Design, synthesis, anti-acetylcholinesterase evaluation and molecular modeling studies of novel coumarin-chalcone hybrids

Aso Hameed Hasan ${ }^{\text {a,b }} \odot$, Sonam Shakya ${ }^{\text {c }}$ © , Faiq H.S. Hussain ${ }^{\text {d }}$, Sankaranarayanan Murugesan $\left.{ }^{\text {e }}{ }^{(}\right)$, Subhash Chander ${ }^{\text {f }}$, Mohammad Rizki Fadhil Pratama ${ }^{\text {g.h }}{ }^{\oplus}$ © Shajarahtunnur Jamil ${ }^{\text {a }}$, Basundhara Das ${ }^{\mathrm{i}}$,

${ }^{\mathrm{b}}$ Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region-Iraq, Iraq.
${ }^{\text {c Department }}$ of Chemistry, Faculty of Science Aligarh Muslim University, Aligarh 202002, India.
${ }^{\mathrm{d}}$ Medical Analysis department, faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region-Iraq.
${ }^{e}$ Medicinal Chemistry Research Laboratory, Birla Institute of Technology \& Science Pilani (BITS Pilani), Pilani Campus, Pilani-333031. Rajasthan. India.
${ }^{\mathrm{f}}$ Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, Noida 201313, India.
${ }^{g}$ Doctoral Program of Pharmaceutical Sciences, Universitas Airlangga, Jl Dr Ir Soekarno Kampus C UNAIR Mulyorejo, Surabaya, East Java 60115, Indonesia.
${ }^{\text {h }}$ Department of Pharmacy, Universitas Muhammadiyah Palangkaraya, Jl RTA Milono Km 1.5 Pahandut, Palangka Raya, Central Kalimantan 73111, Indonesia.
${ }^{i}$ Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Translational Cancer \& Stem Cell Research Laboratory, Research Laboratory 101, J3 Block, Amity University, NOIDA, Uttar Pradesh, India.
*Corresponding author E-mail: joazaizulfazli@utm.my (Joazaizulfazli Jamalis)

EXPERIMENTAL

Chemicals and Reagents

Reagents and solvents used in the research were commercially available 1,3-dibromopropane, 4hydroxyacetophenone, 2-chlorobenzaldehyde, 4-bromobenzaldehyde, 3-bromobenzaldehyde, 2bromobenzaldehyde, 4-methoxybenzaldehyde, 4-nitrobenzaldehyde, 3-nitrobenzaldehyde, and ptolualdehyde were purchased from Sigma-Aldrich. While resorcinol, ethyl acetoacetate, benzaldehyde, and 1,4-dioxane were purchased from Merck. The other materials were purchased from Alfa Aesar, such as 4-chlorobenzaldehyde, 3-chlorobenzaldhyde, 3-methoxybenzaldehyde, and o-tolualdehyde. While the m-tolualdehyde was purchased from Acros Organics. Whereas sodium hydroxide pellets, chloroform, dichloromethane, ethyl acetate, methanol, ethanol, and n-hexane were bought from Qrec. Analytical grade (AR) solvents such as ethanol absolute AR (99.9\%) were purchased from Fisher Scientific. The purity of these chemicals was $90-99.9 \%$ and they were used without further purification.

Instrumentations

Thin layer chromatography (TLC) was used to monitor the progress of reactions and to detect the formation of new spots in the reaction mixture. The TLC plates used were the thin aluminium plates from Merck pre-coated with silica gel F254 with a 0.2 mm thickness. The spots were visualised under UV light at 254 nm or 365 nm . Melting points (uncorrected) were determined using a Barnstead Electrothermal 9100 melting point. The infrared IR spectra were recorded using a Perkin-Elmer FTIR spectrometer. Samples were prepared as KBr discs. The 1 H NMR (400 MHz) and 13 C NMR (100 MHz) were recorded on the Bruker Avance II 400 MHz NMR Spectrometer using deuterated chloroform $\left(\mathrm{CDCl}_{3}\right.$, Sigma-Aldrich, $\left.99.96 \%\right)$, acetone $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$, Merck, $\left.99.9 \%\right)$ or dimethyl sulfoxide (DMSO-d6, Sigma-Aldrich, 99.9%) as the solvent. Chemical shift values were given in δ (ppm) scales. The HRMS was recorded on Agilent Technologies' 6545 Q-TOF LC/MS.

Synthesis of 7-Hydroxy-4-methylcoumarin (3)

Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ was slowly added to an ice-cold solution of resorcinol ($4.0 \mathrm{~g}, 36.37$ mmol) in dioxane (20 mL) under $25^{\circ} \mathrm{C}$ and followed by adding ethyl acetoacetate ($6.0 \mathrm{~g}, 48.96 \mathrm{mmol}$). The reaction mixture was refluxed for 4 hours. After cooling to room temperature, the mixture was poured into crushed ice and stirred for 30 min . The resulting yellow precipitate was collected by filtration, washed several times with water and dried in the oven. The solid was recrystallized from methanol to give 7-hydroxy-4-methyl- 2 H -chromen-2-one (3) as a pale-yellow solid ($6.32 \mathrm{~g}, 98.75 \%$); $\mathrm{R}_{f}=0.45$ (hexane: $\mathrm{EtOAc}=3: 2$); m.p $183.2-184.7^{\circ} \mathrm{C}$ (lit. $180.0-182.0^{\circ} \mathrm{C}$ [1]). IR (ATR) ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$): $3435(\mathrm{OH}), 3124\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2811\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1672\left(\mathrm{C}=\mathrm{O}\right.$ lactone), 1594 and $1450\left(\mathrm{C}=\mathrm{C}\right.$ aromatic); ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone-d d_{6} : $\delta 2.42\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 6.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.74(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-8)$, $6.85(1 \mathrm{H}, \mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{H}-6), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5), 9.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

General Procedure of Synthesis of 4'-Hydroxychalcones (6a-n)

A mixture of 4 '-hydroxyacetophenone (10 mmol) with various benzaldehyde substituents (12 mmol) was dissolved in a solution of absolute ethanol (25 mL) and $25 \% \mathrm{KOH}(5 \mathrm{~mL})$. The reaction mixture was stirred for 24 hours at room temperature. The solution was poured into cold water and acidified with concentrated HCl . The precipitate was collected, washed several times with water, and dried. The product was subjected to recrystallization from ethanol (96\%) to afford 4'-hydroxychalcones (6a-n).

