
Enabling cocrystallization of challenging systems: passing through a stableEnabling cocrystallization of challenging systems: passing through a stable
cocrystal solvate as a pathway to strenuous cocrystal formscocrystal solvate as a pathway to strenuous cocrystal forms

J.B. de Maere d'Aertrycke, R. Payen, L. Collard, K. Robeyns, Denise M. Croker, T. Leyssens

Publication datePublication date

01-01-2020

Published inPublished in

Crystal Growth and Design;20 (3), pp. 2035-2043

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

de Maere d'Aertrycke, J.B., Payen, R., Collard, L., Robeyns, K., Croker, D.M.and Leyssens, T. (2020)
‘Enabling cocrystallization of challenging systems: passing through a stable cocrystal solvate as a pathway to
strenuous cocrystal forms’, available: https://hdl.handle.net/10344/8669 [accessed 24 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie


Subscriber access provided by Library, Univ of Limerick | Supported by IReL

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the
course of their duties.

Article

Enabling cocrystallization of challenging systems: passing through
a stable cocrystal solvate as a pathway to strenuous cocrystal forms

J.B. de Maere d'Aertrycke, R. Payen, L. Collard, K. Robeyns, D. Croker, and T. Leyssens
Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.9b01691 • Publication Date (Web): 13 Feb 2020

Downloaded from pubs.acs.org on February 18, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



Enabling cocrystallization of challenging systems: 

passing through a stable cocrystal solvate as a 

pathway to strenuous cocrystal forms
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aInstitute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 
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bSynthesis & Solid State Pharmaceutical Center (SSPC), Bernal Institute, University 

of Limerick, Limerick V94 T9PX, Ireland

*corresponding author: jean-baptiste.demaere@uclouvain.be

ABSTRACT: Caffeine and maleic acid can form various cocrystal forms, which is a 

potential route to avoiding hydration issues of caffeine. This particular system was 

intensively studied as it not only shows co-crystal polymorphism, but also 

stoichiometrically diverse cocrystals with a 1:1 maleic acid: caffeine (MC) and a 1:2 
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maleic acid:caffeine (MC2) form already identified. A cocrystallization process for MC 

was already developed. However, a process leading to pure MC2 remained a 

challenge, as the stability zone of the MC2 suspension is very narrow in most solvents. 

In this paper, we propose an alternative crystallization pathway towards this crystal 

form, passing through a stable solvate. Indeed, we identified a novel cocrystal solvate 

of MC2 (MC2.MeCN) in acetonitrile at 9°C. This cocrystal solvate is characterized by a 

large stability zone in the ternary phase diagram, and consequently, a crystallization 

process leading to this form can easily be devised. Upon filtration, and exposure to 

ambient atmosphere, MC2.MeCN is quickly de-solvated leading to the pure MC2 

cocrystal phase. In this contribution, we therefore show that cocrystal phases, which 

are seemingly strenuous to crystallize from solution, can be accessed by thinking out-

of-the-box and using the properties of unexpected alternative phases.

Keywords: caffeine:maleic acid cocrystals – ternary phase diagram – crystal 

engineering
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1. Introduction

Many active pharmaceutical ingredients (API) exhibit unwanted physico-chemical 

properties, such as poor aqueous solubility, thermal degradation or polymorphic 

transition 1–3. A well-established tool to deal with such issues is to change the crystalline 

phase of the compound, either by salt or cocrystal formation 4–6. Salts are formed 

through acid-base reactions and hence require an acid or basic group, implying that 

such technique cannot extend to all API’s. On the other hand, cocrystal formation, the 

formation of a crystalline single phase material composed of two or more different 

molecular and/or ionic compounds in a stoichiometric ratio, involves any kind of 

molecular interaction (hydrogen bonding, π- π interactions, Van der Waals,…). Its 

application spectrum is therefor much wider 6. Besides, its effectiveness to address 

undesired solid state-related properties of materials has already been well 

demonstrated. Cocrystallization has already been successfully used to enhance 

solubility and bioavailability of pharmaceutical compounds, or to avoid phase 

transformation phenomena, such as polymorphic transformation, crystal hydration or 

deliquescence 5–9.
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Different techniques are available on a laboratory scale to access cocrystals. (i) 

