Divided by Europe: Affective polarization in the context of European elections

Hyeonho Hahm ${ }^{\text {a }}$, David Hilpert ${ }^{\text {b }}$, and Thomas König ${ }^{\text {b }}$
${ }^{a}$ Department of Policy Studies, Hanyang University, Seoul, Republic of Korea; ${ }^{b}$ Department of Political Science, University of Mannheim, Mannheim, Germany

Online Appendix

1 Summary Statistics 2
2 Experimental Design 9
3 Construction of Key Variables and Descriptive Statistics 11
4 Analysis of Country-Level Findings 14
5 Robustness 1818
5.1 Alternative Coding of EU Attachment 18
5.2 Single-Level Model for Individual and Country-Level Moderators. 211
5.3 Entropy Balancing 222
6 Survey Questions 233
7 References 25

1 Summary Statistics

The sampling was conducted to broadly represent the adult population with respect to key demographic variables such as age and gender in each of the 25 EU member states. In the following, we compare the distribution of gender and age in our sample against official population statistics, using Eurostat statistics for 2019.

TABLE A1: Sample Breakdown by Gender

		Male	\%	Female	\%
Austria	Sample	630	49.33	645	50.51
	Population Target	3746519	48.85	3922459	51.15
Belgium	Sample	574	43.98	729	55.86
	Population Target	4698392	49.09	4872516	50.91
Bulgaria	Sample	518	52.75	463	47.15
	Population Target	2871744	48.09	3100385	51.91
Croatia	Sample	694	55.97	545	43.95
	Population Target	1680528	47.62	1848311	52.38
Czech Republic	Sample	618	54.45	515	45.37
	Population Target	4397590	48.82	4610966	51.18
Denmark	Sample	508	42.33	690	57.5
	Population Target	2383644	49.4	2441588	50.6
Estonia	Sample	611	64.72	331	35.06
	Population Target	514247	46.44	593157	53.56
Finland	Sample	567	48.88	586	50.52
	Population Target	2273941	48.94	2372168	51.06
France	Sample	594	51.38	562	48.62
	Population Target	25596890	47.81	27938455	52.19
Germany	Sample	597	50.25	587	49.41
	Population Target	35303386	49.04	36688675	50.96

TABLE A1: Sample Breakdown by Gender (Continued)

Greece	Sample	572	49.27	588	50.65
	Population Target	4390217	48.68	4627792	51.32
Hungary	Sample	492	49.9	493	50
	Population Target	3891151	46.96	4395722	53.04
Ireland	Sample	577	54.38	481	45.33
	Population Target	1893324	49.18	1956508	50.82
Italy	Sample	569	48.55	603	51.45
	Population Target	25356940	48.23	27220763	51.77
Latvia	Sample	733	63.85	415	36.15
	Population Target	717145	44.94	878650	55.06
Lithuania	Sample	803	63.48	462	36.52
	Population Target	1062019	45.35	1279907	54.65
Netherlands	Sample	577	47.26	642	52.58
	Population Target	7120715	49.51	7260792	50.49
Poland	Sample	658	54.92	540	45.08
	Population Target	15411147	47.96	16723208	52.04
Portugal	Sample	593	49.96	593	49.96
	Population Target	4141733	46.69	4729318	53.31
Romania	Sample	641	43.31	837	56.55
	Population Target	7868662	48.13	8480066	51.87
Slovakia	Sample	746	57.52	550	42.41
	Population Target	2222888	48.22	2386767	51.78
Slovenia	Sample	566	49.87	569	50.13
	Population Target	873107	49.48	891554	50.52
Spain	Sample	718	51.43	677	48.5
	Population Target	19447032	48.71	20477085	51.29

TABLE A1: Sample Breakdown by Gender (Continued)

Sweden	Sample	602	48.01	648	51.67
	Population Target	4116951	49.8	4150480	50.2
UK	Sample	641	50.12	635	49.65
	Population Target	27237846	49.01	28342406	50.99

Sources: (Hahm et al. 2022, Eurostat)