(E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one (6a)

Pale yellow powder; yield: (85.7%); $\mathrm{R}_{f}=0.84$ (hexane:EtOAc $=2: 3$); m.p $182.5-183.7^{\circ} \mathrm{C}$ (lit. 179$181.2^{\circ} \mathrm{C}$ [2]). IR (KBr) ($\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): $3125(\mathrm{O}-\mathrm{H}), 1646(\mathrm{C}=\mathrm{O}), 1605$ ($\mathrm{C}=\mathrm{C}$ olefinic), 1565 and 1442 $\left(\mathrm{C}=\mathrm{C}\right.$ aromatic), $1220(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-3$ ' and H-5'), 7.43 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4$ and H-5), $7.55(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.65(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.81(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.02\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right)$.

(E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (6b)

Yellow powder; yield: (78.5%); $\mathrm{R}_{f}=0.79$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p 189.2-191.0 ${ }^{\circ} \mathrm{C}$ (lit. $187-189^{\circ} \mathrm{C}$ [3]). IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3094(\mathrm{O}-\mathrm{H}), 1643(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{C}$ olefinic), 1542 and $1488(\mathrm{C}=\mathrm{C}$ aromatic), 1229 (C-O). ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone-d6): $\delta 6.98(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ 'and $\mathrm{H}-5$ '), 7.48 $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.71(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.85(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6)$, $7.89(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.10\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 9.38(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

(E)-3-(3-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (6c)

Pale yellow powder; yield: (66.8%); $\mathrm{R}_{f}=0.87$ (hexane:EtOAc $=2: 3$); m.p 173.2-175.5${ }^{\circ} \mathrm{C}$ (lit. 176$\left.178^{\circ} \mathrm{C}[3]\right)$. IR (KBr) $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right)$: $3263(\mathrm{O}-\mathrm{H}), 1652(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{C}$ olefinic), 1564 and $1476(\mathrm{C}=\mathrm{C}$ aromatic), 1227 (C-O). ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone-d6): $\delta 6.98(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ ' and H-5'), $7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-6), $7.70(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.76(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}$ and $J=8.4 \mathrm{~Hz}, \mathrm{H}-$ 5), $7.93(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2), 7.95(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.12(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and $\mathrm{H}-$ $\left.6^{\prime}\right), 9.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

(E)-3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (6d)

Pale yellow powder; yield: (72.4%); $\mathrm{R}_{f}=0.86$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p 170.3-172.7${ }^{\circ} \mathrm{C}$ (lit. 168$\left.169^{\circ} \mathrm{C}[3]\right)$. IR (KBr) ($v_{\max } / \mathrm{cm}^{-1}$): $3232(\mathrm{O}-\mathrm{H}), 1650(\mathrm{C}=\mathrm{O}), 1611(\mathrm{C}=\mathrm{C}$ olefinic), 1562 and $1468(\mathrm{C}=\mathrm{C}$ aromatic), 1225 (C-O). ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone-d6): $\delta 6.99$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ ' and $\mathrm{H}-5^{\prime}$), $7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 7.43(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $6.8 \mathrm{~Hz}, \mathrm{H}-3), 7.88(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 8.09$ $(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and $8.0 \mathrm{~Hz}, \mathrm{H}-6), 8.12\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathbf{2}^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 8.14(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-$ ß), $9.41(\mathrm{H}, \mathrm{s}, \mathrm{OH})$.

(E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (6e)

Yellow powder, yield: (87.3\%); $\mathrm{R}_{f}=0.91$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p 197.2-199.0 ${ }^{\circ} \mathrm{C}$ (lit. $199-201^{\circ} \mathrm{C}$ [3]). IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3092(\mathrm{O}-\mathrm{H}), 1642(\mathrm{C}=\mathrm{O}), 1601(\mathrm{C}=\mathrm{C}$ olefinic), 1541 and $1484(\mathrm{C}=\mathrm{C}$ aromatic), 1227 (C-O). ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone-d6): $\delta 6.98$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ 'and $\mathrm{H}-5$ '), 7.63 $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.69(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6)$, $7.91(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.10\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 9.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

(E)-3-(3-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (6f)

Pale yellow powder, yield: $(78.2 \%) ; \mathrm{R}_{f}=0.67$ (hexane:EtOAc $=2: 3$); m.p 168.4-169.7 ${ }^{\circ} \mathrm{C}$ (lit. 164$\left.165^{\circ} \mathrm{C}[4]\right)$. IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3259(\mathrm{O}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O}), 1598$ ($\mathrm{C}=\mathrm{C}$ olefinic), 1563 and $1472(\mathrm{C}=\mathrm{C}$ aromatic), $1225(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.95\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and H-5'), $7.31(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-6$ and $\mathrm{H}-\alpha), 7.72(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-$ $\beta), 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) 8.02\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right)$.

(\boldsymbol{E})-3-(2-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (6 g)

Yellow powder, yield (83.3\%); $\mathrm{R}_{f}=0.64$ (hexane:EtOAc $=2: 3$); m.p $166.7-168.4^{\circ} \mathrm{C}$ (lit. $168-170^{\circ} \mathrm{C}$ [5]). IR (KBr) ($v \max / \mathrm{cm}^{-1}$): $3142(\mathrm{O}-\mathrm{H}), 1642(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C}$ olefinic), 1590 and $1462(\mathrm{C}=\mathrm{C}$ aromatic), $1224(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3$ ' and H-5'), $7.25(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.36(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 7.43(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha)$, $7.65(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3), 8.02(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2$ ' and H-6'), $8.12(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta)$.
(E)-1-(4-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (6 h)
Yellow powder, yield (75.7\%); $\mathrm{R}_{f}=0.73$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p 244.1-246.0 ${ }^{\circ} \mathrm{C}$ (lit. $247-249^{\circ} \mathrm{C}$ [3]). IR (KBr) $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right): 3383(\mathrm{O}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O}), 1612$ ($\mathrm{C}=\mathrm{C}$ olefinic), 1590 and 1442 ($\mathrm{C}=\mathrm{C}$ aromatic), 1223 (C-O). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 6.90\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\mathrm{H}-5^{\prime}$), 7.73 $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 8.09\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 8.08(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.13$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 8.27(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5)$.