Cocrystallization from the melt consists in heating a physical mixture of the two 

coformers to form a liquid phase and cooling it down until recrystallization of the 

cocrystal phase occurs 10. (ii) Solid-state grinding of the two coformers is a very efficient 

method in which the two solid powders of coformers are mixed and ground at high 

frequency. A drawback of these two methods is the difficulty to isolate selectively the 

cocrystal phase from the other solid phases or impurities 11,12. (iii) Solution based 

cocrystallization regroups all the different methods that involve the use of a solvent, 

namely ripening (or solvent mediated transformation), evaporation and cooling 

crystallization 13–16. Evaporative cocrystallization is performed by diluting both 

coformers in a volatile solvent and leaving the solution to evaporate. As the solvent 

evaporates, the concentration of both coformers increases until solubility of the 

cocrystal is reached and a solid cocrystal phase grows.  Cooling crystallization consists 

in the formation of a solution of the two coformers, reaching supersaturation by cooling. 

In solvent mediated transformations, the coformers are left in suspension in conditions 

under which the cocrystal phase is the most stable phase. Cocrystallization occurs, in 

parallel to dissolution of both coformers 17. 
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Caffeine (Figure 1) is a pharmaceutical compound known to act as a central nervous 

system stimulant and smooth muscle relaxant. It is used as a formulation additive to 

boost the effect of analgesic remedies 21. Two polymorphs, α and β, have been 

identified for caffeine: the α-form is most commonly encountered and the β-form only 

exists at higher temperature. The two polymorphs are enantiotropically related with a 

phase transition occurring at 145°C22. α-caffeine in itself is not ideal for pharmaceutical 

formulation23 as the channel-like structure of this crystal form traps water molecules. 

The α-form is thus better described as a non-stoichiometric hydrate, containing 

between 0.8 and 1 equivalent of water depending on ambient atmosphere humidity 

and temperature. In 2005, Trask et al., proposed to avoid water contamination of 

caffeine taking a cocrystallization approach, successfully identifying five different 

coformers cocrystallizing with caffeine 21. Among these, maleic acid (Figure 1) showed 

the particularity of forming two stoichiometrically diverse cocrystals. 

Figure 1. Detailed structure of caffeine (left) and maleic acid (right)
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Due to this ability to form two stoichiometrically diverse cocrystals, the maleic 

acid:caffeine system was intensively studied. A pure 1:1 maleic acid:caffeine cocrystal 

(MC) phase  could easily be obtained and single crystals isolated through solvent 

evaporation using dichloromethane as a solvent 21. Interestingly, during the 

development of a crystallization process for the MC form, a metastable polymorph of 

this latter was encountered 24. However, efforts in developing a crystallization process 

leading to the pure 1:2 cocrystal material remained challenging. Attempts to obtain the 

1:2 cocrystal form by solution crystallization often resulted in the formation of a mixture 

of two crystal forms, either the 1:2 co-crystal and caffeine or a mixture of both the 1:2 

(MC2) and the 1:1 (MC) cocrystal phases 25–27. Leyssens et al., were able to obtain the 

pure MC2 form from solution using far out-of-equilibrium conditions 24. Other successful 

attempts were mentioned using ultrasound-assisted solution cocrystallization (USCC) 

28, solvent free continuous crystallization (SFCC)29, or electro-spray deposition (ESD) 

30. Still, all these methods present critical drawback as they are either difficult to upscale 

(ESD and USCC) or do not allow purification of the product (SFCC). Furthermore, all 

are kinetically based, with no approach available to access thermodynamically the 1:2 
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phase in a robust manner. This is easily understood considering the extremely narrow 

stability zone of the 1:2 phase in most solvents.

