonics, Billerica, MA, USA). A Kinetex C18 chromatography column (150 mm x 2.2 mm, 100 A; 2.6 μ m, Phenomenex) was used. The elution profile followed a similar pattern as described by Tolouei et al. (2019). Mobile phases consisted of acetonitrile and ultrapure water with 0.1% formic acid. The flow rate was set at 0.3 μ L min⁻¹ and the column temperature was maintained at 50 °C. In the electrospray ionization source, nitrogen gas was utilized, with a nebulizer pressure at 4 Bar and drying gas flow rate of 9 L min⁻¹. Both positive and negative ion modes were employed. The samples were dissolved in a mixture of methanol and water (1:1, v/v) at a concentration of 1 mg mL⁻¹, filtered through a Millex 0.22 μ m PTFE membrane (Millipore), and then injected (8 μ L) into the chromatographic system using an autoinjector. Compound annotation was based on comparison of spectral data with those previously reported in the literature, including UV, accurate mass spectra data, and fragmentation profiles.

3.2.2. Quantification of Total Phenolic Compounds (TPC)

The total phenolic content (TPC) was determined using the Folin-Ciocalteu method, as described by Singleton and Rossi (1965). The extracts were prepared at a

concentration of 1000 μ g mL⁻¹ and were evaluated in three separate trials. The absorbance was measured at a wavelength of 765 nm using a spectrophotometer called Kasuaki, Model IL-592. The quantification was based on a standard curve of gallic acid. All measurements were conducted three times, and the TPC was expressed as μ g gallic acid equivalent per gram of extract (μ g_{EAG} g_{ext}⁻¹).

3.2.3. Quantification of Total Flavonoids Content (TFC)

The spectrophotometric quantification was conducted using the principle of complexing the flavonoid nucleus with a 5% (w/v) solution of aluminum chloride. This methodology was previously described by Woisky and Salatino (1998). The quantification process involved using a calibration curve for quercetin, which was measured at a wavelength of 425 nm using a spectrophotometer. The extracts were evaluated in triplicate at a concentration of 1000 μ g mL⁻¹, and the results were expressed as the equivalent amount of quercetin in micrograms per gram of extract (μ g_{QUE} g_{ext}⁻¹).

3.3. Antioxidant capacity

The extracts were dissolved at a concentration of 1000 μ g mL⁻¹ and evaluated to determine their ability to scavenge DPPH (2,2-Diphenyl–1-picrylhydrazyl) and ABTS⁺⁺ (2,2-Azinobis(3-ethylbenzthiazoline-6-sulfonic acid)) radicals, as well as their ability to reduce the FRAP complex (Iron (III)/tripyridyltriazine), in independent triplicates.

Calibration curves were created using the Trolox standard (Sigma-Aldrich, St. Louis, MO, USA) to quantify the antioxidant activity using the DPPH and ABTS⁺⁺ methods. For quantification using the FRAP method, ferrous sulfate was used, following the methodology described by Silveira et al. (2018), Re et al. (1999), and Santos et al. (2016) with modifications (Dalmagro et al. 2023). A positive control, quercetin (purity \geq 95%; Sigma-Aldrich, St. Louis, MO, USA), was used in all antioxidant activity assays at a concentration of 1000 µg mL⁻¹.

3.4. α-glicosidase inhibitory capacity

The activity of α -glucosidase inhibition was determined in 96-well microplates. The extract was dissolved in 100 µL of 0.1 M sodium phosphate buffer (pH 7.5, 0.02% NaN₃) containing 10% DMSO. The IC₅₀ values of the extracts were evaluated using a series of dilutions, starting with a concentration of 5 mg mL⁻¹. 80 μ L of α -glucosidase solution (type I, from Saccharomyces cerevisiae) in phosphate buffer (2.0 U mL⁻¹) were added, followed by incubation at 28 °C for 10 minutes. Then, 20 μ L of p-nitrophenyl α -D-glucopyranoside substrate solution (pNPG 10 mM in phosphate buffer) was added (Schmidt et al. 2012). The inhibition of the enzyme was determined by measuring the absorbance of the p-nitrophenol cleavage product at 405 nm for 35 minutes using a Multiskan FC microplate photometer controlled by the SkanIt ver. 2.5.1 software (Thermo Scientific, Waltham, MA, USA).