(E)-1-(4-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (6i)

Pale yellow powder, yield (73.4%); $\mathrm{R}_{f}=0.62$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p $223.0-225.2^{\circ} \mathrm{C}$ (lit. 222-223 ${ }^{\circ} \mathrm{C}$ [5]). IR (KBr) (v max $/ \mathrm{cm}^{-1}$): $3153(\mathrm{O}-\mathrm{H}), 1650(\mathrm{C}=\mathrm{O}), 1606(\mathrm{C}=\mathrm{C}$ olefinic), 1592 and $1482(\mathrm{C}=\mathrm{C}$ aromatic), 1227 (C-O). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 6.90$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ 'and H-5'), 7.72 $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.76(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 8.10(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.11(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and H-6'), $8.24(1 \mathrm{H}, \mathrm{dd}, J=2.0 \mathrm{~Hz}$, and $J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 8.29(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6)$, $8.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.
(E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (6j)

Yellow powder, yield (71.8%); $\mathrm{R}_{f}=0.54$ (hexane:EtOAc $=2: 3$); m.p $167.5-168.3^{\circ} \mathrm{C}$ (lit. $168-170^{\circ} \mathrm{C}$ [6]). IR (KBr) ($\mathrm{v} \max / \mathrm{cm}^{-1}$): $3376(\mathrm{O}-\mathrm{H}), 1641(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}$ olefinic), 1572 and $1440(\mathrm{C}=\mathrm{C}$ aromatic), $1223(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.95(4 \mathrm{H}$, d, $J=8.8 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-3^{\prime}$ and H-5'), $7.43(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and H-6), $7.79(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and H-6').

(E)-1-(4-hydroxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (6k)

Yellow powder, yield (63.4\%); $\mathrm{R}_{f}=0.68$ (hexane:EtOAc $=2: 3$); m.p $162.5-164.1^{\circ} \mathrm{C}$ (lit. $161-163^{\circ} \mathrm{C}$ [7]). IR (KBr) ($v_{\max } / \mathrm{cm}^{-1}$): $3301(\mathrm{O}-\mathrm{H}), 1652(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{C}$ olefinic), 1584 and $1492(\mathrm{C}=\mathrm{C}$ aromatic), $1257(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.88(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.95(2 \mathrm{H}$, $\mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right), 6.99(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-4), 7.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.25(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{H}-6), 7.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 7.52(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.77(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.43$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and H-6').

(E)-1-(4-hydroxyphenyl)-3-(p-tolyl)prop-2-en-1-one (61)

Pale yellow powder, yield (70.3%); $\mathrm{R}_{f}=0.71$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p 189.2-191.0 ${ }^{\circ} \mathrm{C}$ (lit. $190-192^{\circ} \mathrm{C}$ [3]). IR (KBr) $\left(v \max / \mathrm{cm}^{-1}\right): 3121(\mathrm{O}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C}$ olefinic), 1589 and $1554(\mathrm{C}=\mathrm{C}$ aromatic), $1225(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H},\right), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ and H-5), $7.51(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-2$ and $\mathrm{H}-6), 7.79(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.05(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and $\mathrm{H}-6$ ').

(E)-1-(4-hydroxyphenyl)-3-(m-tolyl)prop-2-en-1-one (6 m)

Yellow powder, yield (60.9%); $\mathrm{R}_{f}=0.48$ (hexane:EtOAc $=2: 3$); m.p 163.1-165.0 ${ }^{\circ} \mathrm{C}$ (lit. $161-162^{\circ} \mathrm{C}$ [7]). IR (KBr) ($v_{\mathrm{max}} / \mathrm{cm}^{-1}$): $3182(\mathrm{O}-\mathrm{H}), 1644(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{C}$ olefinic), 1566 and $1482(\mathrm{C}=\mathrm{C}$ aromatic), $1240(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.37(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.96(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}, \mathrm{H}-3 '$ and $\left.\mathrm{H}-5{ }^{\prime}\right), 7.23(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2), 7.31(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 7.45(2 \mathrm{H}, \mathrm{d}, J=$ $6.8 \mathrm{~Hz}, \mathrm{H}-4$ and H-6), $7.53(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.79(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.02(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and $\mathrm{H}-6$ ').

(E)-1-(4-hydroxyphenyl)-3-(o-tolyl)prop-2-en-1-one ($6 n$)

Yellow powder, yield (66.9%); $\mathrm{R}_{f}=0.44$ (hexane: $\mathrm{EtOAc}=2: 3$); m.p 186.7-187.9 ${ }^{\circ} \mathrm{C}$ (lit. $187.0^{\circ} \mathrm{C}$ [7]). IR (KBr) $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right): 3129(\mathrm{O}-\mathrm{H}), 1648(\mathrm{C}=\mathrm{O}), 1594(\mathrm{C}=\mathrm{C}$ olefinic), 1558 and $1482(\mathrm{C}=\mathrm{C}$ aromatic), 1221 (C-O). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{H}-3$ ' and H-5'), 7.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-5), $7.33(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-3$), 7.46 ($1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}$, $\mathrm{H}-\alpha), 7.70(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-6), 8.02\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 8.11(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}$, $\mathrm{H}-\beta$).

General Procedure of Synthesis of Intermediates (7a-n)

A mixture of chalcones (2 mmol), 1,3-dibromopropane (10 mmol), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (450 $\mathrm{mg})$ was dissolved in acetonitrile (50 mL). The reaction solution was refluxed for 7 hours. After that, the reaction mixture was poured into cold water (50 mL). The precipitate was immediately formed, filtered off, washed with cold water, and dried in the oven to afford the final compounds (7a-n).

(E)-1-(4-(3-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one (7a)

White powder, yield (58.3%); $\mathrm{R}_{f}=0.72\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $86.3-87.8^{\circ} \mathrm{C}$ (lit. 84.0-86.0 ${ }^{\circ} \mathrm{C}$ [8]). IR $(\mathrm{KBr})\left(v_{\max } / \mathrm{cm}^{-1}\right): 3061\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2935\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1655(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{C}$ olefinic), 1592 and 1574 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35-2.41\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 4.21\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4$ and H-5), $7.55(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.66(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.81(1 \mathrm{H}, \mathrm{d}, J=16.0$ $\mathrm{Hz}, \mathrm{H}-\beta), 8.05\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and H-6').

