One approach to the detection of curves at subpixel accuracy involves the reconstruction of such features from subpixel edge data points. A new technique is presented for reconstructing and segmenting curves with subpixel accuracy using deformable models. A curve is represented as a set of interconnected Hermite splines forming a snake generated from the subpixel edge information that minimizes the global energy functional integral over the set. While previous work on the minimization was mostly based on the Euler-Lagrange transformation, the authors use the finite element method to solve the energy minimization equation. The advantages of this approach over the Euler-Lagrange transformation approach are that the method is straightforward, leads to positive m-diagonal symmetric matrices, and has the ability to cope with irregular geometries such as junctions and corners. The energy functional integral solved using this method can also be used to segment the features by searching for the location of the maxima of the first derivative of the energy over the elementary curve set.
History
Journal
IEE proceedings : vision, image and signal processing
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.