In this paper, we present an out-of-the-box approach to access this phase in a robust 

manner. In our attempts to identify an alternative solvent allowing for a larger stability 

zone of the 1:2 cocrystal, we stumbled upon a thermodynamically stable cocrystal 

solvate working in acetonitrile. This form could easily be crystallized, and a very large 

stability zone for this solvate was found. Furthermore, upon filtration, the solvate could 

easily be de-solvated to yield the pure 1:2 cocrystal phase. We are here the first to 

present a thermodynamic crystallization approach towards the 1:2 phase, passing 

through a stable solvate phase. This is an original approach and shows that one can 

use the diversity in the solid state to find thermodynamically robust processes, even 

for those solid forms that are seemingly strenuous to crystallize.  

2. Materials and methods

Materials. Caffeine (99% purity, CAS: 58-08-2), maleic acid (99% purity, CAS: 110-

16-7), acetonitrile (99% purity, CAS: 75-05-8) and ethyl acetate (99% purity, CAS: 141-

78-6) were purchased from Sigma-Aldrich and used without any further purification. 

1:1 pure cocrystal phase was obtained by adding 390 mg of caffeine and 710 mg of 
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maleic acid (3 equivalents) to 10mL of ethyl acetate. The suspension was heated until 

complete dissolution, subsequently cooled down to 9°C and left over-night. The 

suspension was then filtered and washed with ethyl acetate. Pure 1:2 cocrystal phase 

was obtained mixing 290 mg of caffeine and 180mg of maleic acid (1 equivalent) in 

10mL acetonitrile. The suspension was heated up until complete dissolution and stored 

at 9°C for two days. After two days, crystals appeared and the suspension was filtered 

and washed. The powder was left to dry under ambient conditions, leading to the 1:2 

phase.  

PXRD. X-ray diffraction measurements were performed on a Siemens D5000 

diffractometer equipped with a Cu X-ray source operating at 40 kV and 40 mA and a 

secondary monochromator allowing to select the Kα1 radiation of Cu (λ = 1.5418 Å). A 

scanning range of 2θ values was applied from 2° to 50° at a scan rate of 0.6 min−1 

and a step of 0.02°. Simulated patterns of the known starting compounds were 

calculated from their single crystal structures with Mercury 3.10 (version: August 2016).

Single crystal XRD. Single crystal X-ray diffraction was performed on a MAR345 

image plate detector using Mo Kα radiation (0.71073Å) generated by a Rigaku UltraX 

18S rotating anode (Xenocs Fox3D mirrors). Prior to measurement the crystal was 
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flash cooled at 150 K in a N2 flow. Data integration and reduction were performed by 

CrysAlisPRO (v1.171.35.19) and the implemented absorption correction was applied. 

Structures were solved by direct method using the SHELXS-97 program and refined 

by full-matrix least-squares on  using SHELXL-2014 31,32. Non-hydrogen atoms |𝐹|2

were refined anisotropically, and hydrogen atoms were placed on calculated positions 

in riding mode with temperature factors fixed at 1.2 times  of the parent atoms and 𝑈𝑒𝑞

1.5 times  for methyl groups. 𝑈𝑒𝑞

Determination of TPD in acetonitrile and ethyl acetate. Ternary phase diagrams of 

caffeine and maleic acid in different solvents were determined as follows: mixtures of 

various composition in caffeine and maleic acid were prepared in 3 ml of either MeCN 

or AcOEt. Samples were stored at a controlled temperature of 20°C or 9°C in a Polar 

Bear Plus (Cambridge Reactor Design). Once the wanted temperature reached, vials 

were seeded with ~3mg of 1:1 and 1:2 cocrystals. After five days, the solid phase was 

filtered and its nature determined by PXRD, while a fraction of the supernatant was 

sampled and analyzed by HPLC to determine caffeine and maleic acid concentration. 

Even though the HPLC data allowed drawing the overall aspect of the TPD, for an 
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exact determination of eutectic points a more precise quantitative NMR (qNMR) based 

approach was used. 