(E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-chlorophenyl)prop-2-en-1-one (7b) [9]

White powder, yield (62.7%); $\mathrm{R}_{f}=0.67\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $115.2-116.7^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})\left(\mathrm{v}_{\text {max }} / \mathrm{cm}\right.$ ${ }^{1}$): $3069\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2948\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1659(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{C}$ olefinic), 1591 and 1510 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.40(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.51$ $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.58(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.75(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.04$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$).
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-chlorophenyl)prop-2-en-1-one (7c)

White powder, yield (71.8\%); $\mathrm{R}_{f}=0.60\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $110-111.5^{\circ} \mathrm{C}$. IR $(\mathrm{KBr})\left(\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right)$: $3054\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2951\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1658(\mathrm{C}=\mathrm{O}), 1608\left(\mathrm{C}=\mathrm{C}\right.$ olefinic), 1593 and $1564\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21(2 \mathrm{H}, \mathrm{t}, J=6.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-6), 7.51(1 \mathrm{H}, \mathrm{d}, J=6.4$ $\mathrm{Hz}, \mathrm{H}-5), 7.54(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.73(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.05(2 \mathrm{H}, \mathrm{d}$,
$J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.2(\mathrm{C}=\mathrm{O}), 162.7\left(\mathrm{C}-4^{\prime}\right), 142.2(\mathrm{C}-\beta)$, 136.9 (C-1), 134.9 (C-3), 131.0 (C-5), 130.9, (C-2' and C-6') 130.1 (C-1'), 130.1 (C-4), 127.8 (C-6), 126.7 (C-2), $123.1(\mathrm{C}-\alpha), 114.4\left(\mathrm{C}-3\right.$ ' and $\mathrm{C}-5$ '), $65.6\left(-\mathrm{OCH}_{2}-\right)$, $32.1\left(\mathrm{BrCH}_{2}-\right), 29.6\left(-\mathrm{CH}_{2}-\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrClO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 378.0022$, found 377.9969 .
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(2-chlorophenyl)prop-2-en-1-one (7d)
White powder, yield ($69.5 \%) ; \mathrm{R}_{f}=0.69\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $115.4-117^{\circ} \mathrm{C}$. IR $(\mathrm{KBr})\left(\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right)$: $3069\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2948\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1659(\mathrm{C}=\mathrm{O}), 1609\left(\mathrm{C}=\mathrm{C}\right.$ olefinic), 1591 and 1563 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21(2 \mathrm{H}, \mathrm{t}, J=6.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 7.45(1 \mathrm{H}, \mathrm{d}, J=9.2$ $\mathrm{Hz}, \mathrm{H}-3), 7.49(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.76(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-6), 8.04(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ ' and H-5'), $8.16(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6$ (C=O), 162.6 (C-4'), 139.8 (C- β), 135.4 (C-2), 133.5 (C-1), 130.9 (C-3, C-4, C-2' and C-6'), 130.2 (C-1'), 127.7 (C-6), 127.0 (C-5), $124.7(\mathrm{C}-\alpha), 114.3\left(\mathrm{C}-3\right.$ ' and $\mathrm{C}-5$ '), $65.5\left(-\mathrm{OCH}_{2}-\right), 32.1\left(\mathrm{BrCH}_{2}-\right), 29.6\left(-\mathrm{CH}_{2}-\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrClO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 378.0022$, found 377.9977.
(E)-3-(4-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7e)
Yellow powder, yield (95.0%); $\mathrm{R}_{f}=0.75\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p 117.6-119.5 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})\left(\mathrm{v}_{\text {max }} / \mathrm{cm}^{-}\right.$ ${ }^{1}$): 3071 ($\mathrm{C}-\mathrm{H} \mathrm{sp}$) , $2934\left(\mathrm{C}-\mathrm{H} s p^{3}\right.$), $1656(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{C}$ olefinic), 1589 and 1562 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and H-5'), $7.51(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-5$, H-6 and H- α), $7.73(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2\right.$ ' and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 188.3 (C=O), 162.6 (C-4'), 142.5 (C- β), 134.0 (C-4), 132.1 (C-2' and C-6'), 131.1 (C-1), 130.8 (C-3 and C-5), 129.7 (C-2 and C-6), 124.5 (C-1'), $122.4(\mathrm{C}-\alpha), 114.3$ (C-3' and C-5'), $65.5\left(-\mathrm{OCH}_{2}-\right), 32.1$ $\left(\mathrm{BrCH}_{2}-\right), 29.6\left(-\mathrm{CH}_{2}-\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 421.9517$, found 421.9465.
(E)-3-(3-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7f)
Pale yellow powder, yield (60.4%); $\mathrm{R}_{f}=0.78\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p 174.3-176.1 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr})(v$ $\left.\max / \mathrm{cm}^{-1}\right): 3056\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2930\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1658(\mathrm{C}=\mathrm{O}), 1607(\mathrm{C}=\mathrm{C}$ olefinic), 1594 and $1558(\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.22$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.01\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}-\mathrm{H}\right.$ and $\mathrm{H}-5$ '), $7.30(1 \mathrm{H}, \mathrm{dd}, J=2.4 \mathrm{~Hz}$ and $J=$ $7.6 \mathrm{~Hz}, \mathrm{H}-5), 7.54(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-6$ and $\mathrm{H}-\alpha), 7.72(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 7.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 8.06$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2\right.$ ' and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6$ (C=O), 162.6 (C-4'), 142.4 (C- β), 135.3 (C-1), 133.5 (C-2), 131.1 (C-4), 131.0 ($\mathrm{C}-\mathbf{2}^{\prime}$ and $\mathrm{C}-6$ '), 127.8 ($\mathrm{C}-1$ ' and $\mathrm{C}-5$), 127.6 (C-6), $125.7(\mathrm{C}-3), 125.0(\mathrm{C}-\alpha), 114.3\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 65.5\left(-\mathrm{OCH}_{2}-\right), 32.1\left(\mathrm{BrCH}_{2}-\right), 29.6\left(-\mathrm{CH}_{2}-\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 421.9517$, found 421.9464 .