3.4.1 Type of inhibition of α -glucosidase

The extracts were used to determine the inhibition of α -glucosidase. The Lineweaver-Burk plot was used to analyze the effects of varying concentrations of the reaction substrate (pNPG). This approach was described in a study by Lineweaver and Burk (1934), as well as a more recent study by Şöhretoğlu et al. (2018). To evaluate the inhibition, ten different concentrations of the reaction substrate were tested: 0.20, 0.22, 0.25, 0.29, 0.33, 0.40, 0.50, 0.67, 1.00, 2.00, and 4.00 mM. The same procedure as before was followed. Additionally, other kinetic parameters such as the inhibition constant (K_m) and V_{max} were calculated. The y-intercept of the Lineweaver-Burk graph corresponds to the inverse of V_{max}, while the x-axis intersection represents $-1/K_m$. To determine the inhibition type of the tested extract (competitive, noncompetitive, or mixed type), a comparison of K_m and V_{max} was made in the presence and absence of the inhibitor.

3.5. Statistical analysis

The results were analyzed using analysis of variance (ANOVA). The means were compared using Tukey's test (p < 0.05) through the software Statistica 13.0 (Statsoft®, USA).

Deals	RT	Compound	UV	ME	Positive (m/z)		Nega	tive (<i>m</i> / <i>z</i>)	•	р	C	
геак	(min)		(nm)	MIF	MS	MS/MS	MS	MS/MS	_ ^	D	C	D
1	1.3	Quinic acid	-	$C_7H_{12}O_6$	193.0709	-	191.0563	-	Х	Х	Х	
2	1.3	Di-O-hexoside	-	$C_{12}H_{22}O_{11}$	-	-	341.1099	191	Х	Х	Х	Х
3	1.9	N-acetyl leucine	-	$C_8H_{15}NO_3$	174.1119	130	-	-		Х		
4	2.7	Gallic acidst	271	$C_7H_6O_5$	-	-	169.0145	-	Х	Х		Х
5	15	5-O-E-caffeoylquinic acidst	299, 324	$C_{16}H_{18}O_9$	355.1010	163	353.0887	191, 179, 161			Х	
6	17.4	Coumarylquinic acid	283	$C_{16}H_{18}O_8$			337.0933	191, 163		Х		
7	17.4	Catechin st	279	$C_{15}H_{14}O_{6}$	291.0868	189, 161, 147	289.0728	221, 188, 159			Х	
8	17.6	Coumarylquinic acid	299	$C_{16}H_{18}O_8$	339.1062	220, 165, 147	337.0940	191, 163		Х		
		derivative										
9	17.9	Macrocyclic dimeric	265	$C_{61}H_{46}O_{40}$			708.0697 2+	765, 633, 613,	Х	Х		
		ellagitannin						597, 450, 427,				
								301, 275, 273,				
								169				
10	18.1	O-galloyl PDE-PDE (B-type)	272	$C_{37}H_{12}O_6$	763.1503	425, 407, 299,	761.1347	423, 305, 243,				Х
						287, 179		177				
11	18.3	Chlorogenic acid	288, 325	$C_{16}H_{18}O_9$			353.0883	252, 191, 179,	Х	Х	Х	
								163, 161				
12	18.8	Actinidioionoside	263	$C_{19}H_{34}O_9$			405.2113	357, 315, 308,	Х	Х	Х	
								293, 174, 153				

Table S1. Compounds annotated from the samples by LC-DAD-MS.