HPLC. 150µL of supernatant was sampled, weighed and diluted 15 times in a 3:7 

MeCN:H2O solvent. Caffeine and maleic acid concentrations were dosed using the 

following HPLC method: Device, Waters Alliance 2695. Column, Waters Sunfire C18 

(4.6 × 100 mm, 3.5 μm). Detector, PDA 2998 (extraction at λ = 210 nm). T° = 40°C. 

Injection volume: 5 μL; Flow: 1.23 mL/min; Mobile phase A: H2O + 0.1% H3PO4; Mobile 

Phase B: CH3CN + 0.1% H3PO4; Gradient: 0 min → 10% B and 10%C; 1 min → 10% B 

and 10%C; 4.5 min → 90% B and 10%C; 7 min → 90% B and 10%C; Stop time: 7.5 min. 

A calibration curve was determined prior to analyzing, using concentrations ranging 

from 5 to 250 ppm (w/v) of either caffeine or maleic acid.

qNMR. 600µL of supernatant was sampled, weighed and left to evaporate in an NMR 

tube. The solid residue was dissolved in 0.8mL of deuterated acetonitrile and quantified 

by NMR. qNMR measurements were performed on a 300 MHz Bruker Avance, using 

1,3,5-Trimethoxybenzene as an internal standard together with the compounds of 

interest, dissolved in deuterated acetonitrile. The relaxation time d1 was set to 20 s to 

ensure full relaxation of all protons, and 16 scans were performed for each sample.
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DSC. DSC measurements were performed on a DSC 821 from Mettler Toledo. 

Samples were ground manually in a mortar and 7mg placed in a perforated 40µL 

aluminum crucible. The temperature was increased from 25°C to 180°C at a 10°C.min-1 

rate.

Solubility curve determination. Solubility curves of caffeine and maleic acid in MeCN 

were determined using a Crystal 16 from Technobis. 1 mL solutions of various 

concentration in caffeine or maleic acid were prepared and heated from -5 to 40°C at 

a 0.02°C/min heating rate and stirred at 800rpm. Transmittance was recorded using a 

laser beam to record the clear point of each vial.

Upscaling the crystallization process for 1:2 maleic acid:caffeine cocrystal. 

Crystallizations were performed using an EasyMax 102 from Mettler Toledo in a 100 

mL vessel. The stirring rate was set to 125 rpm and a temperature probe was put in 

direct contact with the solution. A suspension of 1.83 mol/L of caffeine and 2.19 mol/L 

of maleic acid in MeCN was first heated to 50°C and held for 1 hour to ensure complete 

dissolution of the material. The solution was then cooled down to 9°C at a 0.3 K/min 

rate. The suspension was left to equilibrate for 6 hours during which spontaneous 

crystallization occurred, and filtration was subsequently performed on a sieve under 
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vacuum and products were characterized by PXRD. To determine the robustness of 

the process, crystallization experiments were performed and seeded with different 

crystal forms. Solid material was always extracted and subsequently analyzed by 

PXRD. 

3. Results and discussions

3.1. Solvent selection

Designing a robust cocrystallization process at scale is a challenge that requires an 

accurate knowledge of the thermodynamics of the system under consideration 17,33. As 

three different components are involved in cocrystal formation, the solvent and the two 

coformers, isothermal ternary phase diagrams (TPDs) are frequently used. These 

thermodynamic diagrams state the nature of the solid and liquid phases depending on 

the overall composition of the system at a given temperature 34–36. In the current case, 

obtaining pure MC or MC2 co-crystal phase as the only stable phase in suspension is 

rather difficult due to the large solubility difference encountered between maleic acid 

and caffeine in most solvents. This often leads to a skewed TPD with narrow stability 

zones for the cocrystal phases 16. By adjusting the relative solubility of both coformers, 

a more symmetrical diagram can be expected (Figure 2). In the case studied here, we 
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hoped to identify a solvent that shows accessibility zones for the 1:1 and in particular 

for the 1:2 cocrystal phase. Caffeine has a limited solubility in most solvents and 

identifying a solvent showing comparable solubility towards caffeine and maleic acid is 

not a straightforward task.