(E)-3-(2-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7g)

Yellow powder, yield (82.1%); $\mathrm{R}_{f}=0.80\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p 162.9-164.3 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr})\left(\mathrm{v}_{\max } / \mathrm{cm}^{-}\right.$ ${ }^{1}$): $3062\left(\mathrm{C}-\mathrm{H} \mathrm{sp} p^{2}\right), 2946\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1658(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{C}$ olefinic), 1591 and 1509 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 7.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.43$ $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.65(1 \mathrm{H}, \mathrm{dd}, J=1.2 \mathrm{~Hz}$ and $J=8.0 \mathrm{~Hz}, \mathrm{H}-6), 7.74(1 \mathrm{H}, \mathrm{dd}, J=1.2 \mathrm{~Hz}$ and J $=8.0 \mathrm{~Hz}, \mathrm{H}-3), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5{ }^{\prime}\right), 8.11(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6(\mathrm{C}=\mathrm{O}), 162.6\left(\mathrm{C}-4{ }^{\prime}\right), 142.4(\mathrm{C}-\beta), 135.3(\mathrm{C}-1), 133.5(\mathrm{C}-3), 131.1(\mathrm{C}-2$ ' and $\mathrm{C}-$ 6^{\prime}), 131.0 ($\mathrm{C}-1$ '), 127.8 ($\mathrm{C}-5$ and C-6), 127.6 (C-4), 125.7 (C-2), 125.0 ($\mathrm{C}-\alpha$), 114.3 (C-3' and C-5'), $65.5\left(-\mathrm{OCH}_{2}-\right)$, $32.1\left(\mathrm{BrCH}_{2}-\right)$, $29.6\left(-\mathrm{CH}_{2}-\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 421.9517$, found 421.9467 .
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-nitrophenyl)prop-2-en-1-one (7h)
Yellow powder, yield (89.7%); $\mathrm{R}_{f}=0.63\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p 221.1-223.0${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr})\left(v_{\max } / \mathrm{cm}^{-}\right.$ ${ }^{1}$): $3079\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2927\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1658(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{C}$ olefinic), 1535 and $1510(\mathrm{C}=\mathrm{C}$ aromatic).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.22(2 \mathrm{H}, \mathrm{t}, J=$ $6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $7.02\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.65(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.79(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\beta, \mathrm{H}-3$ and $\mathrm{H}-5), 8.06(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 8.28\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\mathrm{H}-6^{\prime}$).
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-nitrophenyl)prop-2-en-1-one (7i)
Yellow powder, yield $(73.8 \%) ; \mathrm{R}_{f}=0.65\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right) ; \mathrm{m} . \mathrm{p} 230-231.6^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})\left(\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right)$: $3078\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2941\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1662(\mathrm{C}=\mathrm{O}), 1597\left(\mathrm{C}=\mathrm{C}\right.$ olefinic), 1526 and $1511\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Br}\right), 4.23(2 \mathrm{H}, \mathrm{t}, J=6.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 7.03\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.67(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-\alpha), 7.83(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 7.93(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6), 8.08(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{D}$ and H-6'), $8.26(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.7$ (C=O), 162.9 (C-4'), 148.4 (C-3), 141.2 (C-ß), 140.7 (C-1), 131.0 (C-2' and C-6'), 130.7 (C-6), 128.8 (C-1'), 125.6 (C-5), 124.2 ($\mathrm{C}-2$ and $\mathrm{C}-4$), 114.7 ($\mathrm{C}-\alpha$), 114.5 ($\mathrm{C}-3^{\prime}$ and $\mathrm{C}-5$ '), $65.6\left(-\mathrm{OCH}_{2}-\right), 32.1$ $\left(\mathrm{BrCH}_{2}-\right), 29.5\left(-\mathrm{CH}_{2}-\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 389.0263$, found 389.0273.
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-methoxyphenyl) prop-2-en-1-one (7j)

Yellow powder, yield (73.7\%); $\mathrm{R}_{f}=0.48\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $97.3-99.4^{\circ} \mathrm{C}$ (lit. $100.0-102.0^{\circ} \mathrm{C}$ [10]). IR (KBr) ($v_{\max } / \mathrm{cm}^{-1}$): $3073\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2932(\mathrm{C}-\mathrm{H} \mathrm{sp}$) , 1654 (C=O), 1600 (C=C olefinic), 1570 and $1510\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.63(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.949(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ 'and H-5'), $6.99(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.43(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.61(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and H-6), $7.78(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.04(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and H-6').

(E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-methoxyphenyl) prop-2-en-1-one (7k)

Yellow powder, yield (84.0\%); $\mathrm{R}_{f}=0.51\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $81.1-83.2^{\circ} \mathrm{C}$ (lit. 80.0-82.0 ${ }^{\circ} \mathrm{C}$ [10]). IR (KBr) $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3085\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2934\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1657(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C}$ olefinic), 1593 and 1577 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 3.62(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.97\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-5\right.$ ' and H-4), 7.18 $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.25(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6), 7.34(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}-5), 7.52(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha)$, $7.77(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.02\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right)$.
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(p-tolyl)prop-2-en-1-one (71)
Yellow powder, yield (54.1\%); $\mathrm{R}_{f}=0.49\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p $116.5-118.2^{\circ} \mathrm{C}$ (lit. $115.0-116.0^{\circ} \mathrm{C}$ [10]). IR (KBr) ($v_{\max } / \mathrm{cm}^{-1}$): $3075\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2923(\mathrm{C}-\mathrm{H} \mathrm{sp}$) , $1655(\mathrm{C}=\mathrm{O}), 1598$ ($\mathrm{C}=\mathrm{C}$ olefinic), 1570 and $1510\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.63$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ 'and H-5'), 7.24 $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.51(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.56(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6)$, $7.79(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta), 8.05\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right)$.
(E)-1-(4-(3-bromopropoxy)phenyl)-3-(m-tolyl)prop-2-en-1-one (7 m)
Pale yellow powder, yield (68.7%); $\mathrm{R}_{f}=0.47\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p 111.3-112.7${ }^{\circ} \mathrm{C}$. IR (KBr) $\left(v_{\max } /\right.$ $\left.\mathrm{cm}^{-1}\right): 3074\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2963\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1655(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}$ olefinic), 1573 and $1509(\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.63(2 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.20\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3\right.$ ' and $\left.\mathrm{H}-5^{\prime}\right), 7.23(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, \mathrm{H}-2), 7.31(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-5), 7.46(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-4$ and H-6), $7.54(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-\alpha), 7.78(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.06\left(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 188.7(\mathrm{C}=\mathrm{O}), 162.4(\mathrm{C}-4$ '), 144.2 (C- β), 138.5 (C-3), $135.0(\mathrm{C}-1), 131.4$ (C-1'), $131.2(\mathrm{C}-5)$, 130.8 (C-2' and C-6'), 128.9 (C-4), 128.8 (C-2), 125.6 (C-6), 121.7 (C- α), 114.3 (C-3' and C-5'), 65.5 $\left(-\mathrm{OCH}_{2}-\right), 32.1\left(\mathrm{BrCH}_{2}-\right), 29.6\left(-\mathrm{CH}_{2}-\right), 21.3\left(3-\mathrm{CH}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 358.0568 , found 358.0535 .