TABLE A2 Sample Breakdown by Age											
Austria	Sample	$\begin{array}{\|l} \mathbf{1 8 - 2 9} \\ \hline 207 \end{array}$	$\begin{aligned} & \% \\ & 16.42 \end{aligned}$	$\begin{array}{\|c\|} \hline 30-39 \\ 201 \end{array}$	$\begin{array}{\|l} \hline \% \\ \hline 15.94 \end{array}$	$\frac{40-49}{258}$	$\begin{array}{\|l} \hline \% \\ \hline 20.46 \end{array}$	$\begin{aligned} & \mathbf{5 0 - 5 9} \\ & \hline 292 \end{aligned}$	$\frac{\%}{23.16}$	$\begin{array}{\|l\|} \hline 60 \text { plus } \\ \hline 303 \end{array}$	$\begin{array}{\|l} \% \\ \hline 24.03 \end{array}$
	Population Target	1625568	21.69	1239024	16.54	1195970	15.96	1404492	18.74	2027984	27.06
Belgium	Sample	243	18.71	140	10.78	201	15.47	265	20.4	450	34.64
	Population Target	2078098	22.11	1499556	15.96	1555356	16.55	1624178	17.28	2639596	28.09
Bulgaria	Sample	120	12.27	218	22.29	246	25.15	266	27.2	128	13.09
	Population Target	1064914	18.54	1007040	17.53	1090600	18.99	941288	16.39	1639646	28.55
Croatia	Sample	211	17.24	277	22.63	299	24.43	294	24.02	143	11.68
	Population Target	698708	20.79	559050	16.63	559662	16.65	574948	17.11	968688	28.82
Czech Republic	Sample	177	15.69	195	17.29	200	17.73	252	22.34	304	26.95
	Population Target	1655640	18.82	1554406	17.67	1818450	20.68	1343664	15.28	2423020	27.55
Denmark	Sample	196	16.51	117	9.86	170	14.32	236	19.88	468	39.43
	Population Target	1141616	23.95	669530	14.04	751640	15.77	808148	16.95	1396354	29.29
Estonia	Sample	126	13.38	153	16.24	218	23.14	288	30.57	157	16.67
	Population Target	220416	21.43	199400	19.39	187276	18.21	161490	15.7	259912	25.27

TABLE A2 Sample Breakdown by Age (continued)											
Finland	Sample	$18-29$ 193	$\begin{array}{\|l} \hline \% \\ \hline 16.75 \end{array}$	$\mathbf{3 0 - 3 9}$ 186	$\%$ 16.15	$\begin{array}{\|l\|} \hline 40-49 \\ \hline 222 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \% \\ \hline 19.27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{5 0 - 5 9} \\ \hline 245 \\ \hline \end{array}$	\%21.27	60 plus 306	\% 26.56
	Population Target	997718	21.94	725876	15.96	669166	14.71	728280	16.01	1426842	31.37
France	Sample	197	17.33	196	17.24	254	22.34	236	20.76	254	22.34
	Population Target	11371970	22.21	7861838	15.36	8314716	16.24	8410080	16.43	15235176	29.76
Germany	Sample	220	18.66	165	13.99	235	19.93	236	20.02	323	27.4
	Population Target	14155688	20.05	11048716	15.65	10474490	14.83	13592088	19.25	21335790	30.22
Greece	Sample	128	11.2	301	26.33	379	33.16	234	20.47	101	8.84
	Population Target	1646666	18.75	1420388	16.18	1594512	18.16	1451876	16.54	2666992	30.37
Hungary	Sample	112	11.44	176	17.98	190	19.41	187	19.1	314	32.07
	Population Target	1704522	21.9	1300818	16.72	1586832	20.39	1146370	14.73	2043760	26.26
Ireland	Sample	214	20.52	215	20.61	204	19.56	184	17.64	226	21.67
	Population Target	877430	23.17	694870	18.35	735210	19.42	583776	15.42	895362	23.65
Italy	Sample	183	15.87	208	18.04	252	21.86	205	17.78	305	26.45
	Population Target	9296910	18.33	7145854	14.09	9179482	18.1	9264526	18.27	15827108	31.21