 

Figure 2. Theoretical TPD at a given temperature for a system of two coformers A and 

B, with strong solubility differences between both coformers. By adjusting the 

solubilities of both co-formers (e.g. by adjusting the temperature), a more symmetrical 

phase diagram can be obtained.

Caffeine nevertheless shows moderate solubility in MeCN and AcOEt. For this 

reason, we started by establishing solubility curves of both coformers in these solvents 

(Figure 3). Caffeine and maleic acid show a similar evolution of their solubility with 

respect to temperature in AcOEt 24. This is not the case in MeCN, where maleic acid 
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solubility increases more rapidly with temperature. This is likely due to the higher 

mobilization of polar interactions at higher temperature. Indeed, between 9°C and 

20°C, caffeine and maleic acid solubility are increased by 34% and 31% respectively 

in AcOEt, while the same temperature change in MeCN increases the solubility by 42% 

for caffeine and 63% for maleic acid. Based on these results, one could expect that the 

ternary phase diagram would exhibit a wider zone for the 1:2 cocrystal crystallization 

at lower temperatures when working in MeCN. No significant differences are expected 

when working at different temperatures with AcOEt. 

Figure 3. Solubility curves of caffeine and maleic acid in MeCN (left) and AcOEt (right)
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3.2. Towards MC2 cocrystallization

Figure 4. TPD of caffeine and maleic acid in AcOEt (up) and MeCN (down) at 20°C

The TPD in both solvents at 20°C show zones that allow the development of a robust 

cocrystallization process for caffeine, maleic acid as well as the 1:1 MC cocrystal form 

(Figure 4). Large stability zones containing two solid forms in suspension (M+MC; 

MC+MC2; MC2+C) can also clearly be observed. However, the zone where the 2:1 

phase is the only stable phase in suspension is too narrow to be observed with the 
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precision at hand, confirming the difficulty to obtain this pure form by solvent 

crystallization. In addition, the determination of the different eutectic points by qNMR 

analysis shows that eutectics corresponding to mixtures of MC/MC2 and MC2/C are too 

close to be distinguished (Table 1). Indeed, MC/MC2 and MC2/C eutectic point 

coordinates are respectively [0.059 molcaf.L-1;0.191 molmal.L-1] and [0.055 molcaf.L-

1;0.190 molmal.L-1] in AcOEt, and [0.20 molcaf.L-1;0.29 molmal.L-1] and [0.19 molcaf.L-

1;0.259 molmal.L-1] in MeCN. 

Table 1. Concentrations in caffeine and maleic acid determined by qNMR and nature 

of the solid phase in equilibrium at the eutectic points in AcOEt and MeCN at 20°C

AcOEt – 20°C MeCN – 20°CPoin
t

Solid 
phase 
compositio
n

xcaf [mol.L-1] Xmal [mol.L-1] xcaf [mol.L-1] Xmal [mol.L-1]

A M-MC 0.036±0.001 0.334±0.002 0.16±0.04 0.47±0.01

B MC-MC2 0.059±0.001 0.191±0.001 0.20±0.01 0.29±0.01

C MC2-C 0.055±0.001 0.190±0.002 0.19±0.01 0.259±0.002

As for caffeine and maleic acid, MC solubility is higher in MeCN than in AcOEt. 

Indeed, the MC solubility product (Ksp) is estimated as 0.075 mol2.L-2 in MeCN and 
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0.012 mol².L-2 in AcOEt.a Similarly, Ksp for MC2 is estimated as 0.0116 mol3.L-3 in 

MeCN and 6.65*10-4  mol3.L-3. In both cases, the system is incongruent with respect to 

the crystallization of the 1:1 phase, as one could expect looking at the solubility ratio 

of caffeine to maleic acid (0.107 in AcOEt and 0.212 in MeCN). Nevertheless, the TPD 

shows a strong increase in solubility for both caffeine and maleic acid upon addition of 

the other component.

