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ESO-Based Robust and High-Precision Tracking
Control for Aerial Manipulation

Huazi Cao, Yongqi Li, Cunjia Liu, Shiyu Zhao

Abstract—This paper studies the tracking control problem
of an aerial manipulator that consists of a quadcopter flying
base and a Delta robotic arm. We propose a novel control
approach that consists of extended state observers (ESOs)
for dynamic coupling estimation, ESO-based flight controllers,
and a cooperative trajectory planner. Compared to the state-
of-the-art approaches, the proposed one has some attractive
features. First, it requires much less measurement information
as opposed to the full-body control approaches and hence
can be implemented conveniently and efficiently in practice.
Second, while the existing approaches estimate the coupling
effect based on precise models, the proposed ESOs can do
that based on much less information about the system model.
The proposed approach is verified by four experiments on a
real aerial manipulation platform. The experimental results
show that the average tracking error can reach 1 cm by the
proposed approach as opposed to 10 cm by the PX4 baseline
controller. Although force control is not considered specifically
in the approach, the system can complete aerial weaving tasks
thanks to the ESOs in the presence of drag forces applied to
the end-effector during manipulation.

Note to Practitioners—Aerial manipulators have received
increasing research attention in recent years due to their wide
range of applications. In this paper, we particularly focus on
the high-precision and robust control of aerial manipulators. We
propose a novel control approach that consists of extended state
observers (ESOs) for dynamic coupling estimation, ESO-based
flight controllers, and a cooperative trajectory planner. Four
experiments on a real aerial manipulation platform demonstrate
the effectiveness of the approach. In future research, we will
address the control problem when the aerial manipulator
contacts the environment.

Index Terms—Aerial manipulator, Delta arm, Extended state
observer, Aerial weaving

I. INTRODUCTION

Aerial manipulators have received increasing research at-
tention in recent years due to their wide range of applications.
An aerial manipulator combines a flying base, which is
usually a multirotor aerial vehicle, with one or multiple
robotic arms. Compared to conventional flying robots such
as multirotors, an aerial manipulator can interact with the
environment to complete various tasks such as pick-and-
place [1], tree cavity inspection [2], contact-based inspection
[3], opening/closing of a valve [4], assembly of structures
[5]. Compared to ground mobile manipulators, an aerial
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Fig. 1: Aerial weaving by an aerial manipulator. The experimental video is
available at https://youtu.be/QMjGtBCUi-E.

manipulator can fly to areas that are difficult to reach by
humans or ground robots, hence greatly enlarging the scope
of manipulation tasks.

Aerial manipulation has been studied from various aspects
such as platform, control, perception, teleoperation, and co-
operation up to now. See [6] and [7] for recent surveys. In this
paper, we particularly focus on the high-precision and robust
control of aerial manipulators. Different from the control of
a multirotor, control of an aerial manipulator is much more
challenging due to the multi-DoF robotic arm attached to
the multirotor base. The dynamics of the multirotor and the
robotic arm are coupled: the movement of the robotic arm
and the multirotor base mutually affect each other.

The existing control approaches of aerial manipulators
can be divided into two categories: full-body control and
separate control. Full-body control requires establishing the
nonlinear model of the entire aerial manipulation system and
then applies appropriate controller design methods [8]. This
kind of approach is promising in terms of control accuracy
and robustness if the nonlinear dynamics can be precisely
modelled. However, they are challenging to implement in
practice because on the one hand the precise nonlinear
model is difficult to obtain and on the other hand various
measurements required by this approach are difficult to
obtain. For instance, the full-body control approach proposed
in [9] requires velocities and accelerations of the joints of
the robotic arm, which is usually difficult to measure for
normal actuators. As a comparison, separate control is easier
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to implement in practice because it does not require knowing
the nonlinear model of the entire system and it merely has
a minimal requirement on the measurements. The basic idea
of separate control is to control the multirotor base and the
robotic arm separately. A literature review on related works
is given below.

Up to now, researchers have proposed a variety of separate
controllers for aerial manipulators. In the early works, the
dynamic coupling between the quadcopter and the robotic
arm is ignored to simplify controller design [10]. As a
consequence, the control accuracy is relatively low. The work
in [11] addressed the dynamic coupling from a mechanical
point of view: a sliding battery box was used to compensate
for the motion of the robotic arm. However, the performance
of this method is limited by the sliding velocity of the
battery box. In order to well resolve the problem of dynamic
coupling, we need to consider three aspects.

The first aspect is the estimation of the dynamic coupling
effects. The work in [12] introduced a variable parameter
integral backstepping method to design the quadcopter con-
troller. It can only estimate the coupling torques generated
by the displacement of the center of mass from the quadrotor
geometry center, which may gain more errors when the
velocity of the manipulator increases. The works in [13] and
[14] adopted model-based disturbance estimators to estimate
the disturbance caused by the manipulators. However, the
model-based disturbance estimators rely on accurate models
of aerial manipulators that are usually hard to obtain.

The second aspect is the compensation of the dynamic
coupling term in the control. To take the external disturbance
into account, nonlinear control methods such as sliding mode
control [15] and backstepping control [16] are introduced
into the motion control of the quadcopter. These approaches
treat the dynamic coupling term as unknown external dis-
turbances without estimating it. To suppress the influence
of the dynamic coupling term, the works in [12]–[14] inte-
grated mode-based disturbance estimators into controllers to
compensate for the dynamics coupling term, requiring the
accurate models of the aerial manipulators.

The third aspect is cooperative planning of the trajecto-
ries for the multirotor base and the robotic arm. Common
approaches for cooperative planning include the closed-
loop inverse kinematics (CLIK) method [17], [18], the null
space-based method [19], and multiple task-priority inverse
kinematics method [20]. However, these methods did not
consider the physical constraints and, therefore, the solutions
of these methods may be infeasible. Recently, the work in
[21] proposed a nonlinear model predictive control (NMPC)
method and formulated the cooperative planning problem as
a constrained optimization problem. The NMPC method is,
however, computationally expensive, which may request high
computational power or a low update rate.

The above analysis reveals the limitations in the three
aspects of the existing control approaches for aerial manip-
ulation. This paper aims to overcome these limitations by
proposing a new framework that incorporates a coupling term
estimator, a motion controller, and a cooperative trajectory

planner. The proposed algorithms are verified by carefully
designed experiments on an aerial manipulation platform.
The novelty of the proposed algorithms is summarized below.

1) We propose a partially coupled motion controller. The
control of the quadcopter and the delta arm are separate, but
based on extended state observers (ESOs) to estimate and
compensate for the dynamic coupling between the quadcopter
and the manipulator. The controller can be divided into two
parts: the flight controller and the manipulator controller. The
flight controller is designed by an ESO-based nonlinear con-
trol method while the manipulator is controlled by the PID
method. The dynamic coupling effect in the mathematical
model is divided into two known terms and unknown terms.
The known terms are directly used in the flight controller
design. The unknown terms are estimated by the ESOs in real
time. Compared to [13], [14], the advantage of the proposed
ESOs is that they rely on less measurement information
for estimating the dynamic coupling. Besides, the closed-
loop system with the proposed flight controller converges to
predesigned dynamics, which are constituted by four desired
subloops that can be continently used to tune control gains.
All parameters of the controller can be easily determined
with the predesigned dynamics according to the performance
requirement.

2) A novel cooperative planner with two modes is proposed
to coordinate the motions of the quadcopter and the manip-
ulator. The physical constraints of the aerial manipulator are
transformed to reduce the computation cost of the planner. To
adapt to different manipulation tasks, two control modes, P-
P and E-P, are proposed. The P-P mode, designed based on
the CLIK method, can be used when the end-effector and
quadcopter track separate trajectories. The E-P mode can
be used when the end-effector is required to track a given
trajectory while the quadcopter base is not. The E-P mode
formulates the planning problem as a quadratic programming
(QP) problem. The two modes are applicable to different
scenarios. The P-P mode is applicable to pick and place
task [22], peg-in-hole task, aerial repair task [23], etc. The
E-P mode is applicable to the trajectory tracking task, the
pulling/pushing task, etc.

The proposed algorithms are verified by four experiments
on an aerial manipulator platform. Unlike the traditional
Delta arm, the Delta arm used in this paper drives the joint
angles by three four-bar linkages to magnify the control
forces [24]. Experiments (including disturbance rejection,
end-effector stabilization, and end-effector trajectory track-
ing) are conducted to validate the novelties. At last, we apply
the proposed method and aerial manipulator to the aerial
weaving (see Fig. 1), which shows the ability to complete
tasks.

