Supplementary data

1

19

20

21

2 Table S1. Morphology of wet bacterial cellulose films formed within kombucha tea after 6- and 12-3 day fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria (YA), and ternary culture of yeast-acetic acid bacteria-lactic acid bacteria (YAL) at initial glucose 4 5 concentrations of 20 g/L, 50 g/L và 100 g/L. 6 Table S2. Changes in microbial densities (log CFU/mL) of Komagataeibacter saccharivorans during 7 14-day fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria 8 (YA), and ternary culture of yeast-acetic acid bacteria-lactic acid bacteria (YAL) at initial glucose 9 concentrations of 20 g/L, 50 g/L và 100 g/L. 10 Table S3. Changes in microbial densities (log CFU/mL) of Saccharomyces cerevisiae during 14-day 11 fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria (YA), and ternary culture of yeast-acetic acid bacteria-lactic acid bacteria (YAL) at initial glucose 12 13 concentrations of 20 g/L, 50 g/L và 100 g/L. 14 Table S4. Changes in microbial densities (log CFU/mL) of Levilactobacillus brevis during 14-day 15 fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria (YA), and ternary culture of yeast-acetic acid bacteria-lactic acid bacteria (YAL) at initial glucose 16 17 concentrations of 20 g/L, 50 g/L và 100 g/L. 18

Table S1. Morphology of wet bacterial cellulose films formed within kombucha tea after 7- and 14-day fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria (YA), and ternary culture of yeast-acetic acid bacteria-lactic acid bacteria (YAL) at initial glucose concentrations of 20 g/L, 50 g/L và 100 g/L.

	After 7-day fermentation	After 14-day fermentation		After 7-day fermentation	After 14-day fermentation
A20			YA20		
A50			YA50		
A100			YA100		
YAL20			YAL50		
				Notes:	
		12		A – Komagataeibacter	saccharivorans
YAL100				Y – Saccharomyces cen	revisiae
				L – Levilactobacillus b	revis

29

30

D ay	A20	A50	A100	YA20	YA50	YA100	YAL20	YAL50	YAL10 0
0	4.03	4.04	4.09	4.12	4.10	4.06	4.08	4.10	4.10
	(0.03)	(0.05)	(0.05)	(0.02)	(0.05)	(0.04)	(0.02)	(0.02)	(0.04)
1	5.94	6.02	5.84	5.54	5.72	5.84	5.37	5.54	5.80
	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)	(0.01)	(0.01)	(0.03)	(0.02)
2	6.95	7.05	6.86	6.51	6.59	6.64	6.46	6.69	6.75
	(0.01)	(0.02)	(0.01)	(0.05)	(0.02)	(0.01)	(0.02)	(0.01)	(0.02)
3	7.25	7.45	7.29	7.22	7.13	7.18	7.13	7.24	7.27
	(0.07)	(0.03)	(0.05)	(0.06)	(0.07)	(0.10)	(0.07)	(0.05)	(0.05)
4	8.11	8.19	8.16	8.09	8.15	8.28	8.13	8.11	8.30
	(0.10)	(0.06)	(0.02)	(0.07)	(0.04)	(0.03)	(0.07)	(0.05)	(0.09)
5	8.17	8.27	8.22	8.13	8.16	8.27	8.29	8.2	8.11
	(0.08)	(0.05)	(0.06)	(0.07)	(0.02)	(0.05)	(0.05)	(0.04)	(0.10)
6	8.20	8.23	8.27	7.13	7.18	7.30	7.25	7.15	7.63
	(0.04)	(0.04)	(0.05)	(0.07)	(0.04)	(0.06)	(0.07)	(0.04)	(0.03)
7	6.17	6.16	6.27	6.11	6.18	6.16	6.14	6.14	6.24
	(0.08)	(0.06)	(0.05)	(0.05)	(0.04)	(0.06)	(0.13)	(0.09)	(0.05)
8	6.12	6.29	6.34	5.11	5.48	5.30	4.17	4.18	4.23
	(0.12)	(0.05)	(0.08)	(0.05)	(0.03)	(0.06)	(0.08)	(0.1)	(0.07)
9	6.45	6.13	6.34	3.88	4.32	4.48	4.09	4.41	4.31
	(<0.01)	(0.01)	(0.01)	(0.01)	(<0.01)	(<0.01)	(0.01)	(<0.01)	(<0.01)
10	4.27	4.31	4.16	3.22	3.38	3.23	3.08	3.22	3.29
	(0.05)	(0.05)	(0.06)	(0.06)	(0.03)	(0.04)	(0.05)	(0.06)	(0.05)

11	4.28	4.09	4.24	2.92	2.87	2.90	2.11	2.16	2.09
	(0.03)	(0.07)	(0.09)	(0.11)	(0.12)	(0.08)	(0.10)	(0.02)	(0.07)
12	3.99	4.00	4.25	2.57	2.08	2.63	1.48	2.11	2.14
	(0.12)	(0.06)	(0.10)	(0.03)	(0.05)	(0.04)	(<0.01)	(0.10)	(0.09)
14	3.58	3.73	3.78	2.00	2.16	2.32	0.48	0.35	1.09
	(0.03)	(0.03)	(0.02)	(0.06)	(0.02)	(0.06)	(<0.01)	(0.49)	(0.07)
16	2.79	2.94	3.24	0.45	1.18	1.48	0.30	0.48	0.87
	(0.03)	(0.01)	(0.02)	(0.21)	(0.04)	(0.04)	(<0.01)	(<0.01)	(0.04)
18	1.3 (<0.01)	1.24 (0.34)	2.00 (0.06)	0	0.30 (<0.01)	0.50 (0.28)	0	0.48 (<0.01)	0.54 (0.09)

Notes: The results were presented as mean (standard deviation) of triplicates and different letters in the same columns indicate that the mean values were significantly different at 95% confidence level.