Ideally, we wanted to render these diagrams even more symmetrical, hoping to 

increase the stability zone of the 2:1 phase. Based on the solubility curves, lowering 

the temperature seemingly has a more important impact in MeCN with the solubility 

ratio increasing from 0.212 to 0.243 going from 20°C to 9°C, whereas almost no impact 

on the ratio (0.107 at 20°C and 0.104 at 9°C) is observed in AcOEt. Indeed, in the TPD 

diagram in AcOEt at 9°C (Figure 5), the two eutectics delimiting the zone for pure MC2 

cocrystallization are once more close to each other (Table 2). In addition, the caffeine 

to maleic acid concentration ratio of the different eutectics are similar at 20°C and 9°C, 

a Ksp values have been estimated using eutectic point A for MC and eutectic point B 
for MC2
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as was the case for the coformers’ solubility ratio (point A: 0.11 at 20°C and 0.10 at 

9°C – point B/C: 0.31/0.29 at 20°C and 0.25/0.31 at 9°C). This confirms that a decrease 

in temperature shifts the solubility lines in the TPD in a similar manner for all solid forms 

in AcOEt. 

Figure 5. TPD of caffeine and maleic acid in AcOEt at 9°C

Table 2. Concentrations in caffeine and maleic acid determined by qNMR and nature 

of the solid phase in equilibrium at the eutectic points in AcOEt at 9°C

AcOEt – 9°CPoint Solid phase 
composition

xcaf [mol.L-1] Xmal [mol.L-1]

A M-MC 0.0229±0.000
3

0.249±0.001
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B MC-MC2 0.0351±0.000
4

0.138±0.001

C MC2-C 0.0448±0.000
7

0.146±0.001

Based on the data above, we had more hope of strongly affecting the TPD by a 

temperature decrease using MeCN. To our surprise, constructing this diagram at 9°C 

led to the discovery of an unexpected new crystal form. Visually, the typical needle-

shaped crystals one would expect for any of the known forms did not appear 24. Instead, 

translucent plate-like crystals came out of solution (Figure 6). These were analyzed by 

single crystal XRD and identified as a maleic acid:caffeine:acetonitrile (1:2:1) cocrystal 

solvate (MC2.MeCN). The crystal structure was determined by single crystal XRD 

under a flow of liquid nitrogen at 150K to prevent desolvation. MC2 and MC2.MeCN do 

not show clear filiations in terms of crystal structure, however as they share a similar 

space group, it is possible that a topotactict desolvation process occurs. The study of 

the desolvation process has, however, not been studied in detail. In a similar mindset, 

co-crystal solvates have already been shown to be intermediates to produce specific 

polymorphs.18–20  
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Figure 6. MC2.MeCN cocrystal in MeCN at 9°C (left) and after 40 minutes in ambient 

atmosphere at 15°C (right) under microscope

The crystal structure obtained by single crystal XRD reveals the formation of a 1:2 

maleic acid: caffeine solvated cocrystal. The cocrystal crystallizes in a monoclinic 

space group Pc (see Supporting Information 1). In the asymmetric unit, the two 

molecules of caffeine are linked to maleic acid through hydrogen bonds between the 

nitrogen with sp2 hybridization of caffeine and the carboxylic function of maleic acid. 

An internal hydrogen bond between the two carboxylic groups of maleic acid 

contributes to stabilize the conformation of maleic acid. Two hydrogen bonds, 

designated as D according to Etter’s notation 37, form non-cyclic U-shaped trimers 

involving two caffeine and one maleic acid molecules (Figure 7a). The different U-

shaped trimers are head-to-toe oriented, forming sequential alignment of caffeine 
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molecules and maleic acid molecules. Solvent molecules are located in the space left 

between the different trimers, stabilized by Van der Waals interactions (Figure 7b). 