The remainder of this paper is structured as follows.
Problem setup and preliminaries used in this paper are given
in Section II. The control system overview is presented in
Section III. Section IV proposes the position control system
of the quadcopter base. The attitude control of the quadcopter
base is proposed in Section V. Section VI gives the proposed
cooperative planner. Then, the experimental verification for
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TABLE I: List of important notations.

ΣI inertial frame such that the z-axis is in the direction of
the gravity vector

ΣB body-fixed frame that is rigidly attached to the quad-
copter base at its center of gravity.

ΣD Delta arm frame that is rigidly attached to the arm base
at its center pF .

p,pd position and desired position of the quadcopter (p ∈ R3

and pd ∈ R3) in ΣI

q, qd joint vector and desired joint vector of the Delta arm
(q ∈ R3 and qd ∈ R3)

pE ,pE,d position and desired position of the end-effector (pE ∈
R3 and pE,d ∈ R3) in ΣI

pDE ,p
D
E,d position and desired position of the end-effector (pDE ∈

R3 and pDE,d ∈ R3) in ΣD

pBE position of the end-effector (pBE ∈ R3) in ΣB

R rotation matrix (R ∈ SO(3)) from ΣB to ΣI

RB
D rotation matrix (RB

D ∈ SO(3)) from ΣD to ΣB

ψ,ψd yaw angle and desired yaw angle of the quadcopter
(ψ ∈ R and ψd ∈ R)

f, τ total force (f ∈ R) and torque vector (τ ∈ R3) of the
rotors

fc, τc dynamic coupling force vector (fc ∈ R3) and torque
vector (τc ∈ R3) caused by the Delta arm

τM torque vector of the Delta arm’s actuated joints (τM ∈
R3)

pBF center position of the Delta arm’s base (pBF ∈ R3) in
ΣB

the proposed methods is given in Section VII. Conclusions
are drawn in Section VIII.

II. PROBLEM SETUP AND PRELIMINARIES

This section presents the problem setup and some neces-
sary preliminary results.

A. Problem setup

The aerial manipulator considered in this paper consists
of a quadcopter base and a Delta arm (see Fig. 2). The base
of the Delta arm is attached underneath the quadcopter. The
position of the end-effector of the Delta arm can be controlled
by changing the torques applied to the three actuators fixed on
the base. However, the orientation of the end-effector remains
the same as the base of the Delta arm [25]. Hence, the Delta
arm has three translational DoFs and three control inputs (i.e.,
the torques applied to the three actuators). On the other hand,
the quadcopter base has six DoFs and four inputs (i.e., the
thrusts of the four blades). Therefore, the entire system has
nine DoFs and seven control inputs.

The aerial manipulator has three reference frames: the
inertial frame ΣI , the quadcopter body-fixed frame ΣB , and
the Delta arm frame ΣD (see Fig. 2). ΣI is an inertial frame
where the z-axis is in the direction of the gravity vector. ΣB
is rigidly attached to the quadcopter base. Its origin coincides
with the center of gravity of the quadcopter. ΣD is rigidly
attached to the Delta arm base at its geometric center pF .

Denote the position of the end-effector in ΣI as pE . The
desired end-effector position in ΣI is pE,d ∈ R3. Let f ∈ R
and τ ∈ R3 denote the total force and torque vector generated

2
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ΣD

Fig. 1: An illustration of the aerial manipulator.

Fig. 2: An illustration of the aerial manipulator.

by the four rotors. Let τM ∈ R3 represent the torque vector
of the Delta arm’s actuators. The control objective is to
design the control input f, τ , τM so that pE can track pE,d
accurately.

B. Kinematics of the Delta arm

This subsection describes the kinematics of the Delta arm.
Let pBF ∈ R3 denote the position of the center of the base in
ΣB . Let pBE and pDE denote the positions of the end-effector
in ΣB and ΣD, respectively. The relationship between pBE
and pDE is

pBE = RB
Dp

D
E + pBF , (1)

where RB
D ∈ SO(3) is the rotation matrix from ΣD to ΣB .

The lengths for the upper and lower arms are represented
by lU ∈ R and lL ∈ R as illustrated in Fig. 2. Circumradii
of the top base and the bottom end-effector base are, respec-
tively, defined as rF ∈ R and rM ∈ R. The relationship
between the end-effector position pDE ∈ R3 and the joint
vector q = [q1, q2, q3]T ∈ R3 is

∥∥pDE − hi
∥∥2 = l2L, i = 1, 2, 3, (2)

where

hi =



−(rF − rM + lU cos qi) cos[(i− 1)π/3]
(rF − rM + lU cos qi) sin[(i− 1)π/3]

lU sin qi


 . (3)

On the one hand, given a joint vector q, the position pDE
can be solved from (2) based on the forward kinematics. On
the other hand, given a position pDE , the joint vector q can
be solved from (2) by the inverse kinematics. Details can be
found in [26], [27].

As can be seen from Fig. 2, the joint angles of the Delta
arm are driven by planar four-bar linkages. The relationship
between the joint angles and the crank position angles can be
calculated by the kinematics of the planar four-bar linkage
[28, Section 3.6].
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C. Kinematics of the aerial manipulator

The position of the end-effector in ΣI can be calculated
by pE = p+RpBE , where R ∈ SO(3) is the rotation matrix
from ΣB to ΣI . The time derivative of pE is

ṗE =ṗ+ ṘpBE +RṗBE ,

=ṗ+RRB
Dṗ

D
E − [RpBE ]×ω,

(4)

where ω ∈ R3 is the angular velocity vector of the quad-
copter expressed in ΣB , [·]× denotes the skew-symmetric
matrix. Let

s =

[
p
pDE

]
∈ R6.

Then, (4) can be rewritten as

ṗE = Jṡ− [RpBE ]×ω, (5)

where J = [I3,RR
B
D] is the Jacobian matrix, I3 is the 3×3

identity matrix.

D. Dynamics of the aerial manipulator

The dynamics of the aerial manipulator can be divided
into the dynamics of the quadcopter base and the Delta
arm. Inspired by [13], the dynamics of the quadcopter base
are surveyed to design the flight controller of the aerial
manipulator. The dynamics of the quadcopter base in the
aerial manipulator are

ṗ = v,

v̇ = g − f − fc
mB +mM

,

Ṙ = R[ω]×,

ω̇ = M−1 [τ − ω × (Mω) + τc] ,

(6)

where v ∈ R3 represents the velocity vector of the quad-
copter base, g ∈ R3 is the gravity vector, mB represents
the mass of the quadcopter base, mM is the mass of the
Delta arm, M ∈ R3×3 denotes the inertia matrix of the
quadcopter base, τ ∈ R3 represents torque vector of the
rotors. In addition, f = R[0, 0, f ]T ∈ R3 is control force
vector, where f ∈ R represents total force of the rotors.

Here, fc and τc are dynamic coupling force and torque
caused by the Delta arm. They are given as [13]

fc =− (mB +mM )R
[
ω ×

(
ω × pBC

)

+ω̇ × pBC + 2ω × ṗBC + p̈BC
]
,

(7)

τc =−MB
M ω̇ − ω ×

(
MB

Mω
)
− ṀB

Mω

+ (mB +mM )pBC ×R−1 (g − v̇)

− (mB +mM )
2

mM

[
pBC × p̈BC − ω ×

(
pBC × ṗBC

)]
,

(8)

where pBC is the center of mass of the aerial manipulator
in ΣB , MB

M is the inertia matrix of the Delta arm in ΣB .
Although the expressions of fc and τc are given in (7) and
(8), they cannot be measured in practice since ṀB

M , ṗBC , and
p̈BC are difficult to measure. The mass mM and the inertia
matrix MB

M of the Delta arm are contained in model (6). In

the absence of the Delta arm, we have mM ≡ 0, MB
M ≡ 0,

pBC ≡ 0 and ṀB
M ≡ 0. In this case, model (6) degenerates

to a standard quadcopter model.

E. Extended state observer

Preliminaries of the ESO are given below. The stability
analysis and other details about the ESO can be found in
[29].

Consider a system with input u ∈ R and output y ∈ R in
the form y(n) = ∆ + u, where ∆ ∈ R is the unknown term
of the system. The output y can be measured by sensors.
Denote y1 = y, y2 = ẏ, · · · , yn = y(n). We define yn+1 as
an extended state variable and yn+1 = ∆. The original plant
is now described as ẏ1 = y2, ẏ2 = y3, · · · , ẏn−1 = yn, ẏn =
yn+1 +u, ẏn+1 = ∆̇. The purpose of the ESO is to estimate
∆ by utilizing the measurable output y.

