ja075568n_si_001.pdf (10.94 kB)

Effect of Xenon on Fullerene Reactions

Download (10.94 kB)
journal contribution
posted on 2007-10-31, 00:00 authored by Michael Frunzi, R. James Cross, Martin Saunders
Solutions containing 3He@C60, 129Xe@C60, and varying amounts of 9,10-dimethylanthracene (DMA) were allowed to reach equilibrium, and the 3He and 129Xe NMR spectra were taken at the same temperature. Each spectrum showed peaks for the unreacted X@C60 and for the monoadduct. The ratios of the peak heights show that the included xenon atom substantially changes the equilibrium constant. This change is temperature dependent, meaning that the xenon atom changes both ΔH and ΔS for the reaction. DMA is more reactive with He@C60 at low temperatures and with Xe@C60 at higher temperatures. The difference in chemical shift between the monoadduct and the unreacted X@C60 is more than twice as large for Xe than for He and in the opposite direction. Calculations show that the electron density in Xe@C60 is higher than that in empty C60 on the outside of the cage.