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A AIPW estimator for the neuroscience trial

For the neuroscience trial, the algorithm to obtain a double robust estimator is as follows:

1. At each time point t (t ∈ {1, . . . , 8}), we estimate the conditional probability

P (C∗
t = 0|A, C̄t−1, X̄t−1, Ȳt−1)

by fitting a logistic regression among the patients with C∗
t−1 = 0.

2. Fit a generalized linear model with canonical link (e.g., linear regression for continuous
endpoint) for the outcome Y8 among the treated (A = 1) complete cases given X̄7

and Ȳ7, using weights

8∏
t=1

1

P (C∗
t = 0|A, C̄t−1, X̄t−1, Ȳt−1)

.

Let Ŷi8(X̄i7, Ȳi7) denote the fitted value for patient i (in the treatment arm) for whom
no missing data is observed up to at least time 7 (C∗

7 = 0).

3. Recursively, for t∗ = 7, . . . , 2, 1: fit a generalized linear model with canonical link for
Ŷit∗(X̄i,t∗−1, Ȳi,t∗−1) among the patients with no missing data up to at least time t∗

given X̄t∗−1 and Ȳt∗−1 using weights

t∗∏
t=1

1

P (C∗
t = 0|A, C̄t−1, X̄t−1, Ȳt−1)

.

Let Ŷit∗(X̄i,t∗−1, Ȳi,t∗−1) denote the fitted value for patient i (in the treatment arm)
for whom no missing data is observed up to at least time t∗ − 1 (C∗

t∗−1 = 0).

1



4. Take the sample average of the fitted values Ŷ8(X0, Y0) over all patients (treated and
untreated).

B A Monte-Carlo Study on Combining Unbiased and

Possibly Biased Estimators.

To illustrate the relative benefits of θ̂0(0) and θ̂0(δ̂) versus θ̂, consider an illustrative
Monte-Carlo study with the statistical model generated two samples: (1) the pre-pandemic
sample, which is a sample with 100 paired standard normal random variables (X1 repre-
senting the primary endpoint and Y1 representing a surrogate endpoint) with correlation
cor(X1, Y1) = 0.9 and (2) the pandemic sample with 1000 standard normal random vari-
ables (X2 - surrogate endpoint assessed during the pandemic). The objective is to estimate
the mean of Y (EY = θ), which is equal to zero in this example.
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Figure 1: Histogram and a normal approximation of the distribution; 500, 000 Monte-Carlo
simulations.

The asymptotic distribution of θ̂ (mean of Y1) is approximately normal, so that
√

100 ·
θ̂ ∼ N(0, 1) leads to the width of 95% for

√
100 · θ̂ equal to 3.92(= 2 ·1.96). The asymptotic

distribution of
√

100 · θ̂0(0) is also approximately normal with zero mean and variance
= 0.266358, see Figure 1a. The distance between 2.5% and 97.5% level quantiles of the
distribution of

√
100·θ̂0(0) is equal to 2.03227. Wald’s confidence interval (“mean estimate”

±1.96 “standard deviation of the estimate”) has an almost identical length (= 2.023107).
The asymptotic distribution of

√
100 · θ̂0(δ̂) is not normal anymore and is shown in

Figure 1b. The normal approximation allows us to visually evaluate the departure from
normality. The absence of asymptotic normality, however, is not really a problem. Since
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the asymptotic distribution is known it can be used for estimation, hypothesis testing, and
for calculating confidence intervals. For example, the distance between the 2.5% and 97.5%
level quantiles of the distribution of

√
100 · θ̂0(δ̂) is equal to 3.20191. Wald’s confidence

interval has a shorter length (= 3.064861) associated with a less than 95% coverage.
This Monte-Carlo study demonstrates that if a data analyst is confident that pandemic

data on a surrogate endpoint is unbiased, then it should be incorporated using minimum
variance estimation (θ̂0(0)). If, however, it can be biased, θ̂0(δ̂) is a more appropriate
method.
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