Let ŷ1, · · · , ŷn+1 denote the estimated values of
y1, · · · , yn+1. Then, the ESO can be designed as follows
[29]:

˙̂y1 =ŷ2 + a1(y1 − ŷ1),

...
˙̂yn−1 =ŷn + an−1(y1 − ŷ1),

˙̂yn =ŷn+1 + an(y1 − ŷ1) + u,

˙̂yn+1 =an+1(y1 − ŷ1),

(9)

where a1 = woα1, a2 = w2
oα2, · · · , an+1 = wn+1

o αn+1,
where αi = (n+ 1)!/[i!(n+ 1− i)!], i = 1, 2, · · · , n+1. Let
wo denote the observer bandwidth and wo > 0. Let ỹi = yi−
ŷi (i = 1, · · · , n+1) denote the estimation errors. Combining
the original plant and (9), the error dynamics are given as

˙̃y1 =ỹ2 − woα1ỹ1,

...
˙̃yn =ỹn+1 − wnoα1ỹ1,

˙̃yn+1 =∆̇− wn+1
o α1ỹ1.

(10)

According to [29], if ∆̇ is bounded, i.e., |∆̇| ≤ δ, then
there exists a constant ci > 0 and a finite time T1 > 0 such
that |ỹi(t)| ≤ ci (i = 1, · · · , n + 1) for all t ≥ T1 > 0 and
wo > 0. Furthermore,

ci = (ỹsum(0) + hiδ)/w
k
o , (11)

for some positive integer k, where ỹsum(0) = |ỹ1(0)| +
|ỹ2(0)| + · · · + |ỹn+1(0)| and hi is constant. From (11),
it can be concluded that the estimation error bound of the
ESO is determined by the initial estimation error, δ, and
observer bandwidth wo. Since the unknown term ∆ cannot be
measured, the initial estimation error and δ cannot be utilized
to reduce ci. Gain wo is inversely proportional to 1/cki . Then,
a smaller value of ci can be achieved by an ESO with a larger
wo.
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Position controller
(Section IV-B)

Position ESO
(Section IV-A)

Attitude controller
(Section V-B)

Attitude ESO
(Section V-A)

Transformation
(Section V-B)

Aerial manipulator
dynamics

(Section II-D)

Flight controller

Manipulator controller
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qd τM
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ψd

f

p

pE

ω

∆v

∆ω

τ

f
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(Section VI)

Quadcopter

Delta armPID controller

Fig. 3: The proposed control structure of the aerial manipulator system.

easily determined with the predesigned dynamics according
to the performance requirement.

The third component the Delta arm controller. Its input is
the desired joint angles of the Delta arm. The output is the
torques that each actuator should generates. The Delta arm
controller is constituted by three actuator controllers. We use
Dynamixel AX28 servomotors as the actuators of the Delta
arm. The controllers of the servomotors are designed by the
traditional PID method [28].

IV. POSITION CONTROL OF THE QUADCOPTER BASE

In this section, the position controller of the quadcopter
base is designed by an ESO-based nonlinear control method.
First, the coupling between the quadcopter base and the Delta
arm is estimated by a position ESO. Then, the feedback
linearization control method is adopted to design the position
controller.

From model (6) and (7), the position dynamics can be
rewritten in a compact form as

ṗ = v,

v̇ = uv + ∆v.
(11)

where

uv = g − af − f/(mB +mM ) ∈ R3, (12)

the coupling force is rewritten as fc = (mB + mM )(af +
∆v), af = Rω × (ω × pBC) represents the first order item
of fc and can be used in controller design directly,

∆v = R(ω̇ × pBC + 2ω × ṗBC + p̈BC) ∈ R3

represents the second order item of fc. ∆v is treated as a
unknown item, because ω̇, ṗBC and p̈BC can not be sensed by
the aerial manipulator.

A. Position ESO for coupling estimation

A third-order position ESO is designed to estimate un-
known item ∆v . Let p̂, v̂, ∆̂v denote the estimates of
p,v,∆, respectively. The position ESO is designed as

˙̂pi = v̂i + 3wp,i(pi − p̂i),
˙̂vi = uv,i + ∆̂v,i + 3w2

p,i(pi − p̂i),
˙̂
∆v,i = w3

p,i(pi − p̂i), i = 1, 2, 3,

(13)

where p̂i, v̂i, ∆̂v,i denote the i-th elements of p̂, v̂, ∆̂, re-
spectively. In addition, wp = [wp,1, wp,2, wp,3]T ∈ R3 is a
positive constant vector and uv,i is the i-th element of uv .

According to Section II-E and (10), the estimate error
is bound, i.e., lim

t→∞
|∆v,i − ∆̂v,i| ≤ cp,i, i = 1, 2, 3. Ac-

cording to (10), cp,1, cp,2, cp,3 are inversely proportional
to wp,1, wp,2, wp,3 to the k-th power. Then, the position
ESO with the larger gain vector wp achieves the smaller
estimate error bound. Let cp denote the maximum of bounds
cp,1, cp,2, cp,3, i,e., cp = max{cp,1, cp,2, cp,3}. Then, we have
lim
t→∞

‖∆v − ∆̂v‖ ≤ cp.

B. Nonlinear position controller

The dynamic behavior is significant for the aerial manip-
ulator system. To adapt more flight mode of the quadcopter
base (e.g. position mode, altitude model), the closed-loop
dynamics of the position loop are divided into two subloops:
position and velocity subloops. Let pd ∈ R3 and p̃ =
p−pd ∈ R3 denote the desired position and the position error
of the quadcopter base, respectively. The desired dynamics
of the two subloops are given as

˙̃p+ 2Λpp̃+ Λ2
p

∫ t

0

p̃(τ)dτ = 0, (14)

ṙv +Kvr = 0, (15)

Fig. 3: The proposed control structure of the aerial manipulator system.

III. CONTROL SYSTEM OVERVIEW

The overall control system of the aerial manipulator is
decomposed into three components as illustrated in Fig. 3.

The first component is the cooperative planner. Its input
is the desired trajectory of the end-effector pE,d. Its outputs
are the planned trajectories pd and qd for the quadcopter
base and the Delta arm. The proposed planner has two
modes: P-P and E-P modes, which makes the planner suitable
for different scenarios. Besides, the physical constraints are
considered in the planner to ensure the solution is feasible.
Compared with the existing methods, the proposed planner
adapts to more scenarios since it has two modes and considers
the physical constraints.

The second component is the flight controller for the
quadcopter base. Its input is the desired trajectory planned
by the cooperative planner. Its outputs are τ and f , which
are the torque and force commands of the quadcopter. This
flight controller can be further decomposed into a few sub-
components. The first is an ESO-based position controller.
It aims to generate the force vector f for the quadcopter so
that the desired position pd can be tracked. The closed-loop
position system converges to predesigned dynamics that are
constituted by position and velocity subloops. The second
is an ESO-based attitude controller. It aims to generate
the torque vector command for the quadcopter so that the
desired attitude Rd can be tracked. The closed-loop attitude
system also converges to predesigned dynamics that are
constituted by attitude and angular velocity subloops. All the
corresponding sections introducing these subcomponents are
listed in Fig. 3. All parameters of the flight controller are
included in the predesigned dynamics and can be determined
according to the performance requirement.

The third component is the Delta arm controller. Its input
is the desired joint angles of the Delta arm. The output is the
torques that each actuator should generate. The Delta arm
controller is constituted of three actuator controllers. We use
Dynamixel AX28 servomotors as the actuators of the Delta

arm. The controllers of the servomotors are designed by the
traditional PID method [30].

IV. POSITION CONTROL OF THE QUADCOPTER BASE

In this section, the position controller of the quadcopter
base is designed by an ESO-based nonlinear control method.
First, the coupling between the quadcopter base and the Delta
arm is estimated by a position ESO. Then, the feedback
linearization control method is adopted to design the position
controller.

From model (6) and (7), the position dynamics can be
rewritten in a compact form as

ṗ = v,

v̇ = uv + ∆v.
(12)

where

uv = g + af − f/(mB +mM ) ∈ R3, (13)

the coupling force is rewritten as fc = (mB + mM )(af +
∆v), where af = −Rω×(ω×pBC) represents the first order
term of fc and can be used in controller design directly,

∆v = −R(ω̇ × pBC + 2ω × ṗBC + p̈BC) ∈ R3 (14)

represents the second order term of fc. ∆v is treated as an
unknown term, because ω̇, ṗBC and p̈BC can not be sensed by
the aerial manipulator.