		18-29	\%	30-39	\%	40-49	\%	50-59	\%	60 plus	\%
Latvia	Sample	166	14.52	251	21.96	288	25.2	298	26.07	140	12.25
	Population Target	297228	20.72	267532	18.65	250978	17.5	250506	17.47	368046	25.66
Lithuania	Sample	364	29	264	21.04	263	20.96	260	20.72	104	8.29
	Population Target	484942	22.83	347158	16.34	357430	16.83	398080	18.74	536428	25.26
Netherlands	Sample	199	16.49	136	11.27	205	16.98	237	19.64	430	35.63
	Population Target	3196778	22.45	2097662	14.73	2202670	15.47	2539218	17.83	4205102	29.53
Poland	Sample	351	29.52	279	23.47	198	16.65	186	15.64	175	14.72
	Population Target	6491052	21.06	6320360	20.51	5438144	17.64	4555630	14.78	8017108	26.01
Portugal	Sample	217	18.42	272	23.09	269	22.84	223	18.93	197	16.72
	Population Target	1605984	19.39	1218500	14.71	1528870	18.46	1392984	16.82	2537128	30.63
Romania	Sample	239	16.44	369	25.38	387	26.62	284	19.53	175	12.04
	Population Target	3285576	20.88	2714204	17.25	3122112	19.84	2466352	15.67	4149080	26.36
Slovakia	Sample	225	17.4	240	18.56	286	22.12	290	22.43	252	19.49
	Population Target	967320	21.76	881646	19.83	860510	19.36	698104	15.7	1038196	23.35

TABLE A2 Sample Breakdown by Age (continued)											
Slovenia		$\mathbf{1 8 - 2 9}$	$\boldsymbol{\%}$	$\mathbf{3 0 - 3 9}$	$\boldsymbol{\%}$	$\mathbf{4 0 - 4 9}$	$\boldsymbol{\%}$	$\mathbf{5 0 - 5 9}$	$\boldsymbol{\%}$	$\mathbf{6 0}$ plus	$\boldsymbol{\%}$
	Sample	169	15.08	236	21.05	244	21.77	258	23.02	214	
Spain	Population Target	311420	17.83	303190	17.36	319524	18.3	305208	17.48	506872	29.03
	Sample	232	16.9	319	23.23	341	24.84	287	20.9	194	14.13
Sweden	Population Target	7016668	18.04	6159250	15.84	8082144	20.78	6903880	17.75	10732122	27.59
	Sample	194	15.65	152	12.26	183	14.76	275	22.18	436	
UK	Population Target	1879030	22.82	1316794	15.99	1296938	15.75	1298132	15.77	2443008	29.67
	Sample	205	16.35	174	13.88	228	18.18	220	17.54	427	

[^0]
2 Experimental Design

Before the dictator game, we presented the respondents with the following background information and instruction.

This game is played by pairs of individuals. Each pair is made up of a Player 1 and a Player 2. Each player will have some information about the other player, but you will not be told who the other players are during or after the experiment.

The game is conducted as follows: A sum of 10 tokens will be provisionally allocated to Player 1 at the start of each round. Player 1 will then decide how much of the 10 tokens to offer to player 2. Player 1 could give some, all, or none of the 10 tokens. Player 1 keeps all tokens not given to player 2. Player 2 gets to keep all the tokens Player 1 offers.

You will play this game three times with three different people.
Respondents then received a tabular overview over Player 2:

FIGURE A1 Player 2 Profile Example

Player 1: You are Player 1. You have 10 tokens for this game. You can split the tokens between yourself and Player 2 in any way you want.

Information about this round's Player 2
\#1

	Player 2
Gender	Female
Nationality	Ireland
Age	Muslim
Religion	Fine Gael (FG)
Party Affiliation	Upper Class
Social Class	Player 2 feels that he/she is a citizen of the EU
EU	

So put the number of tokens you wish to keep in the box labeled "Player 1." Put the tokens you wish to go to Player 2 in the box labeled "Player 2."

Player 1 (You)	0 Token(s)
Player 2	0
Token (s)	
Total	0 Token(s)

3 Construction of Key Variables and Descriptive Statistics

Randomized profiles are coded according to whether they represent the respondent's in- or out-group, using information that respondent provided before:

Gender: male (female) respondents are coded to perceive a female (male) Player 2 as out-group. Respondents who indicate gender "Other" cannot be coded easily and are "dummied out" with a separate indicator.

Age: we code respondents according to their belonging to five age groups: 18-29, 30-39, 40-49, 5059,60 plus. The age of Player 2 was randomly selected to be $18,30,42,53$, or 65 years old. We code in-group when respondents are matched with a Player 2 from the same age bracket, and otherwise out-group.

Class: Respondents indicate their subjective belonging to a social class on a hierarchical scale, covering "The working class of society," "The lower middle class of society," "The middle class of society," "The upper middle class of society" and "The higher class of society." We collapse the three middle categories into "Middle Class," creating a three-fold distinction that parallels the set from which we select Player 2's class, "Lower Class," "Middle Class" or "Upper Class." A Player 2 from the same social class is coded as in-group, from a different social class as out-group.

Religion: Respondents could select from a detailed battery of religious beliefs. The religion of Player 2 was randomly selected from a set including "Catholic," "Protestant," "Muslim," and "No Religion." A Player 2 with the same belief as a Catholic, Protestant or Muslim respondent are coded as in-group. A Player 2 with beliefs different from the respondent are coded as out-group, for example Catholic respondents matched with a Protestant or Muslim Player 2, or one with "No religion." Respondents that are neither Catholic, Protestant nor Muslim are indicated with a separate dummy ("Other religion"). Similarly, atheist or agnostic respondents, or respondents who "don't know" are indicated with a separate indicator ("Non-believer").

Nationality: For each of the 25 countries in which we fielded the survey, we only allow nationals of that country to participate. Nationality of Player 2 is randomly selected to be co-national (e.g., "Ireland" for respondents in Ireland), EU-national or non-EU national.

Partisanship: Respondents indicate their partisanship by answering a question which party they feel close to. Depending on the answer, we randomly generate the partisanship of Player 2. Randomization was adjusted such that in expectation, there is a 50% chance for Player 2 to have the same partisanship (co-partisan), and 50% chance to be identify with another party from the top 8 parties in the country at that time (out-partisan), based on recent electoral results, polling numbers, and relevance to the research question (Eurosceptic parties).

EU attachment: We used a five-point scale to elicit the respondent's level of attachment to the European Union, from Very attached (1) to Not at all attached (5). The experimental manipulation randomly provides information about whether "Player 2 feels that he/she is not a citizen of the EU," or "Player 2 feels that he/she is a citizen of the EU." For those respondents feeling "Not at all attached" to the EU, we code profiles as in-group where "Player 2 feels that he/she is not a citizen of the EU," and "Player 2 feels that he/she is a citizen of the EU" as the out-group. Conversely, for those respondents who feel at least some level of attachment to the EU ("Not very attached" (4) to "Very attached" (1)), we code profiles as in-group where "Player 2 feels that he/she is a citizen of the EU," and code profiles as out-group where "Player 2 feels that he/she is not a citizen of the EU."

Table A3 summarizes descriptive information on key variables in the survey experiment. Table A4 adds information on individual-level and country-level variables relevant to the multi-level analysis.

TABLE A3 Descriptive Overview over Dependent and Independent Variables

Variable		N	\%
Tokens for Player 2 (DV)	$\begin{aligned} & \text { Mean }=3.59, \\ & \text { SD }=2.33 \end{aligned}$	89,481	100
Gender	In Group	44,660	49.9
	Out Group	44,695	49.9
	Other	126	0.1
	Sum	89,481	100
Age	In-Group	17,631	19.7
	Out-Group	71,850	80.3
	Sum	89,481	100
Class	In-Group	28,821	32.2
	Out-Group	56,940	63.6
	Don't know	3,720	4.2
	Sum	89,481	100
Religion	In-Group	9,882	11.0
	Out-Group	29,823	33.3
	Other religion	17,712	19.8
	Non-believer	32,064	35.8
	Sum	89,481	100
Partisanship	In-Group	15,406	17.2
	Out-Group	33,416	13.5
	Control-Group (No information provided)	12,098	37.3
	Not defined	28,561	31.9
	Sum	89,481	100
Nationality	In-Group	60,920	68.1
	Out-Group (EU-national)	22,312	25.0
	Out-Group (non-EU-national)	6,249	7.0
	Sum	89,481	100
EU Attachment	In-Group	24,518	27.4
	Out-Group	24,237	27.1
	Control-Group (No information provided)	34,477	38.5
	Not defined	6,249	7.0
	Sum	89,481	100

TABLE A4: Descriptive information on individual-level and country-level variables

	Min	Mean	Max	N
Individual level				
Election salience	0	0.60	1	29,594
Election attention	0	0.94	1	29,594
Election engagement	0	0.38	1	29,594
Election participation	0	0.78	1	29,594
Controls				
Female	0	0.49	1	29,594
Age	18	46.7	98	29,286
Education	0	21.2	30	28,609
Country level				
Dalton polarization index (EU)	0.24	0.80	1.55	29,594
Vote share Eurosceptic parties	0	16.6	49.2	29,594
Length of EU membership (in years)	6	32.07	67	29,594
Gini coefficient	24.2	31.1	40.4	29,594
Controls				
Population size (in million)	1.3	38.0	83.1	29,594
GDP per capita	8,780	30,708	72,260	29,594
Unemployment rate	2	6.3	17.3	29,594

