figshare
Browse

Direction-of-arrival estimation using a mixed ℓ₂,₀ norm approximation

Download (889.75 kB)
journal contribution
posted on 2025-05-09, 23:28 authored by Md Mashud Hyder, Kaushik Mahata
A set of vectors is called jointly sparse when its elements share a common sparsity pattern. We demonstrate how the direction-of-arrival (DOA) estimation problem can be cast as the problem of recovering a joint-sparse representation. We consider both narrowband and broadband scenarios. We propose to minimize a mixed ℓ₂,₀ norm approximation to deal with the jointsparse recovery problem. Our algorithm can resolve closely spaced and highly correlated sources using a small number of noisy snapshots. Furthermore, the number of sources need not be known a priori. In addition, our algorithm can handle more sources than other state-of-the-art algorithms. For the broadband DOA estimation problem, our algorithm allows relaxing the half-wavelength spacing restriction, which leads to a significant improvement in the resolution limit.

History

Journal title

IEEE Transactions on Signal Processing

Volume

58

Issue

9

Pagination

4646-4655

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

Copyright © 2010 IEEE. Reprinted from IEEE Transactions on Signal Processing Vol. 58, Issue 9, p. 4646-4655. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Newcastle's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC