Supporting Information

Deuterated Malonamide Synthesis for Fundamental Research

on Solvent Extraction Systems

Cyril Micheau,^a Yuki Ueda,^a Kazuhiro Akutsu-Suyama,^b

Damien Bourgeois,^c and Ryuhei Motokawa^a*

^aMaterials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195,

Japan

^bNeutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan

^CInstitut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier,

BP 17171, Marcoule, 30207 Bagnols-sur-Cèze, France

*To whom correspondence should be addressed. motokawa.ryuhei@jaea.go.jp (R.M.)

CONTENTS

- S1. ¹H NMR data of entries 2–9 in the Table 1
- S2. ESI-MS data of THMA-*d*_n (Figure S1)

S3. ESI-MS data of DBMA-*d*_n (Figure S2)

S4. X-ray fluorescence of by-product in the deuteration of THMA-*h*₅₄. (Figure S3)

S5. ¹H NMR of by-product in the deuteration of THMA-*h*₅₄. (Figure S4)

S1. ¹H NMR data of entries 2, 3, 5–8 in the Table 1

The ¹H NMR spectra of entries 2, 3, 5, 6, 7, and 9 in the Table 1 were recorded using a 400

MHz NMR spectrometer (JMTC-400/54/JJ/YH, JEOL Ltd., Tokyo, Japan) at 400 MHz. The

¹H NMR data are shown in below:

Entry 2: ¹H NMR (400 MHz, CDCl₃, TMS, 1,4-dioxane) δ 0.82–0.91 (m, 2.48H), 1.24–1.27

(m, 5.77H), 1.47–1.53 (m, 1.41H), 3.16–3.28 (m, 1.42H), 3.43 (s, 0.18H).

Entry 3: ¹H NMR (400 MHz, CDCl₃, TMS, 1,4-dioxane) δ 0.84–0.90 (m, 3.97H), 1.24–1.27

(m, 9.05H), 1.47–1.52 (m, 2.20H), 3.25–3.33 (m, 2.48H), 3.43 (s, 1.06H).

Entry 5: ¹H NMR (400 MHz, CDCl₃, TMS, 1,4-dioxane) δ 0.78–0.88 (m, 8.27H), 1.22–1.29

(m, 17.7H), 1.41–1.55 (m, 4.05H), 3.12–3.27 (m, 5.56H), 3.48 (br, 0.26H).

Entry 6: ¹H NMR (400 MHz, CDCl₃, TMS, 1,4-dioxane) δ 0.82–0.95 (m, 3.11H), 1.23–1.31 (m, 8.40H), 1.47–1.50 (m, 1.04H), 1.82–1.86 (m, 0.69H), 2.87–2.95 (m, 0.36H), 3.19–3.36 (m, 0.72H), 3.50–3.52 (m, 0.20H).

Entry 7: ¹H NMR (400 MHz, CDCl₃, TMS, 1,4-dioxane) δ 0.82–0.93 (m, 2.63H), 1.15–1.30 (m, 14.3H), 1.38–1.59 (m, 2.42H), 1.75–1.86 (m, 0.82H), 2.77–3.04 (m, 0.24H), 3.19–3.39 (m, 1.12H), 3.52 (br, 0.15H).

Entry 9: ¹H NMR (400 MHz, CDCl₃, TMS, 1,4-dioxane) δ 0.86–0.97 (m, 9.00H), δ 1.25–1.31 (m, 27.3H), 1.49–1.52 (m, 2.82H), 1.86 (m, 1.41H), 2.86–3.01 (m, 1.60H), 3.17–3.37 (m, 3.43H), 3.48–3.61 (m, 0.58H).

S2. ESI-MS data of THMA-dn

Figure S1. Electrospray ionization mass spectra in positive mode of THMA-*d* cation showing the mass distribution of the different isotopologues, which ranges from d_2 – d_{40} . The distribution of the isotopologues is as follows (M⁺): 0.54 %, d_2 ; 1.00 %, d_3 ; 1.00 %, d_4 ; 1.22 %, d_5 .; 1.68 %, d_6 ; 2.18 %, d_7 ; 2.13 %, d_8 ; 2.68 %, d_9 ; 2.94 %, d_{10} ; 3.36 %, d_{11} ; 4.17 %, d_{12} ; 4.08 %, d_{13} ; 4.54 %, d_{14} ; 4.99 %, d_{15} ; 4.99 %, d_{16} ; 4.99 %, d_{17} ; 5.44 %, d_{18} ; 5.44 %, d_{19} ; 4.54 %, d_{20} ; 4.40 %, d_{21} ; 4.35 %, d_{22} ; 4.04 %, d_{23} ; 3.58 %, d_{24} ; 3.13 %, d_{25} ; 2.72 %, d_{26} ; 2.54 %, d_{27} ; 1.91 %, d_{28} ; 1.68 %, d_{29} ; 1.36 %, d_{30} ; 1.27 %, d_{31} ; 1.09 %, d_{32} ; 1.00 %, d_{33} ; 1.00 %, d_{34} ; 0.95 %, d_{35} ; 0.91 %, d_{36} ; 0.68 %, d_{37} ; 0.59 %, d_{38} ; 0.44 %, d_{39} ; 0.45 %, d_{40} . The deuteration ratio was estimated to be 34.6 %.

S3. ESI-MS data of DBMA-dn

Figure S2. Electrospray ionization mass spectra in positive mode of DBMA-*d* cation showing the mass distribution of the different isotopologues, which ranges from *d*₅–*d*₃₈. The distribution of the isotopologues is as follows (M⁺): *d*₅.; 0.46 %, *d*₆ ; 0.80 %, *d*₇; 1.17 %, *d*₈; 1.76 %, *d*₉; 2.13 %, *d*₁₀; 2.64 %, *d*₁₁; 2.80 %, *d*₁₂; 3.26 %, *d*₁₃; 3.89 %, *d*₁₄; 4.19 %, *d*₁₅; 4.19 %, *d*₁₆; 4.60 %, *d*₁₇; 4.19 %, *d*₁₈; 4.19 %, *d*₁₉; 4.19 %, *d*₂₀; 3.64 %, *d*₂₁; 4.19 %, *d*₂₂; 3.93 %, *d*₂₃; 3.93 %, *d*₂₄; 3.68 %, *d*₂₅; 3.43 %, *d*₂₆; 3.22 %, *d*₂₇; 3.81 %, *d*₂₈; 3.10 %, *d*₂₉; 3.14 %, *d*₃₀; 2.97 %, *d*₃₁; 2.85 %, *d*₃₂; 2.72 %, *d*₃₃; 2.51 %, *d*₃₄; 2.26 %, *d*₃₅; 2.01 %, *d*₃₆; 1.63 %, *d*₃₇; 1.30 %, *d*₃₈; 1.21 %. The deuteration ratio was estimated to be 39.6 %.

S4. X-ray fluorescence of by-product in the deuteration of THMA-*h*₅₄.

Figure S3. X-ray fluorescence (XRF) spectrum of the white precipitate obtained in the

deuteration reaction of THMA-h54, where the spectrum was recorded using a wavelength-

dispersion-type XRF spectrometer (ZSX Primus II, Rigaku Corporation, Tokyo, Japan). XRF

peaks of K_{α} C, K_{α} , K_{β} C, and K_{β} of Rh were observed at 19.3, 20.2, 21.6, and 22.7 keV,

respectively, whereas the XRF peak of K_{α} for Pd was not observed.

S5. ¹H NMR of by-product in the deuteration of THMA-*h*₅₄.

Figure S4. ¹H NMR spectrum of the white precipitate, obtained in the deuteration reaction of

THMA-*h*₅₄, in CDCl₃ with TMS (chemical shift reference).