4 Analysis of Country-Level Findings

First, we compare the effect of bias based on nationality and EU attachment across the 25 countries in our sample. For nationality, while smaller sample sizes extend the range of 95% Confidence Intervals, the size of the estimates suggest a general pattern: in most countries, bias against non-EU nationals surpasses the bias against EU-nationals. Exceptions to this pattern include Greece, Ireland, and the UK, where it is more difficult to distinguish the effects. For EU attachment, we see that it leads to significant levels of bias against the out-group in all countries except the Netherlands. Furthermore, the estimates indicate an effect that is substantively comparable or even larger that based on non-EU nationality in all but five countries: Belgium, Croatia, Czech Republic, Netherlands, and Slovenia.

FIGURE A2: Divisions Across Different Identity Attributes, by Country

Notes: The figure illustrates estimates of the effects of the randomly assigned identity attributes on the tokens allocated to Player 2. The bars capture the estimated extent of political divides, measured in the number of tokens that are withheld from the out-group relative to the in-group on each identity attribute. Longer bars indicate larger gaps between in-group and out-group. Lines indicate 95 percent confidence intervals.

Next, we look at the bias against out-partisans relative to co-partisans, conditional on the EUattachment shown. While we see that the partisan divide is prevalent in all 25 countries, we see that EU attachment often makes a substantively important difference, even if relatively sample sizes leave uncertainty around these estimates. In 22 out of 25 countries, the estimates suggest that considerations of EU attachment increase the partisan divide, while the size of this effect varies considerably across countries.

FIGURE A3: Partisan Divide Conditional on EU Attachment, by Country

Notes: The figure illustrates estimates of the effects of partisanship on the tokens allocated to Player 2. The bars capture the estimated extent of the partisan divide, measured in the number of tokens that are withheld from the out-partisans relative to co-partisans. Longer bars indicate larger gaps between in-group and out-group. Lines indicate 95 percent confidence intervals.

Finally, we compare the level of in-group favoritism and out-group derogation over EU attachment relative to a neutral control group in which we withhold information about Player 2's feeling that he or she is (not) a citizen of the EU. While the pooled pattern clearly indicates that the effect of outgroup derogation is larger than the effect of in-group favoritism, we confirm consistent patterns in 22 out of 25 countries. Again, uncertainty around these estimates is higher in individual-country samples than in the pooled sample that combines information from all 25 countries. Interpreting the findings with caution, we still see that a broad set of countries are consistent with the aggregate pattern of the pooled analysis, rather than a small set of influential countries.

FIGURE A4: In-group Favoritism and Out-Group Animosity, by Country

Notes: The figure illustrates the decomposition of the political divide based on European identity into separate estimates for in-group favoritism and out-group derogation. The bars capture the estimated extent of political divide, measured by the difference in tokens allocated in-group and out-group relative to a control group where we do not display whether Player 2 feels that he or she is a citizen of the EU. Lines indicate 95 percent confidence intervals.

5 Robustness

5.1 Alternative Coding of EU Attachment

Matching respondents to Player 2 based on their attachment is to some extent arbitrary: for respondents, we evaluate their attachment to the EU on a five-point scale ("Not at all attached", "Not very attached", "Moderately attached", "Fairly attached" or "Very attached"), while Player 2 is characterized by randomly drawing a relevant piece of information: that "Player 2 feels that he/she is a citizen of the EU" or that "Player 2 feels that he/she is not a citizen of the EU." The question is at what level of EU attachment perceive Player 2 of either "type" as in- and out-group. Our measure used in the main analysis distinguishes between respondents who feel "Not at all attached" from respondents who feel at least some attachment, starting from those who feel "Not very attached" (still indicating a minimum of attachment).