13	19	PFT-PDE (B-type)	276	$C_{30}H_{26}O_{11}$	563.1552	409, 287, 273,	561.1423	407, 289, 245,			Х
						255, 231, 189,		203			
						167					
14	19.3	Hydroxy-methoxyphenyl O-	263	$C_{20}H_{22}O_{12}$			453.1036	313, 297, 169	Х	Х	Х
		galloyl-hexoside									
15	19.6	Epicatechin st	278	$C_{15}H_{14}O_{6}$	291.0867	207, 189, 179,	289.0728	221, 203, 187,			Х
						161, 147		177, 173, 161,			
16	19.9	Dihydrochalcon-hexoside	277	$C_{21}H_{24}O_{10}$	437.1429	359, 275, 191,	435.1313	342, 273, 171,			Х
						173, 139		121			
17	20.1	PFT-PDE (B-type)	277	$C_{30}H_{26}O_{11}$	563.1548	409, 287, 257,	561.1417	407, 289, 245,			Х
						231		203			
18	20.2	Coumaroylquinic acid	264	$C_{16}H_{18}O_8$			337.0942	191, 173, 163	Х	Х	
19	21.1	PFT-PDE (B-type)	278	$C_{30}H_{26}O_{11}$	563.1560	409, 287, 257,	561.1410	407, 289, 245,		Х	
						231, 189, 179,		203, 179, 164,			
						167,147		151			
20	21.4	Afzelechin-afzelechin (B-	274	$C_{30}H_{26}O_{10}$	547.1607	405, 393, 287,	545.1469	273, 255, 229,			Х
		type)				275, 255, 227,		205, 164			
						189, 167, 149					
21	21.6	Afzelechin-afzelechin (B-	275	$C_{30}H_{26}O_{10}$	547.1602	393, 287, 275,	545.1471	273, 205, 164			Х
		type)				255, 189, 167					
22	21.7	Myricetin O-galloyl-hexoside	265, 363	$C_{28}H_{24}O_{17}$	633.1057	319, 153	631.0946	479, 316, 299,		Х	
								271, 169			
23	22	Methoxybenzofuranpropanoic	264,340	$C_{18}H_{22}O_{10}$	399.1297	237, 191	397.1144	235, 179, 159			Х
		acid O-hexoside									

24	22.2	Myricetin O-hexoside	263, 358	$C_{21}H_{20}O_{13}$	481.0955	319	479.0828	316, 287, 271,	Х	Х	X
								179			
25	22.4	Myricetin O-hexoside	265, 361	$C_{21}H_{20}O_{13}$	481.0965	319	479.0841	316, 287, 271,	Х		Х
		derivative						179			
26	22.8	Dihydroxy-	277	$C_{18}H_{22}O_9$	383.1339	365, 347, 287,	381.1190	261, 233, 218,		Х	Х
		isopropylchromone-hexoside				263, 247, 233		189, 161			
27	22.9	Myricetin O-pentoside	266, 363	$C_{20}H_{18}O_{12}$	451.0859	319, 273, 165,	449.0737	316, 287, 271,	Х	Х	Х
						153		259, 242, 214,			
								179			
28	23.2	Catechin O-gallate	275	$C_{22}H_{18}O_{10}$	443.0984	395, 352, 329,	441.0828	289, 221, 205,			Х
						278, 271, 207,		183, 169			
						179, 153					
29	23.4	Tetrahydroxy-dimethoxy	272, 351	$C_{17}H_{14}O_8$	347.0769	331, 314, 286,	345.0626	330, 315, 299,			Х
		flavone				268, 258,		287, 271, 259,			
								243, 231, 215			
30	23.7	Di-O-galloyl-hexosyl ellagic acid	255, 361	$C_{34}H_{24}O_{20}$			751.0814	449, 301			Х
31	24	Myricetin O-deoxyhexoside	260, 297,	$C_{21}H_{20}O_{12}$	465.1037	319, 273, 153	463.0886	316, 287, 271,	Х	Х	Х
			247					259, 214, 178,			
								163, 151			
32	24.3	Quercetin O-hexoside-O-	266, 294,	$C_{27}H_{30}O_{16}$	611.1626	303	609.1479	300, 271, 255,			Х
		deoxyhexoside	350					178, 151			
33	24.8	Methoxybenzofuranpropanoic	265, 303,	$C_{18}H_{22}O_{10}$	399.1288	237, 220, 191	397.1149	277, 247, 235,			Х
		acid O-hexoside derivative	350					219, 205, 189			