A. Position ESO for coupling estimation

A third-order position ESO is designed to estimate un-
known term ∆v . Let p̂, v̂, ∆̂v denote the estimates of
p,v,∆, respectively. According to Section II-E, the position
ESO is designed as

˙̂pi = v̂i + 3wp,i(pi − p̂i),
˙̂vi = uv,i + ∆̂v,i + 3w2

p,i(pi − p̂i),
˙̂
∆v,i = w3

p,i(pi − p̂i), i = 1, 2, 3,

(15)

This article has been accepted for publication in IEEE Transactions on Automation Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASE.2023.3260874

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



6

where p̂i, v̂i, ∆̂v,i denote the i-th elements of p̂, v̂, ∆̂, re-
spectively, uv,i is the i-th element of uv . In addition,
wp = [wp,1, wp,2, wp,3]T ∈ R3 is the bandwidth vector of
the position ESO and it can be adjusted.

According to Section II-E and (11), the estimation error
is bounded, i.e., lim

t→∞
|∆v,i − ∆̂v,i| ≤ cp,i, i = 1, 2, 3.

According to (11), cp,1, cp,2, cp,3 are inversely proportional
to wp,1, wp,2, wp,3 to the k-th power. Then, the position ESO
with the larger gain vectorwp achieves the smaller estimation
error bound. Let cp denote three times the maximum of
the bounds cp,1, cp,2, cp,3, i,e., cp = 3 max{cp,1, cp,2, cp,3}.
Then, we have lim

t→∞
‖∆v − ∆̂v‖ ≤ cp.

B. Nonlinear position controller

The dynamic behavior is significant for the aerial manip-
ulator system. To control more flight modes of the quad-
copter (e.g., position mode, altitude mode), the closed-loop
dynamics of the position loop are divided into two subloops:
position and velocity subloops. The two-subloop structure
matches the cascade structure of the autopilot used in the
quadcopter. Let pd ∈ R3 and p̃ = p − pd ∈ R3 denote
the desired position and the position error of the quadcopter
base, respectively. The desired dynamics of the two subloops
are given as

˙̃p+ 2Λpp̃+ Λ2
p

∫ t

0

p̃(τ)dτ = 0, (16)

ṙv +Kvr = 0, (17)

where Λp ∈ R3×3 is a positive diagonal matrix, Kv ∈ R3×3

is a positive definite matrix. In addition, rv = v−vr, where
vr is the desired velocity reference trajectory. To achieve the
desired position subloop, we design vr as

vr = ṗd − 2Λpp̃−Λ2
p

∫ t

0

p̃(τ)dτ. (18)

The relationship between vr and ṗd can be shown in (18).
Then, we have

rv = ˙̃p+ 2Λpp̃+ Λ2
p

∫ t

0

p̃(τ)dτ. (19)

From (19), one can conclude that the desired position subloop
can be achieved as rv → 0. The relationship between rv and
p̃ is described in Lemma 1.

Lemma 1: Let c1 denote a constant. If ‖rv‖ ≤ c1 as t→
∞, then ‖p̃‖ ≤ c1tr(Λ−1p ) as t→∞, where tr(Λ−1p ) denotes
the trace of Λ−1p .

Proof: According to the definition of rv , we have

˙̃p = −2Λpp̃−Λ2
p

∫ t

0

p̃(τ)dτ + rv. (20)

Let p̃i denote the i-th element of p̃. Let [Λp]i,j denote the
element in the i-th row and j-th column of Λp. Then, we
have

η̇i =

[
0 1

−[Λp]
2
i,i −2[Λp]i,i

]

︸ ︷︷ ︸
Ai

ηi +

[
0
si

]

︸ ︷︷ ︸
si

(21)

where ηi = [
∫ t
0
p̃idτ, p̃i]

T , where Ai is the Hurwitz matrix
and its eigenvalue is [Λp]i,i with multiplicity 2. According
to bounded input bounded output (BIBO) stability [31, Sec-
tion 5.2], we have ‖ηi‖ ≤ c1/[Λp]i,i as t → ∞. Under the
definition of ηi, we have |p̃i| ≤ c1/[Λp]i,i. Then, one can
conclude that ‖p̃‖ ≤ c1tr(Λ−1p ) as t→∞. �

To achieve the desired velocity subloop, the position
control law is designed as

uv = −Kvrv + v̇r − ∆̂v. (22)

Substituting control law (22) into (12) gives

ṙv +Kvrv = ∆v − ∆̂v. (23)

According to Section IV-A, ‖∆v−∆̂v‖ is bounded. It means
that the desired velocity subloop can be achieved boundedly.
Then, the control force vector f can be inferred from (13):

f = (mB +mM ) (g + af +Kvrv − v̇r + ∆̂v). (24)

We now prove the stability of the position dynamics with
control law (24).

Theorem 1: Assuming that ∆̇v is bounded, i.e., ‖∆̇v‖ ≤
δv , if the position controller is designed as (24) with position
ESO (15), then the position tracking error p̃ is bounded, i.e.,
‖p̃‖ ≤ cptr(Λ−1p )/λmin(Kv) as t → ∞, where cp is the
upper bound of the estimation error from the position ESO.

Proof: Combining position control law (24) and position
model (12), the error dynamics can be written as

ṙv =g + af − f/(mB +mM ) + ∆v − v̇r
=−Kvrv + ∆v − ∆̂v.

(25)

Define a Lyapunov function as

V (rv) =
1

2
rTv rv. (26)

With error dynamics (25), the time derivative of V is

V̇ = −rTvKvrv + rTv (∆v − ∆̂v). (27)

According to Section IV-A, the estimation error of the posi-
tion ESO (15) is bounded. The upper bound of the estimation
error is represented as cp. Then, we have ‖∆v − ∆̂v‖ ≤ cp
as t > Tp, where Tp represents a finite time. Using the
comparison theorem [31, Section 9.3], we define W =

√
V =

‖rv‖ /
√

2. After finite time Tp, we can obtain

Ẇ =
−rTvKvrv + rTv (∆v − ∆̂v)√

2‖rv‖

≤ −λmin(Kv)‖rv‖2 + cp ‖rv‖√
2 ‖rv‖

= −λmin(Kv)W + cp/
√

2,

(28)

where λmin(Kv) is the minimum eigenvalue of Kv . Since
Kv is a positive diagonal matrix, we have λmin(Kv) > 0.

According to the BIBO stability [31, Section 5.2], we have
|W | ≤ cp/(

√
2λmin(Kv)) as t → ∞. With the definition

of W , we have ‖rv‖ ≤ cp/λmin(Kv) as t → ∞. The
relationship between ‖p̃‖ and ‖rv‖ are given in Lemma 1.
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From the relationship, we have ‖p̃‖ ≤ cptr(Λ−1p )/λmin(Kv)
as t→∞. �

Theorem 1 assumes that ∆̇v is bounded. The unknown
term ∆v is formulated as (14) and, therefore, ∆̇v is deter-
mined by motions of the multirotor and the Delta arm. This
assumption is reasonable since the motions are physically
limited. The control parameters in the position controller
are Λp and Kv . The two parameters are contained in the
desired dynamics of the two subloops. The desired dynamics
(16) is expressed as a second-order system while the desired
dynamics (17) is expressed as a first-order system. Therefore,
the control parameters can be determined by utilizing the
features of these systems and the performance requirements.

An analysis of the tracking error is given below. The
upper bound of the position tracking error is proportional
to cp, tr(Λ−1p ) and inversely proportional to λmin(Kv). As
a result, the controller with the larger control gains Λp

and Kv achieves the lower position tracking error bound.
Another way to reduce the position tracking error bound is by
reducing the estimate bound cp. According to Section IV-A,
the position ESO with the larger bandwidth vector wp results
in a lower value of cp. Therefore, the controller with the
larger gain vector wp can achieve the lower position tracking
error bound.

V. ATTITUDE CONTROLLER OF THE QUADCOPTER BASE

In this section, an attitude controller of the quadcopter
base is proposed. In particular, the coupling between the
quadcopter base and the Delta arm is estimated by an attitude
ESO. Then, the feedback linearization control method is
adopted to design the attitude controller of the quadcopter
base.