Here we propose and test two alternatives. The first alternative groups together respondents who feel "Not at all attached" with those "Not very attached" and contrasts them to respondents who feel "Moderately", "Fairly" or "Very attached." The resulting findings are very similar to those presented in the main manuscript:

FIGURE A5: Divisions Across Different Identity Attributes (First Alternative Coding of EU Attachment)

Notes: Pooled analysis. $\mathrm{J}=29,827 ; \mathrm{N}=89,481$. The figure illustrates estimates of the effects of the randomly assigned identity attributes on the tokens allocated to Player 2. The bars capture the estimated extent of political divides, measured in the number of tokens that are withheld from the out-group relative to the in-group on each identity attribute. Longer bars indicate larger gaps between in-group and out-group. Lines indicate 95 percent confidence intervals.

The second alternative follows the division of the main manuscript but ignores respondents who are "Not very attached" to the EU on the grounds that it is difficult for this group in particular whether respondents feel as a citizen of the EU or feel that they are not citizens of the EU. Again, the resulting findings are very similar to those presented in the main manuscript.

FIGURE A6: Divisions Across Different Identity Attributes (Second Alternative Coding of EU Attachment)

Notes: Pooled analysis. $\mathrm{J}=29,561 ; \mathrm{N}=86,678$. The figure illustrates estimates of the effects of the randomly assigned identity attributes on the tokens allocated to Player 2. The bars capture the estimated extent of political divides, measured in the number of tokens that are withheld from the out-group relative to the in-group on each identity attribute. Longer bars indicate larger gaps between in-group and out-group. Lines indicate 95 percent confidence intervals.

5.2 Single-Level Model for Individual and Country-Level Moderators

Since our main analysis rests on a computationally intensive hierarchical linear model, here we test a simple single-level equivalent, clustering standard errors by survey respondents. The main findings remain the same.

TABLE A5: Single-level OLS Model on the European Divide (with Clustered Standard Errors)

	Dependent variable:						
	Tokens for Player 2						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
EU attachment: Out-group	-0.189 (0.136)	${ }^{-0.433^{* * *}(0.029)}$	$-0.437^{* * *}(0.028)$	-0.432*** (0.029)	-0.445*** (0.028)	-0.167 (0.136)	-0.165 (0.136)
Election salience	$0.437^{* * *}(0.083)$					$0.446^{* * *}(0.083)$	$0.447^{* * *}(0.083)$
Election attention	$0.255^{* *}(0.103)$					$0.263^{* *}(0.103)$	$0.262^{* *}(0.103)$
Election engagement	-0.031 (0.045)					-0.029 (0.046)	-0.029 (0.045)
Election participation	0.014 (0.060)					0.004 (0.060)	0.002 (0.060)
EU attachment: Out-group * Election salience	$-0.306^{* * *}(0.107)$					-0.305*** (0.108)	$-0.311^{* * *}(0.108)$
EU attachment: Out-group * Election attention	-0.057 (0.132)					-0.084 (0.132)	-0.084 (0.132)
EU attachment: Out-group * Election engagement	-0.087 (0.059)					-0.083 (0.059)	-0.077 (0.059)
EU attachment: Out-group * Election participation	$-0.171^{* *}(0.078)$					$-0.154^{* *}(0.078)$	$-0.160^{* *}(0.078)$
Dalton Polarization Index (EU)		0.074 (0.107)				-0.023 (0.114)	
EU attachment: Out-group * Dalton Polarization Index (EU)		$-0.318^{* *}(0.125)$				$-0.238^{*}(0.136)$	
Vote share Eurosceptic parties			-0.040 (0.104)				-0.048 (0.107)
EU attachment: Out-group * Vote share Eurosceptic parties			$-0.302^{* *}(0.126)$				$-0.234^{*}(0.131)$
Length of EU Membership				$0.228^{* *}(0.090)$		$0.223^{* *}(0.092)$	$0.206^{* *}(0.090)$
EU attachment: Out-Group * Length of EU Membership				$-0.227^{* * *}(0.082)$		${ }^{-0.161 *}$ (0.089)	$-0.195^{* *}(0.084)$
Gini coefficient					0.023 (0.104)	-0.030 (0.108)	-0.020 (0.107)
EU attachment: Out-Group * Gini coefficient					$-0.216^{*}(0.122)$	-0.147 (0.126)	-0.063 (0.127)
Partisanship information shown	-0.031 (0.030)	-0.032 (0.030)	-0.031 (0.030)	-0.031 (0.030)	-0.031 (0.030)	-0.031 (0.030)	-0.030 (0.030)
Female	-0.013 (0.034)	-0.020 (0.034)	-0.019 (0.034)	-0.018 (0.034)	-0.021 (0.034)	-0.011 (0.034)	-0.010 (0.034)
Age	$-0.012^{* * *}(0.001)$	- $0.011^{* * *}(0.001)$	-0.011*** (0.001)	$-0.011^{* * *}(0.001)$	$-0.011^{* * *}(0.001)$	-0.012*** (0.001)	$-0.011^{* * *}(0.001)$
Education	-0.001 (0.004)	-0.001 (0.004)	-0.001 (0.004)	-0.0003 (0.004)	-0.0005 (0.004)	-0.001 (0.004)	-0.001 (0.004)
Population size	0.005 (0.056)	0.049 (0.063)	0.079 (0.061)	-0.047 (0.072)	0.040 (0.060)	0.004 (0.082)	0.012 (0.081)
GDP per capita	$0.267^{* * *}(0.073)$	$0.218^{* * *}(0.073)$	$0.208^{* * *}(0.073)$	0.113 (0.099)	$0.186^{* *}(0.075)$	0.145 (0.099)	$0.168^{*}(0.099)$
Unemployment rate	$0.209^{* * *}$ (0.073)	$0.168^{* *}(0.077)$	$0.179^{* *}(0.073)$	$0.158^{* *}(0.077)$	$0.218^{* * *}(0.077)$	$0.150^{*}(0.085)$	$0.177^{* *}(0.082)$
Constant	$3.815^{* * *}(0.141)$	$4.092^{* * *}(0.102)$	$4.090^{* * *}(0.102)$	4.080*** (0.102)	4.091**** 0.102)	$3.800^{* * *}(0.141)$	$3.80{ }^{* * *}(0.142)$
Observations	28,355	28,355	28,355	28,355	28,355	28,355	28,355
Note:						${ }^{*} \mathrm{p}<0.1$; ${ }^{*} \mathrm{p}$	p<0.05; ${ }^{* * *} \mathrm{p}<0.01$