Figure 7. Trimer constituting the MC2.ACN cocrystal (left) and view of the packing along 

the c-axis (right)

As was expected from the solubility study, the TPD in MeCN at 9°C is more 

symmetrical than the one at 20°C due to the similar solubility of the coformers. In 

addition to the effect of temperature, the apparition of a solvated form changes the 

equilibria between the different solid forms. Indeed, the MC2 crystal form is no longer 

thermodynamically stable at that temperature as the MC2.MeCN is.  Consequently, the 

different eutectic points can clearly be distinguished (Table 3) and the different zones 

Page 21 of 41

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



for pure cocrystal formation, either MC or MC2.MeCN, are well defined and accessible 

experimentally (Figure 8). 

Table 3. Concentrations in caffeine and maleic acid determined by qNMR and nature 

of the solid phase in equilibrium at the eutectic points in MeCN at 9°C

MeCN – 9°CPoint Solid phase 
composition

xcaf [mol.L-1] Xmal [mol.L-1]

A M-MC 0.08±0.01 0.3193±0.000
4

B MC-MC2 0.10±0.01 0.24±0.02

C MC2-C 0.11±0.01 0.136±0.003

Figure 8. TPD of caffeine and maleic acid in MeCN at 9°C
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TPD determination at 9°C and 20°C also allowed determining the heat of dissolution 

(ΔHd) of the MC crystal form in AcOEt and MeCN. Indeed, based on solubility data 

obtained experimentally, we were able to calculate the Ksp of MC at 20°C and 9°C in 

both solvents.  Finally, we were able to determine ΔHd using Van’t Hoff equation that 

indicated the dissolution of MC is less endothermic in MeCN than in AcOEt (Table 4).

Table 4. Determination of MC heat of dissolution in AcOEt and MeCN

AcOEt MeCN

𝐾20°𝐶
𝑠𝑝 1.20±0.02*10-2 𝐾20°𝐶

𝑠𝑝 8±2*10-2

𝐾9°𝐶
𝑠𝑝 5.7±0.1*10-3 𝐾9°𝐶

𝑠𝑝 2.6±0.2*10-2

 (kJ/mol)𝛥𝐻𝑑 47±2 (kJ/mol)𝛥𝐻𝑑 67±3

3.3. Crystallization process for MC2 recovery

The findings above paved the way for the development of thermodynamically robust 

MC2 cocrystallization process, starting from a 75mL clear supersaturated solution in 

conditions for which MC2.MeCN is the thermodynamically stable form (Figure 9-left, 

black dot). Such a solution was prepared adding 2.67g of caffeine and 1.91g of maleic 

acid (1.2 equivalents) to 75mL of MeCN. The suspension was heated to 50°C and held 

for 1 hour to ensure complete dissolution of the material. The solution was then cooled 

down to 9°C at a 0.3 K/min rate. The suspension was left to equilibrate for 6 hours, 
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after which filtration was performed on a sieve under vacuum and products were 

characterized by PXRD. To determine the robustness of the process, crystallization 

experiments were performed and seeded with different crystal forms at the onset of 

the isothermal hold at 9°C. Solid material were always extracted and subsequently 

analyzed by PXRD. In principle, the thermodynamic outcome should be the 1:2 

cocrystal solvateb as it is the only stable form in suspension under these conditions. 

Our results show that, no matter the type of seeding form used (M, C, MC, MC2), this 

solvate is always obtained at the end of the process, even if one does not seed, 

implying this form is also the one that crystallizes out spontaneously (Figure 9-right).

b The MC2 form was obtained as confirmed by PXRD analysis after filtration, as the 

MC2.MeCN form desolvates spontaneously upon exposure to ambient atmosphere.
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Figure 9. Conditions for the upscaling experiment (left) and PXRD analysis of the 

crystalline products (right)

A scale-up process was suggested for the MC2 cocrystal form using these conditions. 

To prepare seed material, an initial 4g slurry of MC2.MeCN crystals in suspension was 

left to equilibrate at 9°C for 2 days and used as a seeding material.c 

Then 3.56 g of caffeine and 2.55 g of maleic acid were added to 100ml of MeCN. 