34	26.7	Quercetin O-deoxyhexoside	265, 349	$C_{21}H_{20}O_{11}$	449.1099	303, 283, 257,	447.0940	300, 271, 255,	Х	Х	Х	X
						229, 201, 155		243, 178				
35	27	Unknow	264, 285,	$C_{20}H_{24}O_{11}$	441.1380	237	439.1260	365, 347, 235,			Х	
			344					217				
36	27.1	Trihydroxy-dimethoxyflavone	288, 345	$C_{17}H_{14}O_{7}$	331.0811	315, 298, 270,	329.0666	299, 271, 243,				Х
						242		199				
37	27.7	Galloyl-hexosyl-monoterpene	276	$C_{23}H_{32}O_{11}$	485.2013	350, 297, 249,	483.1867	313, 169		Х		
						219, 171, 153						
38	27.7	Trihydroxy-trimethoxyflavone	265, 292,	$C_{18}H_{16}O_8$	361.0904	345, 331, 317,	359.0778	329, 301, 286,				Х
			348			300, 285, 257		258, 242, 230,				
								214				
39	28.1	Hydroxy-hydroxymethyl-	260, 300,	$C_{12}H_{12}O_5$	237.0764	220, 207, 191,	235.0619	218, 205, 189,			Х	
		methyl-methoxychromone	348			181, 163		177, 161				
40	28.4	Myricetin O-galloyl-	265, 351	$C_{28}H_{24}O_{16}$	617.1132	319, 299, 153	615.0987	463, 317, 271,	Х	Х		
		deoxyhexoside						178, 169				
41	28.6	Myricetin <i>O</i> -galloyl- deoxyhexoside derivative	263, 349	$C_{28}H_{24}O_{16}$	617.1145	299	615.0989	317, 178	х	Х		Х
42	29	Kaempferol O-deoxyhexoside	264, 345	$C_{21}H_{20}O_{10}$	433.1115	287	431.0994	284, 255, 227		Х		
43	29.6	Galloyl-hexosyl monoterpene	275	$C_{23}H_{32}O_{11}$			483.1884	313, 271, 211,		Х		
								169, 151				
44	30.1	Quercetin O-galloyl-	279, 358	$C_{28}H_{24}O_{15}$	601.1163	299	599.1037	563, 515, 301,	Х	Х		
		deoxyhexoside						178, 151				
45	32.6	Steroidal saponin		C ₃₉ H ₆₄ O ₁₅			771.4196	563			Х	

46	32.7	Triterpene saponin		$C_{37}H_{60}O_{12}$			695.4005	487, 313	Х	Х		
47	33.1	Sesquiterpene lactone	266	$C_{15}H_{20}O_3$	249.1488	229, 213, 203,	247.1344	229, 203, 187	Х			
						189, 171, 161,						
						153						
48	33.6	Pentacyclic triterpene		$C_{30}H_{48}O_6$	505.3533	495, 333, 191	503.3392	485, 453, 421,			Х	
								409, 309				
49	34.5	Pentacyclic triterpene		$C_{30}H_{48}O_6$	505.3542	471, 440, 433,	503.3374	409, 390, 307,	Х		Х	Х
						423, 405, 213,		298, 162				
						201, 189, 187,						
						173, 159						
50	35.2	Sesquiterpene lactone		$C_{15}H_{20}O_{3}$	249.1494	201, 189, 175,	247.1347	203, 201, 187,		Х		
						163, 155, 147		177, 163, 155,				
								149, 133				
51	35.9	Pentacyclic triterpene		$C_{30}H_{48}O_5$	489.3582	407, 201, 173,	487.3429	409	Х	Х	Х	Х
						159						
52	36.8	Sesquiterpene lactone		$C_{15}H_{18}O_2$	231.1382	185, 170, 165,			Х	Х		
						158, 155, 149						
53	37	Sesquiterpene lactone		$C_{15}H_{18}O_2$	233.1538	215, 187, 185,				Х		
						171, 157						
54	37.1	Sesquiterpene lactone		$C_{15}H_{18}O_2$	233.1532	215, 173, 159				Х		
55	37.5	Sesquiterpene lactone		$C_{15}H_{18}O_2$	233.1538	216, 182, 175,				Х		
						146						