(E)-1-(4-(3-bromopropoxy)phenyl)-3-(o-tolyl)prop-2-en-1-one (7n)

Pale yellow powder, yield (42.7\%); $\mathrm{R}_{f}=0.53\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 1\right)$; m.p 114.8-160.3 ${ }^{\circ} \mathrm{C}$. IR (KBr) ($v_{\text {max }} /$ cm^{-1}): $3072\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2949\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1657(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{C}$ olefinic), 1594 and $1510(\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}\right)$), $2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.63(2 \mathrm{H}, \mathrm{t}, J=6.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.21\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3\right.$ ' and $\left.\mathrm{H}-5^{\prime}\right), 7.24(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}, \mathrm{H}-3), 7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 7.47(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.71(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6)$, $8.06\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 8.11(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 188.7 (C=O), 162.5 (C-4'), 141.7 (C- β), 138.2 (C-1), 134.1 (C-2), 132.5 (C-1'), 131.4 (C-2' and C-6'), 130.8 (C-4), $130.0(\mathrm{C}-3), 126.3(\mathrm{C}-6), 126.3(\mathrm{C}-5), 123.0(\mathrm{C}-\alpha), 114.3\left(\mathrm{C}-3\right.$ ' and $\mathrm{C}-5$ '), $65.5\left(-\mathrm{OCH}_{2}-\right)$, $32.1\left(\mathrm{BrCH}_{2}\right)$, $29.6\left(-\mathrm{CH}_{2}-\right), 19.8\left(2-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 358.0568$, found 358.0526 .

General Procedure of Synthesis of Coumarin-Chalcone Hybrids (8a-n)

Anhydrous potassium carbonate $(0.2 \mathrm{~g})$ was added to the solution of coumarin (3) (1 mmol) and derivatives (7a-n) ($1 \mathbf{m m o l}$) in acetonitrile (30 mL). The mixture was refluxed for 22 hours and then the reaction solution was poured into ice-water $(25 \mathrm{~mL})$. The precipitate was immediately formed, filtered off, washed several times with cold water, and dried to give hybrids (8a-n).

7-(3-(4-cinnamoylphenoxy)propoxy)-4-methyl-2H-chromen-2-one (8a)

White powder, yield (57.8\%); $\mathrm{R}_{f}=0.35$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$; m.p 168.3-170.5${ }^{\circ} \mathrm{C}$. IR (KBr) (v max cm^{-1}): 3057(C-H sp ${ }^{2}$), 2923 ($\mathrm{C}-\mathrm{H} \mathrm{sp}$) , 1717 ($\mathrm{C}=\mathrm{O}$ lactone), 1658 ($\mathrm{C}=\mathrm{O}$ ketone), 1607 ($\mathrm{C}=\mathrm{C}$ olefinic), 1571 and 1509 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.42(3 \mathrm{H}, \mathrm{s}, 4$ "$\left.\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3 "), 6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and $\mathrm{H}-8$ "), $7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}$, H-3' and H-5'), 7.43 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}-5$ "), $7.50(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5$), $7.54(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-\alpha), 7.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.80(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.05\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\mathrm{H}-6$ '). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.7$ (C=O ketone), 162.5 (C-4'), 161.8 ($\mathrm{C}=\mathrm{O}$ lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 144.0 (C- β), 135.0 (C-1), 131.2 (C-1'), 130.8 (C-2' and C-6'), 130.3 (C-4), 128.9 (C-3 and C-5), 128.3 (C-2 and C-6), 125.5 (C-5"), 121.9 (C- α), 114.5 (C-3' and C$\left.5^{\prime}\right), 114.3$ (C-3"), 113.7 (C-4a"), 112.4 (C-6"), 101.5 (C-8"), $64.8\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}-\right), 28.9$ ($\left.\mathrm{CH}_{2}-\right), 18.6\left(4 "-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 440.1624$, found 440.1583.

(E)-7-(3-(4-(3-(4-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8b)

White powder, yield (67.2\%); $\mathrm{R}_{f}=0.38$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$; m.p 178.8-180.4 ${ }^{\circ} \mathrm{C}$. IR (KBr) ($\mathrm{v}_{\text {max }} /$ $\left.\mathrm{cm}^{-1}\right): 3065\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2927(\mathrm{C}-\mathrm{H} \mathrm{sp}$) , 1719 (C=O lactone), 1659 ($\mathrm{C}=\mathrm{O}$ ketone), 1608 (C=C olefinic), 1568 and $1510\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.41$ $\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ " $\left.-\mathrm{CH}_{3}\right), 4.24\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ "), $6.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and H-8"), $7.01(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.50\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 7.51$ $(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.58(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.74(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.03$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.3$ (C=O ketone), 162.7 (C-4'), 161.7 (C=O lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 142.5 (C- β), 136.2 (C-4), 133.5 (C-1), 131.1 (C-1'), 130.8 (C-2' and C-6'), 129.4 (C-3 and C-5), 129.2 (C-2 and C-6), 125.5 (C-5"), 122.3 (Cα), 114.3 (C-3'and C-5'), 113.7 (C-3"), 112.4 (C-4a"), 112.1 (C-6"), 101.5 (C-8"), $64.8\left(-\mathrm{OCH}_{2}-\right), 64.4$ $\left(-\mathrm{OCH}_{2}\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6\left(4\right.$ " $\left.-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 474.1234$, found 474.1180.