From model (6) and (8), the dynamics of the attitude loop
can be rewritten as

Ṙ = R[ω]×,

ω̇ = uω + ∆ω.
(29)

The first term in the second equation of (29) is a composite
vector expressed as

uω = M−1[τ − ω × (Mω) + τs], (30)

the coupling torque can be rewritten as τc = τs + M∆ω ,
where

τs = (mB +mM )pBC ×R−1g − ω ×
(
MB

Mω
)

(31)

represents the first order term of τc and can be used in
controller design directly. The second term in the second
equation of (29) represents the second order term of τc and
can be expressed as

∆ω =−M−1
{
MB

M ω̇ + ṀB
Mω

+ (mB +mM )pBC ×R−1v̇

+
(mB +mM )2

mM

[
pBC × p̈BC − ω × (pBC × ṗBC)

]}
.

(32)

By definition, the dynamic influence ∆ω is a function of
ω̇, v̇,ṀB

M , ṗ
B
C , p̈

B
C . We treat ∆ω as an unknown term to be

estimated, since ω̇, v̇,ṀB
M , ṗ

B
C , p̈

B
C are not measurable.

A. Attitude ESO for coupling estimation

An attitude ESO is designed to estimate unknown term ∆ω

according to the method in Section II-E. Let ω̂, ∆̂ω denote
the estimates of ω,∆ω , respectively. To estimate ∆ω , the
attitude ESO is designed as

˙̂ωi = uω,i + ∆̂ω,i + 2wω,i(ωi − ω̂i),
˙̂

∆ω,i = w2
ω,i(ωi − ω̂i), i = 1, 2, 3,

(33)

where uω,i is the i-th element of uω , wω =
[wω,1, wω,2, wω,3]T ∈ R3 is the bandwidth vector of
the attitude ESO and it can be adjusted, ω̂i, ∆̂ω,i denote the
i-th elements of ω̂ and ∆̂ω , respectively.

According to Section II-E and (11), the estimation error
is bounded, i.e., ‖∆ω,i − ∆̂ω,i‖ ≤ cω,i, i = 1, 2, 3. Besides,
cω,1, cω,2, cω,3 are inversely proportional to wω,1, wω,2, wω,3
to the k-th power. Therefore, the attitude ESO with the larger
gain vector wω achieves the smaller estimation error bound.
Let cω denote three times the maximum value of the bounds
cω,1, cω,2, cω,3, i,e., cp = 3 max{cω,1, cω,2, cω,3}. Then, we
have lim

t→∞
‖∆ω − ∆̂ω‖ ≤ cω .

B. Nonlinear attitude controller

Let Rd = [b1, b2, b3] ∈ SO(3) denote the desired rotation
matrix of the quadcopter. We define a = [cosψ, sinψ, 0]T .
Then, we have

f = ‖f‖, b3 =
uv
‖uv‖

, b2 =
b3 × a
‖b3 × a‖

, b1 = b2 × b3. (34)

Let ωd denote the desired angular velocity of the quadcopter
and it can be calculated by

ωd = [RT Ṙd]
∨, (35)

where [·]∨ denotes the vee map which is the inverse op-
eration of [·]×. The error rotation matrix is defined as
R̃ = RT

dR. According to [32], the error function used in
SO(3) is equivalent to the vector part of error quaternion
β̃ = [β̃0, β̃

T
v ]T ∈ R4 from R̃ with β̃0 ≥ 0 and

β̃0 =
1

2

√
1 + tr(R̃), β̃v =

1

4β̃0
[R̃− R̃T ]∨. (36)

Let ˙̃R be the derivative of the error rotation matrix. It can
be obtained by

˙̃R = RT
d Ṙ+ ṘT

dR = R̃[ω − R̃Tωd]×. (37)

To control the flight modes of the quadcopter (e.g., stabi-
lized mode, acro mode), the closed-loop dynamics of the
attitude loop are divided into two subloops: attitude and
angular velocity subloops. According to [33], the designed
dynamics of the two subloops are given as

ω − R̃Tωd + 2Λqβ̃v = 0, (38)

Mṙω +Kωrω + kββ̃v = 0, (39)
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where Kω ∈ R3×3 and Λ ∈ R3×3 in (42) are positive
diagonal matrices, kβ > 0 is a constant gain. Moreover,
rω = ω − ωr, where ωr is the desired angular velocity
reference trajectory.

To achieve the desired attitude subloop, we design ωr as

ωr = R̃Tωd − 2Λqβ̃v. (40)

Then, we have

rω = ω − R̃Tωd + 2Λqβ̃v. (41)

According to [33], the desired attitude subloop can be
achieved as rω → 0.

To achieve the desired angular velocity subloop, the atti-
tude controller of the quadcopter base is designed as follows:

uω = ω̇r − ∆̂−M−1Kωrω −M−1kββ̃v, (42)

where

ω̇r = ˙̃RTωd + R̃T ω̇d − 2Λq
˙̃
βv,

˙̃
βv =

1

2
(β̃0I3 + β̃v,×)(ω − R̃Tωd),

(43)

where I3 ∈ R3×3 is the identity matrix of order 3 × 3.
Substituting the control law (42) into (29) yields

Mṙω +Kωrω + kββ̃v = ∆ω − ∆̂ω. (44)

According to Section V-A, ‖∆ω−∆̂ω‖ is bounded. It means
that the desired angular velocity subloop can be achieved
boundedly under the control law (42). Then, the control
torque vector τ is given as

τ = M(ω̇r−∆̂)+ω× (Mω)−Kωrω−kββ̃v−τs. (45)

We now prove the stability of the attitude loop with control
law (45).

Theorem 2: Assuming that ∆̇ω is bounded, i.e., ‖∆̇ω‖ ≤
δω , if the attitude controller is designed as (45) with the
attitude ESO (33), then the attitude tracking error is bounded,
i.e., ‖β̃v(t)‖ ≤ cq as t → ∞, where cq is the upper bound
of the attitude tracking error.

Proof: The Lyapunov function is set as

V (rω, β̃v) =
1

2
sTωMrω + kββ̃

T
v β̃v + kβ(β̃0 − 1)2. (46)

Because β̃0 =
√

1− ‖β̃v‖, the V (rω, β̃v) is a function of
rω and β̃v . Then, we have

1

2
k1‖γ‖2 ≤ V (γ) ≤ 1

2
k2‖γ‖2 (47)

where k1 is constant and k1 = min{λmin(M), 2kβ}, k2 is
constant and k2 = max{λmax(M), 4kβ}, γ = [rTω , β̃

T ]T .
In addition, λmin(M) is the minimum eigenvalue of M ,
λmax(M) is the maximum eigenvalue of M .

Using (45), we compute the time derivative of V as

V̇ = rTωMṡω + 2kββ̃
T
v

˙̃
βv + 2kβ(β̃0 − 1) ˙̃q0

= rTωM(M−1Kωrω −M−1kββ̃v + ∆ω − ∆̂ω)

+ 2kββ̃
T
v

˙̃
βv + 2kβ(β̃0 − 1) ˙̃q0.

(48)

The time derivatives of q̃0 and β̃v are

˙̃q0 = −1

2
β̃Tv eω,

˙̃
βv =

1

2
β̃0eω +

1

2
β̃v,×eω, (49)

where eω = ω − R̃Tωd. Substituting (49) into (48) yields

V̇ = −rTωKωrω − 2kββ̃
T
v Λqβ̃v + rTωM(∆ω − ∆̂ω). (50)

Because ωω is a positive constant vector, we have ‖∆ω −
∆̂ω‖ ≤ cω as ∀t ≥ Tω . Then, we have

V̇ ≤ −k3‖γ‖2 + ‖γ‖λmin(M)cω, t ≥ Tω, (51)

where k3 = max{λmin(Kω), 2kβλmin(Λq)}. In addition,
λmin(Kω) is the minimum eigenvalue of Kω , λmin(Λq) is
the minimum eigenvalue of Λq .