56	38.6	Coursevel dibydrovy	201	C. H. O.	635 3044	528 435 407	633 3703	580 513 467	v	v	v
50	30.0	Countaroy1-uniyuroxy	291	C391154O7	035.5944	526, 455, 407,	033.3793	569, 515, 407,	Λ	Λ	Λ
		triterpene acid				261, 201, 187,		419, 401, 163,			
						173, 147		145			
57	38.8	Coumaroyl-dihydroxy	291, 315	$C_{39}H_{54}O_7$	635.3944	435, 407, 261,	633.3794	589, 513, 469,	Х	Х	Х
		triterpene acid				247, 215, 201,		163, 145			
						187					
58	38.8	Ferulyl-pentacyclic triterpene	291	$C_{40}H_{56}O_8$	665.4034	591, 435, 283,				Х	Х
						177					
59	39.2	Coumaroyl-dihydroxy	295, 310	$C_{39}H_{54}O_7$	635.3933	535, 516, 435,	633.3806	615, 589, 573,			Х
		triterpene acid				409, 363, 327,		513, 469, 163,			
						299, 201, 189,		145			
						147					

RT: retention time; MF: molecular formula; st: confirmed by injection of authentic standard; PDE: prodelphinidin unit; PFT: profisetidin unit; A: *E. uniflora* aqueous extract; B: *E. uniflora* ethanolic extract; C: *E. involucrate*; D: *E. myrcianthes*.

				y	
Extracts	TPC	TFC	DPPH	FRAP	ABTS ⁺⁺
	$(\mu g_{EAG} g_{ext}^{-1})$	$(\mu g_{QUE} g_{ext}^{-1})$	(μM_{Trolox})	$(\mu mol_{Fe}^{2+} g_{ext}^{-1})$	$(\mu mol_{Trolox} g_{ex}^{-1})$
E. uniflora (aqueous)	168.98 ± 0.04^{a}	$8.31\pm0.31^{\rm a}$	1069.07 ± 3.61^{b}	4714.77 ± 0.93^{a}	6938.21 ± 77.45^{a}
E. uniflora (ethanolic)	$94.46 \pm 1.04^{\text{b}}$	6.79 ± 0.43^{b}	-	3304.51 ± 69.54^{c}	$2262.03 \pm 40.16^{\text{b}}$
E. involucrata	46.11 ± 0.75^{c}	$5.06\pm0.09^{\rm c}$	-	1272.62 ± 22.70^d	1445.26 ± 102.74^{b}
E. myrcianthes	102.87 ± 1.80^{b}	$8.83\pm0.08^{\text{a}}$	$1052.32 \pm 3.61^{\circ}$	4293.52 ± 43.09^{b}	6132.94 ± 429.07^a
Quercetin			$1085.82\pm6.00^{\mathtt{a}}$	$3378.85 \pm 2.79^{\circ}$	3044.98 ± 0.01^{b}

Table S2. Quantification of total phenolics (TPC), total flavonoids (TFC) and antioxidative capacity from *Eugenia* L. extracts.

Mean \pm standard deviation (n=3). (-) sign indicates no capacity. Note: different letters, in the same column, represent significant differences (p<0.05) by Tukey's Test.

glucosidase from <i>Eugenia</i> L. extracts.								
Extract	IC50 (µg mL ⁻¹)							
E. uniflora (aqueous)	0.98 ± 0.02^{d}							
E. uniflora (ethanolic)	1.44 ± 0.08^{c}							
E. involucrata	$43.16\pm2.05^{\rm a}$							

Table S3. Mean IC₅₀ values \pm standard deviation of the inhibitory activity on α -glucosidase from *Eugenia* L. extracts.

E. myrcianthes

Mean \pm standard deviation (n=3). Note: different letters, in the same column, represent significant differences (p<0.05) by Tukey's Test.

 4.87 ± 0.92^{b}

Table S4. V_{max} and K_m values of the inhibitory activity on α -glucosidase from *Eugenia* L. extracts

Sample	V_{max} ($\Delta OD min^{-1}$)	K_m (mmol L ⁻¹)
Control	0.077	7.382
E. uniflora (aqueous)	0.054	7.397
<i>E. uniflora</i> (ethanolic)	0.076	11.187
E. involucrata	0.077	12.242
E. myrcianthes	0.076	44.747

Figure S1. LC-DAD-MS of aqueous extract (A) and ethanolic extract (B) from *E. uniflora, E. involucrata* (C) and *E. myrcianthes* (D).