 $A-\textit{Komagataeibacter saccharivorans}, \ Y-\textit{Saccharomyces cerevisiae}, \ L-\textit{Levilactobacillus brevis}$

32

Table S3. Changes in microbial densities (log CFU/mL) of *Saccharomyces cerevisiae* during 14-day fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria (YAL) at initial glucose concentrations of 20 g/L, 50 g/L và 100 g/L.

Day	YA20	YA50	YA100	YAL20	YAL50	YAL100
0	4.11 (0.05)	4.05 (0.02)	4.07 (0.03)	4.12 (0.04)	4.14 (0.02)	4.08 (0.03)
1	5.36 (0.05)	5.42 (0.03)	5.77 (0.01)	5.19 (0.02)	5.28 (0.03)	5.31 (0.08)
2	6.75 (0.02)	6.81 (0.01)	6.69 (0.02)	6.32 (0.03)	6.59 (0.02)	6.77 (0.02)
3	7.36 (0.05)	7.68 (0.03)	7.71 (0.02)	7.55 (0.04)	7.67 (0.02)	7.85 (0.01)
4	8.13 (0.07)	8.14 (0.09)	8.34 (0.06)	8.20 (0.04)	8.27 (0.05)	8.41 (0.04)
5	8.11 (0.05)	8.20 (0.08)	8.27 (0.05)	8.15 (0.04)	8.10 (0.14)	8.23 (0.04)
6	7.34 (0.06)	7.94 (0.01)	8.08 (0.01)	7.25 (0.07)	7.59 (0.03)	7.74 (0.03)
7	6.08 (0.05)	6.22 (0.06)	6.30 (0.06)	6.09 (0.07)	6.14 (0.09)	6.14 (0.09)
8	5.52 (0.06)	5.65 (0.03)	5.82 (0.01)	4.35 (0.04)	4.46 (0.04)	4.65 (0.04)
9	4.44 (<0.01)	4.46 (<0.01)	4.26 (0.01)	4.45 (<0.01)	4.41 (0.01)	4.28 (<0.01)
10	3.43 (0.05)	3.54 (0.02)	3.66 (0.01)	3.48 (0.04)	3.53 (0.04)	3.67 (0.03)

11	3.20 (0.08)	3.23 (0.04)	3.57 (0.03)	2.04 (0.06)	2.29 (0.05)	2.35 (0.04)
12	2.85 (0.03)	2.93 (0.01)	3.33 (0.01)	1.30 (<0.01)	1.99 (0.12)	1.92 (0.11)
14	2.50 (0.04)	2.61 (0.02)	2.97 (0.01)	0.30 (<0.01)	0.48 (<0.01)	0.92 (0.11)
16	1.89 (0.02)	1.97 (0.02)	2.11 (0.01)	0.30 (<0.01)	0	0.59 (0.16)
18	0.30 (<0.01)	0	1.00 (0.06)	0 (<0.01)	0	0.30 (<0.01)

Notes: The results were presented as mean (standard deviation) of triplicates and different letters in the same columns indicate that the mean values were significantly different at 95% confidence level.

 $A-\textit{Komagataeibacter saccharivorans}, \ Y-\textit{Saccharomyces cerevisiae}, \ L-\textit{Levilactobacillus brevis}$

Table S4. Changes in microbial densities (log CFU/mL) of *Levilactobacillus brevis* during 14-day fermentation by single acetic acid bacteria (A), binary culture of yeast-acetic acid bacteria (YA), and ternary culture of yeast-acetic acid bacteria-lactic acid bacteria (YAL) at initial glucose concentrations of 20 g/L, 50 g/L và 100 g/L.

Day	YAL20	YAL50	YAL100
0	4.02 (0.02)	4.14 (0.02)	4.08 (0.03)
1	5.48 (0.02)	5.63 (0.01)	5.86 (0.01)
2	6.25 (0.03)	6.25 (0.03)	6.62 (0.01)
3	7.27 (0.02)	7.22 (0.02)	7.60 (0.02)
4	8.28 (0.03)	8.27 (0.05)	8.16 (0.06)
5	8.28 (0.06)	8.33 (0.07)	8.17 (0.12)
6	7.27 (0.05)	7.23 (0.07)	7.32 (0.06)
7	6.14 (0.09)	6.15 (0.04)	6.24 (0.05)
8	4.14 (0.09)	4.18 (0.10)	4.20 (0.04)
9	3.30 (0.06)	3.33 (0.04)	3.23 (0.04)
10	3.14 (0.09)	3.09 (0.07)	3.18 (0.10)
11	2.02 (0.09)	2.22 (0.06)	2.45 (0.02)
12	2.06 (0.03)	2.09 (0.07)	2.28 (0.06)
14	0.72 (0.17)	0.94 (0.14)	1.09 (0.07)
16	0.30 (<0.01)	0.48 (<0.01)	1.06 (0.08)
18	0	0	0.45 (0.21)

Notes: The results were presented as mean (standard deviation) of triplicates and different letters in the same columns indicate that the mean values were significantly different at 95% confidence level.

 $A-\textit{Komagataeibacter saccharivorans}, \ Y-\textit{Saccharomyces cerevisiae}, \ L-\textit{Levilactobacillus brevis}$