Using (47), we have

− k3‖γ‖2 ≤ −
2k3
k2

V, ‖γ‖ ≤
√

2Vω
k1

. (52)

According to the comparison theorem [31, Section 9.3], we
define W =

√
V . Combining (51) and (52), we have

Ẇ ≤ −k3
k2
W +

√
1

2k1
λmin(M)cω

= −k3
k2
W + k4,

(53)

where k4 = λmin(M)cω/
√

2k1. According to the BIBO
stability [31, Section 5.2], we have |W | ≤ k2k4/(k3) as
t→∞. Under the definition of W , we have ‖γ‖ ≤

√
2W ≤√

2k2k4/k3 as t→∞. By definition of ‖β̃v‖, we have

‖β̃v(t)‖ ≤ ‖γ(t)‖ ≤ cq =
√

2k2k4/k3 (54)

as t→∞. �
From Theorem 2, one can conclude that the attitude

tracking error is bounded, i.e., ‖β̃v(t)‖ ≤ cq as t→∞. An
analysis of the tracking error is given below. By definitions
of k1, k2, k3, and k4, (54) can be rewritten as

cq =
k2λmin(M)cω√

k1 max{λmin(Kω), 2kβλmin(Λq)}
, (55)

where
k2√
k1

=
max{λmax(M), 4kβ}√

min{λmin(M), 2kβ}
. (56)

Then, we can conclude that the upper bound of the atti-
tude tracking error is determined by Kω, kβ , λmin(Λq), and
cω . The control gain Kω, kβ , and λmin(Λq) are inversely
proportional to upper bound cq . As a result, the controller
with the larger control gains achieves the lower attitude
tracking error bound. Another way to reduce the estimation
error of the attitude ESO is by reducing the estimate bound
cq , since the estimation error bound is proportional to cq .
According to Section V-A, the attitude ESO with the larger
bandwidth vector wω obtains a lower value of cω . Therefore,
the controller with the larger gain vector wω can achieve the
lower attitude tracking error bound.
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VI. COOPERATIVE PLANNING

In this section, we design a cooperative planner for the
aerial manipulator. The relationship between the motion con-
troller and the cooperative planner is described in Section III.
The references of the motion controller are calculated by the
cooperative planner with the given end-effector trajectory.
The motion controller tracks the result references.

The physical constraints affect the feasibility of the plan-
ner. The obtained solution may violate such constraints,
resulting infeasible results for the robot without considering
the physical constraints. Therefore, the physical constraints
of the aerial manipulator are considered in the cooperative
planning. With the constraints, a planner with two modes is
designed to coordinate the motions of the quadcopter and the
multirotor. The two modes adapt to different scenarios.

A. Physical constraints

The physical constraints of the aerial manipulator consist
of position, velocity, and acceleration constraints and can be
written as

smin ≤ s ≤ smax, (57)

ṡmin ≤ ṡ ≤ ṡmax, (58)

s̈min ≤ s̈ ≤ s̈max, (59)

where s = [pT ,pD,TE ]T consists of the position of the
quadcopter base in ΣI and the position of the end-effector
in ΣD, [·]min denotes the lower bound of the corresponding
variable, and [·]max denotes the upper bound.

These constraints are expressed in terms of s, ṡ, s̈, respec-
tively. Using these expressions will introduce 18 variables in
solving the cooperative problem. To reduce the number of
variables, we convert the constraints of s, s̈ to those of ṡ.
Then, the number of the variables in solving the cooperative
problem is reduced to 6.

Lemma 2: The physical constraints (57)-(59) can be ap-
proximated as

ṡ ≤ ṡ ≤ ṡ, (60)

where ṡ = max{sp, ṡmin, ṡv} and ṡ = min{sp, ṡmax, ṡv}.
In addition, sp and sp are lower and upper approximate
bounds of the actuated state position and can be calculated
by (62). ṡmin and ṡmax can be determined by (58). ṡv and
ṡv are lower and upper approximate bounds of the actuated
state acceleration and can be calculated by (66).

Proof: First, the position constraint is now converted to
the constraint of ṡ. Let ∆t denote the sampling time. The
actuated state in the next time step is defined as snext ∈ R6.
According to the position constraint, snext should satisfy the
position constraint, i.e.,

smin ≤ snext = s+ ∆tṡ ≤ smax. (61)

Then, the position constraint (61) can be rewritten as

sp ,
smin − s

∆t
≤ ṡ ≤ smax − s

∆t
, sp. (62)

9

smin,i
smax,i

ṡmin,i

ṡmax,i

(41)

(41)
(43)

(43)

(37)

(37)

si

ṡi

Fig. 3: The approximate physical condition. Blue line: approximate position
constraint (41). Purple line: velocity constraint (37). Green line: approximate
condition (43). Gray area: feasible area (39).

line passing through the two points to linearise the viability
condition. Then the viability condition (42) is linearised as

ṡi − 2
s̈min,i

ṡmax,i
si + 2

s̈min,i

ṡmax,i
smax,i ≤ 0,

ṡi − 2
s̈max,i

ṡmin,i
si + 2

s̈max,i

ṡmin,i
smin,i ≥ 0.

(43)

From (43), we have

ṡv ≤ ṡ ≤ ṡv, (44)

where ṡv ∈ R6, ṡv ∈ R6 are the lower and upper bound
of the viability condition, ṡv,i, ṡv,i respectively represent the
i-th element of ṡv and ṡv ,

ṡv,i =2
s̈max,i

ṡmin,i
si − 2

s̈max,i

ṡmin,i
smin,i,

ṡv,i =2
s̈min,i

ṡmax,i
si − 2

s̈min,i

ṡmax,i
smax,i.

(45)

The relationships among the approximate position constraint,
velocity constraint and approximation condition are illus-
trated in Figure 3. �

B. Cooperative Method

The proposed planner provides two modes: End-effector
position-Quadcopter position (P-P) and End-effector position
(E-P) modes. The P-P mode steers the manipulator and
the quadcopter base with the references of the end-effector
and the quadcopter, respectively. The E-P mode steers the
manipulator and the quadcopter base only with the reference
of the end-effector. The P-P mode uses quadcopter base for
large scale movements and manipulator for compensating
the tracking error of the end-effector. It performs better in
tracking errors due to the less relative motion. However, the
manipulation area of the P-P mode is small since the size of
the manipulator’s workspace is limited. Compared with the

P-P mode, the E-P mode has a large size of manipulation
area while suffers more influence from dynamic couplings.
The two modes are applicable to different scenarios. The P-P
mode is applicable to pick and place task [27], peg-in-hole
task, aerial repair task [28], etc. The E-P mode is applicabe
to trajectory tracking task, pulling/pushing task, etc.

1) P-P mode: The input of the P-P mode are desired
positions of the end-effector and the quadcopter base. From
(4), we obtain

RRB
Dṗ

D
E = ṗE − ṗ+ [RpBE ]×ω. (46)

Inspired by the CLIK mehod [29, Section 10.3.3], the desired
end-effector velocity in the Delta manipulator frame ΣD is
designed as

ṗDE,CLIK =(RRB
D)T [ṗE,d −Kc(pE − pE,d)

− ṗ+ [RpBE ]×ω],
(47)

where pE,d ∈ R3 is the desired end-effector position, ṗE,d ∈
R3 is the desired velocity of the end-effector, Kc ∈ R3×3 is
a positive diagonal matrix.

We then introduce the physical constraints of the aerial
manipulator into the P-P mode. Let ṗD

E
and ṗ

D

E denote the
vectors that consist of the last three elements of ṡ and ṡ.
Then, we have

ṗBE,d =





ṗD
E
, if ṗDE,CLIK < ṗD

E

ṗDE,CLIK, if ṗD
E
< ṗDE,CLIK < ṗ

D

E ,

ṗ
D

E , if ṗDE,CLIK > ṗ
D

E .

(48)

Thus, the desired end-effector position in ΣD can be obtained
by integrating ṗDE,d. The desired actuated joint vector qd
can be obtained by the inverse kinematics of the Delta
manipulator with pDE,d from (48).

2) E-P mode: To calculate the references of the quad-
copter base and manipulator with the given desired end-
effector position, the cooperative problem is mathematically
formulated as a QP problem:

min
ṡ

F (ṡ) =
1

2
ṡTWṡ

subject to Jṡ = sc,

ṡ ≤ ṡ ≤ ṡ,

(49)

whre F (ṡ) is the cost function of the QP problem, W is a
positive diagonal matrix, J is the actuated Jacobian matrix,
sc is a feedback item inspired by [14] and gdesigned as

sc = ṗE,d −Kc(pE − pE,d) + [RpBE ]×ω. (50)

Let ṡ∗ ∈ R3+n denote the optimal solution of QP problem
(49). The constraints in (49) ensure the optimal solution ṡ∗

to satisfy the physical constraints of the aerial manipulator.
Let sd = [pTd ,p

D,T
E,d ]T ∈ R3+n denote the desired actuated

state vector of the aerial manipulator. Let ṡd = ṡ∗ and
the desired actuated state vector sd can be obtained by
integrating ṡd. Then, pd and pDE,d can be obtained from
sd. From Section II-B, the desired joint vector qd can be
calculated by the inverse kinematics of the Delta manipulator.