Figure S2. Lineweaver-Burk plots for the inhibition of α -glucosidase by the extracts tested at the IC₅₀ concentrations. A: *E. uniflora* – aqueous (0.98 ± 0.02 µg mL⁻¹); B: *E. uniflora* – ethanolic (1.44 ± 0.08 µg mL⁻¹); C: *E. involucatra* (43.16 ± 2.05 µg mL⁻¹) and D: *E. myrcianthes* (4.87 ± 0.92 µg mL⁻¹). Control plots represents the concentration of 0 µg mL⁻¹ of extract.

References

Dalmagro M, Pinc MM, Donadel G, Tominc GC, Jacomassi E, Lourenço ELB, Gasparotto Junior A, Boscarato AG, Belettini ST, Alberton O, Prochnau IS, Bariccatti RA, de Almeida RM, de Aguiar KMFR, Hoscheid J (2023) Bioprospecting a Film-Forming System Loaded with *Eugenia uniflora* L. and *Tropaeolum majus* L. Leaf Extracts for Topical Application in Treating Skin Lesions. Pharmaceuticals 16: 1068. DOI: 10.3390/ph16081068.

Garmus TT, Paviani LC, Queiroga CL, Magalhães PM, Cabral FA (2014) Extraction of phenolic compounds from pitanga (*Eugenia uniflora* L.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. J Supercrit Fluids 86: 4-14. DOI: 10.1016/j.supflu.2013.11.014.

Lineweaver H, Burk D (1934) The Determination of Enzyme Dissociation Constants. J Am Chem Soc 56(3): 658–666. DOI: 10.1021/ja01318a036.

Oliveira FCD, Marques TR, Machado GHA, Carvalho TCLD, Caetano AA, Batista LR, Corrêa AD (2018). Jabuticaba skin extracts: Phenolic compounds and antibacterial activity. Braz J Food Technol 21: e2017108. DOI: 10.1590/1981-6723.10817.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radic Biol Med 26: 1231-1237. DOI: 10.1016/S0891-5849(98)00315-3.

Santos KA, Klein EJ, Gazim ZC, Gonçalves JE, Cardozo-Filho L, Corazza ML, da Silva EA (2016) Wood and industrial residue of candeia (*Eremanthus erythopappus*): Supercritical CO2 oil extraction, composition, antioxidant activity and mathematical modeling. J Supercrit Fluids 114: 1-8. DOI: 10.1016/j.supflu.2016.02.015.

Schmidt JS, Lauridsen MB, Dragsted LO, Nielsen J, Staerk D (2012) Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of alpha-glucosidase inhibitors in apple peel (Malus × domestica Borkh.). Food Chem 135: 1692-1699. DOI: 10.1016/j.foodchem.2012.05.075.

Silveira AC, Kassuia YS, Domahovski RC, Lazzarotto M (2018) Método de DPPH adaptado: Uma ferramenta para analisar atividade antioxidante de polpa de frutos de erva-mate de forma rápida e reprodutível. In Embrapa Florestas-Comunicado Técnico (INFOTECA-E); Comunicado Técnico (CNPF): Colombo, Sri Lanka, 2018.

Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Vitic 16(3): 144-158. DOI: 10.5344/ajev.1965.16.3.144.

Şöhretoğlu D, Sari S, Šoral M, Barut B, Özel A, Liptaj T (2018) Potential of *Potentilla inclinata* and its polyphenolic compounds in α-glucosidase inhibition: Kinetics and interaction mechanism merged with docking simulations. Inter J Biol Macromol 108: 81–87. DOI: 10.1016/j.ijbiomac.2017.11.151

Tolouei SEL, Tirloni CAS, Palozi RAC, Schaedler MI, Guarnier LP, Silva AO, de Almeida VP, Budel JM, Souza RIC, dos Santos AC, dos Santos VS, Silva DB, Dalsenter PR, Gasparotto Junior A (2019) *Celosia argentea* L.(Amaranthaceae) a vasodilator species from the Brazilian Cerrado–An ethnopharmacological report. J ethnopharmacol 229: 115-126. DOI: 10.1016/j.jep.2018.09.027.

Woisky RG, Salatino A (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res 37(2): 99-105. DOI:10.1080/00218839.1998.11100961.