5.3 Entropy Balancing

While aiming at representativeness of the target population, no survey perfectly achieves this standard. Hainmueller (2012) proposes entropy balancing as a method to reweight survey samples according to distribution of demographic characteristics in the target population. By reweighting, we can increase the external validity of our inferences. We reweight our country-specific samples by targeting the distribution of gender age groups according to census data (see Table A1 and A2). Table A6 presents the findings of the multi-level analysis using the reweighted data. Findings are consistent with the main analysis.

TABLE A6 Hierarchical Linear Model on the European Divide (Reweighted)

	Dependent variable:						
	Tokens for Player 2						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
EU attachment: Out-group	-0.208* (0.117)	$-0.429^{* * *}(0.026)$	-0.431*** (0.026)	- $0.430^{* * *}(0.026)$	$-0.439^{* * *}(0.026)$	-0.190 (0.118)	-0.185 (0.118)
Election salience	$0.464^{* * *}$ (0.076)					$0.463^{* * *}$ (0.076)	$0.466^{* * *}(0.076)$
Election attention	$0.257^{* * *}(0.093)$					$0.266^{* * *}$ (0.093)	$0.267^{* * *}(0.093)$
Election engagement	-0.036 (0.044)					-0.036 (0.045)	-0.040 (0.045)
Election participation	-0.034 (0.056)					-0.040 (0.056)	-0.038 (0.056)
EU attachment: Out-group * Election salience	$-0.304^{* * *}(0.092)$					-0.296*** (0.092)	-0.302*** (0.092)
EU attachment: Out-group * Election attention	-0.065 (0.114)					-0.088 (0.114)	-0.090 (0.114)
EU attachment: Out-group * Election engagement	-0.070 (0.053)					-0.067 (0.054)	-0.060 (0.054)
EU attachment: Out-group * Election participation	$-0.134^{* *}(0.068)$					-0.124* (0.069)	-0.130* (0.069)
Dalton Polarization Index (EU)		0.019 (0.200)				-0.073 (0.219)	
EU attachment: Out-group * Dalton Polarization Index (EU)		$-0.247^{* *}(0.108)$				-0.223* (0.118)	
Vote share Eurosceptic parties			-0.041 (0.180)				-0.051 (0.193)
EU attachment: Out-group * Vote share Eurosceptic parties			$-0.312^{* * *}(0.110)$				$-0.265^{* *}(0.115)$
Length of EU Membership				0.177 (0.200)		0.191 (0.211)	0.163 (0.209)
EU attachment: Out-Group * Length of EU Membership				-0.134* (0.074)		-0.079 (0.080)	-0.107 (0.075)
Gini coefficient					0.003 (0.180)	-0.062 (0.194)	-0.044 (0.188)
EU attachment: Out-Group * Gini coefficient					${ }^{-0.212 * * *}(0.107)$	-0.153 (0.110)	-0.067 (0.111)
Partisanship information shown	-0.036 (0.027)	-0.037 (0.027)	-0.036 (0.027)	-0.036 (0.027)	-0.036 (0.027)	-0.036 (0.027)	-0.036 (0.027)
Female	-0.016 (0.034)	-0.023 (0.034)	-0.023 (0.034)	-0.023 (0.034)	-0.024 (0.034)	-0.015 (0.034)	-0.015 (0.034)
Age	$-0.011^{* * *}(0.001)$	- $0.011^{* * *}(0.001)$	$-0.011^{* * *}(0.001)$) $-0.011^{* * *}(0.001)$	$-0.011^{* * *}(0.001)$	$-0.011^{* * *}(0.001)$	-0.011*** (0.001)
Education	0.002 (0.004)	0.001 (0.004)	0.001 (0.004)	0.002 (0.004)	0.002 (0.004)	0.002 (0.004)	0.002 (0.004)