Fig. 4: The approximate physical condition. Blue line: approximate position
constraint (62). Purple line: velocity constraint (58). Green line: approximate
condition (64). Gray area: feasible area (60).

Second, we introduce the viability condition to handle the
acceleration constraint [34]. Let si denote the i-th element
of s. Then, the viability condition is expressed as

si −
ṡi

2

2s̈min,i
− smax,i ≤ 0,

si −
ṡ2i

2s̈max,i
− smin,i ≥ 0,

(63)

where s̈min,i, s̈max,i, smin,i, smax,i denote the i-th elements
of s̈min, s̈max, smin, smax, respectively. However, the viabil-
ity condition (63) is nonlinear. We linearise the viability
condition by lines passing through the two terminal points
of the curves in (63). For instance, the curve of the first
equation in (63) passes through (si = si,max, ṡi = 0) and
(si = smax,i + ṡ2max,i/(2s̈m), ṡi = ṡmax,i). We can use a
line passing through the two points to linearise the viability
condition. Then the viability condition (63) is linearised as

ṡi − 2
s̈min,i

ṡmax,i
si + 2

s̈min,i

ṡmax,i
smax,i ≤ 0,

ṡi − 2
s̈max,i

ṡmin,i
si + 2

s̈max,i

ṡmin,i
smin,i ≥ 0.

(64)

From (64), we have

ṡv ≤ ṡ ≤ ṡv, (65)

where ṡv ∈ R6, ṡv ∈ R6 are the lower and upper bound
of the viability condition, ṡv,i, ṡv,i respectively represent the
i-th element of ṡv and ṡv ,

ṡv,i =2
s̈max,i

ṡmin,i
si − 2

s̈max,i

ṡmin,i
smin,i,

ṡv,i =2
s̈min,i

ṡmax,i
si − 2

s̈min,i

ṡmax,i
smax,i.

(66)

The relationships among the approximate position constraint,
velocity constraint, and approximation condition are illustrat-
ed in Fig. 4. �
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Fig. 5: Experimental setup for the aerial manipulator.

B. Cooperative method

The proposed planner provides two modes: End-effector
position-Quadcopter position (P-P) and End-effector position
(E-P) modes. The P-P mode steers the Delta arm and the
quadcopter base with the references of the end-effector and
the quadcopter, respectively. The E-P mode steers the Delta
arm and the quadcopter base only with the reference of the
end-effector. The P-P mode uses the quadcopter base for
large-scale movements and the Delta arm for compensating
for the tracking error of the end-effector. It performs better
in tracking errors due to the less relative motion. However,
the manipulation area of the P-P mode is small since the size
of the Delta arm’s workspace is limited. Compared with the
P-P mode, the E-P mode has a large size of manipulation
area while suffers more influence from dynamic couplings.
The two modes are applicable to different scenarios. The P-P
mode is applicable to pick-and-place task [22], peg-in-hole
task, aerial repair task [23], etc. The E-P mode is applicable
to trajectory tracking task, pulling/pushing task, etc.

1) P-P mode: The inputs of the P-P mode are desired
positions of the end-effector and the quadcopter base. From
(4), we obtain

RRB
Dṗ

D
E = ṗE − ṗ+ [RpBE ]×ω. (67)

Inspired by the CLIK method [19, Section VA], the desired
end-effector velocity in the Delta arm frame ΣD is designed
as

ṗDE,CLIK =(RRB
D)T [ṗE,d −Kc(pE − pE,d)

− ṗ+ [RpBE ]×ω],
(68)

where pE,d ∈ R3 is the desired end-effector position, ṗE,d ∈
R3 is the desired velocity of the end-effector, Kc ∈ R3×3 is
a positive diagonal matrix.

We then introduce the physical constraints of the aerial
manipulator into the P-P mode. Let ṗD

E
and ṗ

D

E denote the
vectors that consist of the last three elements of ṡ and ṡ.
Then, we have

ṗBE,d =





ṗD
E
, if ṗDE,CLIK < ṗD

E

ṗDE,CLIK, if ṗD
E
< ṗDE,CLIK < ṗ

D

E ,

ṗ
D

E , if ṗDE,CLIK > ṗ
D

E .

(69)

Thus, the desired end-effector position in ΣD can be obtained
by integrating ṗDE,d. The desired actuated joint vector qd can
be obtained by the inverse kinematics of the Delta arm with
pDE,d from (69).

2) E-P mode: To calculate the references of the quad-
copter base and the Delta arm with the given desired end-
effector position, the cooperative problem is mathematically
formulated as a QP problem:

min
ṡ

F (ṡ) =
1

2
ṡTWṡ

subject to Jṡ = sc,

ṡ ≤ ṡ ≤ ṡ,

(70)

whre F (ṡ) is the cost function of the QP problem, W is a
positive diagonal matrix, J is the actuated Jacobian matrix,
sc is a feedback inspired by the CLIK algorithm in [19,
Section VA] and designed as

sc = ṗE,d −Kc(pE − pE,d) + [RpBE ]×ω. (71)
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Fig. 6: Experiment results of the disturbance rejection example.

Let ṡ∗ ∈ R6 denote the optimal solution of QP problem
(70). The constraints in (70) ensure the optimal solution ṡ∗

to satisfy the physical constraints of the aerial manipulator.
Let sd = [pTd ,p

D,T
E,d ]T ∈ R6 denote the desired actuated

state vector of the aerial manipulator. Let ṡd = ṡ∗ and
the desired actuated state vector sd can be obtained by
integrating ṡd. Then, pd and pDE,d can be obtained from
sd. From Section II-B, the desired joint vector qd can be
calculated by the inverse kinematics of the Delta arm.

The cost function shows the constraints on the energy of
the cooperative planning. The weight matrix W also reflects
the priority of the actuated DOFs. A smaller diagonal element
means a higher priority. Therefore, we define W as follows:

W = diag([wuṡ
−2
1,M , wuṡ

−2
2,M , wuṡ

−2
3,M , ṡ

−2
4,M , ṡ

−2
5,M , ṡ

−2
6,M ]),

(72)
where wu > 0 is the weighting coefficient to determine the
priorities of the quadcopter base and the Delta arm. wu with

a small value means the Delta arm has a higher priority. wu
with a large value means the Delta arm has a lower priority.

VII. EXPERIMENTAL VERIFICATION

This section presents experimental results to verify the
effectiveness of the proposed algorithms. The experimental
video is available at https://youtu.be/QMjGtBCUi-E.

First of all, we describe the experimental setup (see Fig. 5).
The aerial manipulator platform used in the experiments con-
sists of a quadcopter and a Delta arm. The wheelbase of the
quadcopter is 0.65 m. The mass of the quadcopter (including
a battery) is 3.60 kg. The Delta arm consists of a mounting
base (0.56 kg) and a movable robotic arm (0.44 kg). The
ESO-based flight controller runs on a Pixhawk 4 autopilot.
The cooperative planner and the inverse kinematics of the
Delta arm run on an onboard Intel NUC i7 computer with
ROS (an open-source robotics middleware suite). The ex-
periments are conducted in a Vicon system, which provides
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Fig. 7: Simulation results of the disturbance rejection example.

accurate position measurements of the quadcopter base and
the end-effector. The measurement data of the Vicon system
is sent to a ground control station through an ethernet switch.
A 5 GHz wireless router is used to connect the ground control
station and the aerial manipulator. The ground control station
sends the measurement data and the control command to the
aerial manipulator with a frequency of 100 Hz. The aerial
manipulator sends the state data to the ground control station
with a frequency of 50 Hz.

In all the experiments, we use the same set of control gains:
Λp = diag([1.5, 1.5, 1.5]), Kv = diag([2.0, 2.0, 2.0]), Λq =
diag([3.0, 3.0, 3.0]), Kω = diag([3.4, 3.4, 3.4]), kq = 8. The
parameters of the cooperative planner are selected as Kc =
diag([1.2, 1.2, 1.2]), wu = 0.2. The physical constraints of
the aerial manipulator are given in Table II.

