figshare
Browse

Effects of Hydrogen Bonding on the Monolayer Properties of Amphiphilic Double-Decker-Shaped Polyhedral Silsesquioxanes

Download (238.57 kB)
journal contribution
posted on 2011-05-17, 00:00 authored by Asuman C. Kucuk, Jun Matsui, Tokuji Miyashita
“Core–corona” type amphiphiles, which comprise double-decker-shaped POSSs (DDSQs) as the core and two or four di(ethylene glycol) (DEG) units as the coronae, have recently been reported to form a stable monolayer at the air–water interface. In this paper, another core–corona amphiphile, 2DEGNH-DDSQ, which has a urethane group at the end of the coronae, was synthesized to elucidate the effects of hydrogen bonding on monolayer properties. The surface pressure–area isotherm and Brewster angle microscopy revealed that 2DEGNH-DDSQ initially formed rodlike assemblies. They subsequently coalescence to form a uniform monolayer with compression. Actually, 2DEGNH-DDSQs are well ordered in the rodlike assembly because of the strong hydrogen bonds among the urethane groups, as confirmed by FT-IR spectra. Although the monolayer was not transferred onto a solid substrate, mixing of 2DEGNH-DDSQ with 2DEG-DDSQ, which has already been reported to form a liquidlike monolayer, overcame this problem. The 1:1 molar mixture of 2DEGNH-DDSQ and 2DEG-DDSQ forms a uniform liquidlike monolayer. The mixed monolayer was transferred onto a solid substrate as a Z-type Langmuir–Blodgett film. Atomic force microscopic (AFM) images of the mixed-bilayer film showed a uniform surface with root-mean-square surface roughness of 0.21 nm. The intermolecular hydrogen bonds between the urethane groups in 2DEGNH-DDSQ and the hydroxyl groups in 2DEG-DDSQ improve the monolayer properties, which enable successful transfer of the LB film.

History