(E)-7-(3-(4-(3-(3-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8c)

White powder, yield (72.9%); $\mathrm{R}_{f}=0.49$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$; m.p 187.2-188.5 $5^{\circ} \mathrm{C}$. IR (KBr) (0 max $\left.\mathrm{cm}^{-1}\right): 3069\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2824(\mathrm{C}-\mathrm{H} \mathrm{sp}$) , 1716 (C=O lactone), 1659 ($\mathrm{C}=\mathrm{O}$ ketone), 1608 (C=C olefinic), 1571 and 1509 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34\left(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.41$ $\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ " $\left.-\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ "), $6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and H-8"), $7.01(2 \mathrm{H}, \mathrm{d}, J$
$=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right)$, $7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-6), 7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-5$ "), $7.53(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-\alpha), 7.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.72(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.05\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.2$ (C=O ketone), 162.7 (C-4’), 161.8 ($\mathrm{C}=\mathrm{O}$ lactone), 161.2 (C-7’), 155.2 (C-8a"), 152.4 (C-4"), 142.2 (C- β), 136.9 (C-1), 134.9 (C-3), 130.9 (C-2'and C-6'), 130.1 (C-2 and C-6), 127.7 (C-1' and C-5), 126.7 (C-4), 125.5 (C-5"), 123.1 (C- α), 114.4 (C-3'and C-5'), 113.7 (C$3 "), 112.4$ (C-4a"), 112.1 (C-6"), $101.5\left(\mathrm{C}-8\right.$ "), $64.7\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6(4$ "CH_{3}). HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 474.1234$, found 474.1193.
(E)-7-(3-(4-(3-(2-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8d)
White powder, yield (68.3%); $\mathrm{R}_{f}=0.45$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 169.0-170.7 ${ }^{\circ} \mathrm{C}$. IR (KBr) (v max cm^{-1}): 3066 (C-H sp p^{2}), 2953 (C-H sp ${ }^{3}$), 1717 (C=O lactone), 1658 ($\mathrm{C}=\mathrm{O}$ ketone), 1607 ($\mathrm{C}=\mathrm{C}$ olefinic), 1571 and 1509 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.41$ ($3 \mathrm{H}, \mathrm{s}, 4$ " $-\mathrm{CH}_{3}$), $4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right.$), $6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ "), $6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and H-8"), 7.01 ($2 \mathrm{H}, \mathrm{d}, ~ J$ $=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$), 7.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5$), 7.45 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-\alpha$ and $\mathrm{H}-5$ "), 7.75 ($1 \mathrm{H}, \mathrm{dd}, J$ $=2.8 \mathrm{~Hz}$ and $J=5.6 \mathrm{~Hz}, \mathrm{H}-6), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 8.16(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6$ ($\mathrm{C}=\mathrm{O}$ ketone), 162.7 (C-4'), 161.8 ($\mathrm{C}=\mathrm{O}$ lactone), 161.2 ($\mathrm{C}-7$ '), 155.2 (C-8a"), 152.4 (C-4"), 139.8 (C- β), 135.3 (C-2), 133.4 (C-1), 130.9 (C-3, C-4, C-2'and C-6'), 130.2 (C-1'), 127.7 (C-6), 127.0 (C-5), 125.5 (C-5"), 124.7 (C- α), 114.3 (C-3'and C-5'), 113.7 (C-3"), 112.4 (4a"), $112.0(\mathrm{C}-6 "), 101.5\left(\mathrm{C}-8\right.$ "), $64.8\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}\right), 18.6\left(4\right.$ " $\left.-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 474.1234$, found 474.1190.

(E)-7-(3-(4-(3-(4-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8e)

Yellow powder, yield (86.6%); $\mathrm{R}_{f}=0.44$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$; m.p 185.6-187.3 ${ }^{\circ} \mathrm{C}$. IR (KBr) (v max) cm^{-1}): 3062(C-H $s p^{2}$), $2923\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1718$ (C=O lactone), 1658 (C=O ketone), 1607(C=C olefinic), 1589 and 1510 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.41(3 \mathrm{H}, \mathrm{s}, 4$ "$\left.\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{xOCH}_{2}\right), 6.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3{ }^{\prime \prime}\right), 6.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right.$ ' and H-8' $), 7.01(2 \mathrm{H}$, $\mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and H-5'), 7.50 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-5^{\prime}$ ', H-6 and H-), 7.73 ($1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-\beta), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2\right.$ ' and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.3$ (C=O ketone), 162.7 (C-4'), 161.7 (C=O lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 142.5 (C- β), 134.0 (C-4), 132.1 (C-2'and C-6'), 131.1 (C-1), 130.8 (C-3 and C-5), 129.7 (C-2 and C-6), 125.5 (C-5"), 124.5 (C$\left.1^{\prime}\right), 122.3$ (C- α), 114.3 (C-3' and C-5'), 113.7 (C-3"), 112.4 (C-4a"), 112.1 (C-6"), 101.5 (C-8"), 64.7 ($\left.\mathrm{OCH}_{2}-\right)$, $64.4\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6\left(4 "-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 518.0729, found 518.0664.
(E)-7-(3-(4-(3-(3-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8f) Yellow powder, yield (84.0%); $\mathrm{R}_{f}=0.48$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 180.9-182.1 ${ }^{\circ} \mathrm{C}$. IR (KBr) (v max $\left.\mathrm{cm}^{-1}\right): 3060\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2924\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1720(\mathrm{C}=\mathrm{O}$ lactone), 1660 ($\mathrm{C}=\mathrm{O}$ ketone), 1608 (C=C olefinic), $1510\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.41(3 \mathrm{H}, \mathrm{s}, 4$ "$\left.\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3{ }^{\prime \prime}\right)$), 6.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}$ ' and H-8''), 7.01 ($2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right)$, $7.29(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-5), 7.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5^{\prime}\right.$ ', H-6 and H- α), 7.71 ($1 \mathrm{H}, \mathrm{d}, J$ $=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2\right.$ ' and H-6'). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 188.1$ (C=O ketone), 162.7 (C-4'), 161.7 (C=O lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 142.1 (C- β), 137.2 (C-1), 133.0 (C-2), 130.9 (C-2', C-5 and C-6'), 130.7 (C-4), 130.4 (C-1'), 127.1 (C-6), 125.5 (C-5"), 123.1 (C-3 and C- α), 114.4 (C-3'and C-5'), 113.7 (C-3"), 112.4 (C-4a"), 112.1 (C-6"), $101.5(\mathrm{C}-8 "), 64.7\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6\left(4 "-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 518.0729$, found 518.0680.
(E)-7-(3-(4-(3-(2-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8g) Yellow powder, yield (73.3\%); $\mathrm{R}_{f}=0.55$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1) ; \mathrm{m} . \mathrm{p} 177.3-187.3^{\circ} \mathrm{C}$. IR (KBr) (v max $\left.\mathrm{cm}^{-1}\right): 3063\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2952(\mathrm{C}-\mathrm{H} \mathrm{sp}$) , 1719 (C=O lactone), 1659 ($\mathrm{C}=\mathrm{O}$ ketone), 1605 (C=C olefinic), 1572 and 1509 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.41(3 \mathrm{H}, \mathrm{s}, 4$ "$\left.\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3\right.$ ''), $6.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6\right.$ ' and $\mathrm{H}-8^{\prime}$ '), 7.01 ($2 \mathrm{H}, \mathrm{d}, J=8.8$