A. Example 1: Disturbance rejection

In the first experiment, a payload of 1.2 kg is mounted at
the end of the Delta arm (Fig. 6(b)). The control objective

TABLE II: Physical constraints of the aerial manipulator.

smin [−2,−2,−2.80,−0.08,−0.08,−0.30]T

smax [2, 2, 0, 0.08, 0.08,−0.15]T

ṡmin [−0.5,−0.5,−0.5,−0.8,−0.8,−0.8]T

ṡmax [0.5, 0.5, 0.5, 0.8, 0.8, 0.8]T

s̈min [−1,−1,−1,−2,−2,−2]T

s̈max [1, 1, 1, 2, 2, 2]T

is to maintain the position of the quadcopter base unchanged
while the payload swings fast (Fig. 6(a) and (c)). Fig. 6(c)
shows the tracking performance of the Delta arm. In particu-
lar, the reference of xDE is a sinusoidal signal with the period
as 0.5π s. Since it is mechanical control, the tracking error
is maintained on the level of 10−3 m.

The purpose of this experiment is to verify the effec-
tiveness of the ESO and the flight controller. A PX4 1.9.0
controller is selected as a baseline for comparison. The PX4
controller has been widely used in the motion control of the
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Fig. 8: Results of the end-effector stabilization experiment.

aerial manipulator [35]–[37].
Fig. 6(d)-(e) shows the position tracking performances of

the proposed controller and the PX4 controller. As can be
seen in Fig. 6(e), with the proposed controller, the mean posi-
tion error of the quadcopter base is 0.02 m and the maximum
position error reaches 0.04 m. As a comparison, with the PX4
controller, the mean position error of the quadcopter base is
0.09 m and the maximum position error reaches 0.20 m.
Compared to the PX4 controller, our proposed controller can
reduce the mean and maximum position errors by 78% and
80%, respectively.

In addition to the experiment on the real platform, we
also conducted a simulation to verify the effectiveness of
the proposed ESOs. The reason that we conduct simulation
experiments is that the ground truth of the disturbances gener-
ated by the swing payload is unknown in real experiments but
can be known in simulation. The simulation is conducted in
Matlab Simscape without considering the noise of the aerial
manipulator, a mechanical system simulation environment.
The reference of the end-effector in the simulation is the
same as that in the real experiment (Fig. 7(b)).

As shown in Fig. 7(a), the mean position error of the quad-
copter base achieved by the proposed controller is 0.002 m,
which is 1/10 of the mean error in the real experiment. It is,
however, not surprising because the real experiment is more
challenging than the simulation due to various uncertainties.
More importantly, Fig. 7(c) shows the estimation results of
the position and the attitude ESOs. The true values of the
dynamic coupling terms are calculated from (12) and (29). As
can be seen, the proposed ESOs can well track the dynamic
coupling terms though there is a phase delay of about 0.18 s.
The good performance of the ESOs underpins the overall
performance of the ESO-based controller.

To further verify the robustness of the proposed method,
we conducted Monte-Carlo simulation. The simulation con-
siders measurement noises and inertia uncertainties. The de-
tails of the noises and the uncertainties are given in Table III.
In particular, we consider three cases for the ranges of the
uncertainties: ±5%, ±10%, and ±20% of the corresponding
nominal values. The three cases are referred to as low,
middle, and high uncertainties, respectively. One thousand
times of stochastic simulation were conducted for each level
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Fig. 9: Results of the end-effector trajectory tracking experiment.

TABLE III: Measurement noises and inertia uncertainties of the Monte Carlo
simulation.

Noises and uncertainties
Zero-mean Gaussian

distribution
Uniform

distribution
Standard derivation Range

Position noises 0.010 m — —
Velocity noises 0.010 m/s — —
Attitude angle noises 0.0175 rad — —
Angular velocity noises 0.0175 rad/s — —

Low inertia uncertainties — — ±5%
Middle inertia uncertain-
ties

— — ±10%

High inertia uncertainties — — ±20%

TABLE IV: Mean values and standard derivations of the Monte Carlo
simulation results.

Uncertainty level
Mean value of eB Standard derivation of eB

(m) (m)

Low 0.009 0.004
Middle 0.016 0.008
High 0.024 0.018

of uncertainty.

The mean values and the standard derivations of the
position error of the quadcopter base in the Monte Carlo
simulation results are shown in Table IV. With the proposed
method, the mean values of the results in low, middle, and
high uncertainties are 0.009 m, 0.016 m, and 0.024 m,
respectively. The standard derivations of the results in the
low, middle, and high uncertainties are 0.004 m, 0.008 m, and
0.018 m, respectively. The results demonstrate the robustness
of the proposed method given different levels of uncertainties.

B. Example 2: End-effector stabilization

The control objective of this experiment is to stabilize the
end-effector to a fixed position while the quadcopter is flying
along a circle with a diameter of 0.12 m (see Fig. 8(a)).
The size of the circle is limited by the size of the Delta
arm’s workspace to ensure the end-effector can reach the
fixed position. The purpose of this experiment is to validate
the P-P mode of the proposed cooperative planner together
with the flight controller. This scenario considered in this
experiment is important because practical tasks may require
assigning separate trajectories for the quadcopter base and
the end-effector. For example, the end-effector must track a
desired trajectory to complete a manipulating task whereas
the quadcopter base must move to avoid obstacles or observe
the manipulating target from different angles using onboard
cameras.

The control results are shown in Fig 8. First, it is shown
in Fig 8(b) that the mean position error of the end-effector
is 0.011 m. The standard deviation of the position error is
0.004 m. Second, the planned trajectories for the quadcopter
base and Delta arm are shown in Fig 8(c). As can be seen,
the mean tracking error of the quadcopter base can reach
0.018 m.

C. Example 3: End-effector trajectory tracking

The control objective in the third experiment is that the
end-effector can accurately track a desired complex trajec-
tory. The purpose of this experiment is to validate the E-
P mode of the proposed cooperative planner together with
the flight controller. Different from the second example, this
example does not require specifying the desired trajectory of
the quadcopter base.

The desired trajectory of the end-effector is set as a
shape of a four-petal flower (Fig. 9(a)). In particular, let
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Fig. 10: Results of the aerial weaving experiment.

pE,0 = [xE,0, yE,0, zE,0]T be the initial position. The desired
trajectory of the end-effector is designed as

xE,d = xE,0 + 0.3(1− cos 0.08πt) ∗ cos 0.02πt,

yE,d = yE,0 + 0.3(1− cos 0.08πt) ∗ sin 0.02πt,

zE,d = zE,0.

(73)

The tracking performance of the end-effector is shown in
Fig. 9(b). The mean tracking error of the end-effector is as
low as 0.01 m.

D. Example 4: Aerial weaving

In the final example, a rope is tied at the end-effector. The
control objective is that the end-effector must pass through
four hangers precisely and complete an aerial weaving task
(see Fig. 1). The four hangers are mounted on the top of
four pillars. A passive rope dispenser is mounted on one of
the pillars. The rope must be pulled out from the dispenser
by the aerial manipulator during the flight. Therefore, this
example is more challenging than the third one because the
aerial manipulator must overcome the drag force of the rope.
Hence, this example can better demonstrate the robustness of
the overall system in practical manipulation tasks.

The reference of the end-effector is calculated based on the
positions of the hangers. The control is archived by the flight
controller together with the E-P mode of the cooperative
planner. As shown in Fig. 10, the task is completed by the
proposed method. In particular, the mean tracking error of
the end-effector is 0.02 m, which is greater compared to
the third example where the mean tracking error is 0.01 m.
This is reasonable due to the drag force of the rope. Since
force control is not specifically considered in our algorithms,

the present performance verifies the ability of the proposed
algorithm to counter external forces applied to the end-
effector.

VIII. CONCLUSION

This paper proposed an ESO-based approach for end-
effector tracking control of an aerial manipulator. It is verified
by four experimental results. The results of the disturbance
rejection experiment show the mean position error of the
quadcopter base with the proposed method is 0.02 m when
the Delta arm swings fast with a payload of 1.2 kg. As a com-
parison, the mean position error of the quadcopter base with
the PX4 controller is 0.09 m. The mean tracking errors of
the end-effector stabilization and the end-effector trajectory
tracking experiments are 0.011 m and 0.01 m, respectively.
In the aerial weaving experiment, the mean tracking error
of the end-effector is 0.02 m. These results verify that the
proposed approach can achieve accurate and robust control
performance. The approach requires minimal measurement
information and hence can be implemented conveniently in
real time. Although force control is not specifically addressed
in this approach, the ESOs can estimate external disturbances
applied to the end-effector to a certain extent. It is verified
by the aerial weaving experiment that the aerial manipulator
with the proposed method can accomplish the experiment
under the drag force of the rope. The entire system shows
certain robustness against external forces. However, in order
to handle strong force interaction between the manipulator
and the environment, force sensors and force control must
be introduced. This will be one important research direction
for future research.
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