The solution was first heated up to 55°C to ensure complete dissolution of caffeine and 

maleic acid. It was then cooled down to 9°C at a 2 K/h rate. After 15 minutes at 9°C, 

the solution was seeded with the 4g seeding suspension and left to equilibrate for 6 

hours. Upon filtration and drying, 2.01g of material (58% yield with respect to caffeine) 

was recovered and analyzed by PXRD and DSC (see supporting information). The 

quantity of material recovered accounts for 92% of the theoretical yield based on the 

TPD, with the 8% loss explained by filtration and residues remaining in the 

crystallization vessel. 

c The composition used is once more identical to the one represented by the black dot 
in Figure 9.
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4. Conclusion

This study evidenced the importance of solvent and temperature in the development 

of a cocrystallization process. Under specific conditions, this can lead to crystallization 

of defined forms difficult to predict (solvate at lower temperature or cocrystals with 

‘original stoichiometry’). These forms can potentially give access to other forms phase 

transformations. In particular, we are the first to propose a robust way to obtain the 1:2 

maleic acid:caffeine cocrystal. This latter form shows such a small stability zone in 

most solvents, that direct crystallization of this form is strenuous. Here we present an 

innovative pathway to this form, by co-crystallization of the 2:1 co-crystal solvate in 

MeCN. This solvate can easily be obtained by co-crystallization from solution, and 

desolvates to the 2:1 co-crystal form under ambient conditions, hereby offering a 

thermodynamic robust cocrystallization pathway to this form. This paper thus highlights 

the fact that one can use intermediate forms, to achieve seemingly difficult to get co-

crystal forms.
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5. Supporting information

 Crystal data and structure refinement for MC2.MeCN

  DSC and PXRD characterization of process’s product

This material is available free of charge via the Internet at http://pubs.acs.org.
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Enabling cocrystallization of challenging systems: passing through a stable cocrystal 

solvate as a pathway to strenuous cocrystal forms.

J.B. de Maere d’Aertrycke, R. Payen, L. Collard, K. Robeyns, D. Croker, T. Leyssens

Selecting the right solvent and temperature conditions allowed accessing a strenuous 

cocrystal form. Decreasing the temperature in acetonitrile, a new solvated cocrystal 

form is obtained. Upon exposure to ambient atmosphere, this form desolvates 

spontaneously and leads to the cocrystal form desired.
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Figure 1. Detailed structure of caffeine (left) and maleic acid (right) 

128x41mm (150 x 150 DPI) 

Page 33 of 41

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 2. Theoretical TPD at a given temperature for a system of two coformers A and B, with strong 
solubility differences between both coformers. By adjusting the solubilities of both co-formers (e.g. by 

adjusting the temperature), a more symmetrical phase diagram can be obtained. 

244x96mm (150 x 150 DPI) 
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Figure 3. Solubility curves of caffeine and maleic acid in MeCN (left) and AcOEt (right) 

342x113mm (150 x 150 DPI) 
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Figure 4. TPD of caffeine and maleic acid in AcOEt (up) and MeCN (down) at 20°C 

160x167mm (150 x 150 DPI) 
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Figure 5. TPD of caffeine and maleic acid in AcOEt at 9°C 

209x122mm (150 x 150 DPI) 
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Figure 6. MC2.MeCN cocrystal in MeCN at 9°C (left) and after 40 minutes in ambient atmosphere at 15°C 
(right) under microscope 

306x108mm (150 x 150 DPI) 
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Figure 7. Trimer constituting the MC2.ACN cocrystal (left) and view of the packing along the c-axis (right) 
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Figure 8. TPD of caffeine and maleic acid in MeCN at 9°C 

222x117mm (150 x 150 DPI) 
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Figure 9. Conditions for the upscaling experiment (left) and PXRD analysis of the crystalline products (right) 

158x56mm (150 x 150 DPI) 
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