Population size	-0.003 (0.129)	0.054 (0.148)	0.076 (0.136)	-0.050 (0.172)	0.037 (0.134)	0.012 (0.202)	0.009 (0.197)
GDP per capita	$0.269^{*}(0.156)$	0.222 (0.156)	0.211 (0.151)	0.125 (0.218)	0.183 (0.162)	0.133 (0.232)	0.163 (0.231)
Unemployment rate	0.178 (0.171)	0.131 (0.179)	0.142 (0.166)	0.128 (0.180)	0.189 (0.176)	0.113 (0.203)	0.146 (0.194)
Constant	$3.790^{* * *}$ (0.137)	$4.037^{* * *}$ (0.107)	$4.037^{* * *}(0.106)$	$4.033^{* * *}(0.107)$	$4.036^{* * *}(0.107)$	$3.781^{* * *}(0.138)$	$3.778^{* * *}(0.138)$
Observations	28,355	28,355	28,355	28,355	28,355	28,355	28,355
Note:						${ }^{*} \mathrm{p}<0.1{ }^{* *}{ }^{\text {p }}$	p<0.05; ${ }^{* * *} \mathrm{p}<0.01$

6 Survey Questions

Party Identification: Do you consider yourself to be close to any particular political party? If so, which party do you feel close to?

- [Party names]
- Other (fill the blank)
- No, I do not feel close to any political party

EU attachment: Please tell me how attached you feel to... the European Union (EU)

- Very attached (1)
- Fairly attached (2)
- Moderately attached (3)
- Not very attached (4)
- Not at all attached (5)

Election salience: How important is the outcome of the upcoming election to you personally?

- Very important (1)
- (2)
- (3)
- (4)
- Not important at all (5)

Election attention and engagement: From which of the following sources have you heard anything about the upcoming European election campaign? Please indicate all that apply.

- Television
- Newspaper
- Radio
- Social media (such as Facebook, Twitter)
- Other Internet sources (such as e-mail provider, Blog)
- Personal conversations
- Other: specify
- Have not heard anything about the election campaign from any of these sources.

Election participation: On Friday, 24 May 2019, the European election takes place. All citizens of the European Union elect the members of the European Parliament. While a lot of people vote, others do not manage to vote or do not participate in elections for other reasons. How likely is it that you will
vote in the upcoming election?

- I am not eligible to vote
- Certain not to vote
- Not likely to vote
- Might vote
- Likely to vote
- Certain to vote
- Have already voted
- Don't know

Gender: Please indicate your gender.

- Male
- Female
- Other

Age: How old are you?
(respondents choose age from list)
Education: How old were you when you stopped full-time education?
(respondents choose age from list, with option to indicate No education (0 years))

7 References

Hahm, Hyeonho, David Hilpert, and Thomas König (2022). ‘Divided We Unite: The Nature of Partyism and the Role of Coalition Partnership in Europe', unpublished manuscript.

Hainmueller, Jens. (2012). "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies', Political Analysis 20:1, 25-46.

[^0]: Sources: (Hahm et al. 2022, Eurostat)