Hz, H-3' and H-5'), $7.24(1 \mathrm{H}, \mathrm{dd}, J=1.2 \mathrm{~Hz}$ and $J=8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 7.43$ $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.50\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}{ }^{\prime}\right), 7.65(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6), 7.74(1 \mathrm{H}, \mathrm{dd}, J$ $=1.6 \mathrm{~Hz}$ and $J=8.0 \mathrm{~Hz}, \mathrm{H}-3), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime}\right.$ and H-6'), $8.11(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\beta)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6$ ($\mathrm{C}=\mathrm{O}$ ketone), 162.7 (C-4'), 161.8 ($\mathrm{C}=\mathrm{O}$ lactone), 161.2 (C-7"), 155.3 (C-8a"), 152.4 (C-4"), 139.8 (C- β), 135.4 (C-2), 133.5 (C-1), 131.0 (C-3, C-4, C-2'and C-6'), 130.3 (C-1'), 127.8 (C-6), 127.0 (C-5), 125.6 (C-5"), 124.7 (C- α), 114.4 (C-3'and C-5'), 113.7 (C-3"), $112.5(\mathrm{C}-4 \mathrm{a} "), 112.1(\mathrm{C}-6 "), 101.5(\mathrm{C}-8 "), 64.8\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6\left(4{ }^{\prime}{ }^{\prime}-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 518.0729$, found 518.0740.

(E)-4-methyl-7-(3-(4-(3-(4-nitrophenyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8h)

Pale yellow powder, yield (72.1%); $\mathrm{R}_{f}=0.58$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 243.4-244.8 ${ }^{\circ} \mathrm{C}$. IR (KBr) (v $\left.\max / \mathrm{cm}^{-1}\right): 3076\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2946\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1713(\mathrm{C}=\mathrm{O}$ lactone), 1660 ($\mathrm{C}=\mathrm{O}$ ketone), 1610 ($\mathrm{C}=\mathrm{C}$ olefinic), 1601 and 1512 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34\left(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right.$), $2.41\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ "- $\left.\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ '"), $6.86(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-8$ ' $), 6.88$ ($1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$ '), $7.03\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.50(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-5$ '' $), 7.65(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.79(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\beta, \mathrm{H}-3$ and $\mathrm{H}-5), 8.06(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2$ and H-6), $8.28\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and H-6'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.7$ (C=O ketone), 163.0 (C-4'), 161.7 (C=O lactone), 161.2 (C-7"), 155.3 (C-8a"), 152.4 (C-4"), 148.5 (C-4), 141.3 (C- β), 140.7 (C-1), 131.0 (C-2' and C-6'), 130.6 (C-1'), 128.8 (C-2 and C-6), 125.6 (C-5"), 125.6 (C- α), 124.2 (C-3 and C-5), 114.5 (C-3' and C-5'), 113.7 (C-3"), 112.5 (C-4a"), 112.1 (C-6"), 101.5 (C-8"), 64.7 ($\left.\mathrm{OCH}_{2}-\right), 64.5\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6\left(4{ }^{\prime}-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 485.1475, found 485.1419.

(E)-4-methyl-7-(3-(4-(3-(3-nitrophenyl)acryloyl)phenoxy) propoxy)-2H-chromen-2-one (8i)

Pale yellow powder, yield (83.3\%); $\mathrm{R}_{f}=0.62$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$; m.p $256.2-257.8^{\circ} \mathrm{C}$. IR (KBr) (v \max / cm^{-1}): $3079\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2951\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1713(\mathrm{C}=\mathrm{O}$ lactone), 1660 ($\mathrm{C}=\mathrm{O}$ ketone), $1609(\mathrm{C}=\mathrm{C}$ olefinic), 1573 and 1511 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36\left(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2-}\right.$), $2.42\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ "'- $\left.\mathrm{CH}_{3}\right), 4.26\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ ''), $6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ '" and H-8''), 7.04 ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and H-5'), $7.51\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}{ }^{\prime}\right), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4), 7.66$ $(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.82(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 7.92(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6), 8.07(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and H-6'), $8.26(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.7$ (C=O ketone), 162.9 (C-4'), 161.7 (C=O lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 148.7 (C-3), 140.8 (C- 3), 136.8 (C-1), 134.3 (C-6), 131.0 (C-2' and C-6'), 130.7 (C-1'), 130.0 (C-5), 125.5 (C-5"), 124.5 (C-4), 124.4 (C-2), 122.1 (C- α), 114.5 (C-3' and C-5'), 113.7 (C-3"), 112.4 (C4 a "), $112.1\left(\mathrm{C}-6\right.$ "), $101.5\left(\mathrm{C}-8\right.$ "), $64.7\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 18.6\left(4\right.$ ' $\left.-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 485.1475$, found 485.1414 .
(\boldsymbol{E})-7-(3-(4-(3-(4-methoxyphenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8j)
Yellow powder, yield (73.7%); $\mathrm{R}_{f}=0.55$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 192.9-194.4 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})(\mathrm{v}$ max $\left.\mathrm{cm}^{-1}\right): 3070\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2956(\mathrm{C}-\mathrm{H} \mathrm{sp}$) , 1724 (C=O lactone), 1654 ($\mathrm{C}=\mathrm{O}$ ketone), 1601 (C=C olefinic), 1570 and 1510 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35-2.38\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right.$), $2.42\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ " $\left.-\mathrm{CH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ ''), $6.86(1 \mathrm{H}, \mathrm{d}, J=$ $2.4 \mathrm{~Hz}, \mathrm{H}-8{ }^{\prime}$ '), $6.88\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $8.8 \mathrm{~Hz}, \mathrm{H}-6$ ' $\left.{ }^{\prime}\right), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ ' and H-5'), 7.01 $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.43(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.50(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5$ ' $), 7.61$ $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.78(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.04(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2$ ' and $\mathrm{H}-$ $\left.6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.7$ (C=O ketone), $162.4(\mathrm{C}-4$ '), 161.8 (C=O lactone), 161.5 (C7"), 161.2 (C-8a"), 155.2 (C-4"), 152.4 (C-4), 143.8 (C- β), 131.5 (C-1), 130.7 (C-2 and C-6), 130.0 (C2^{\prime} and $\left.\mathrm{C}-6^{\prime}\right), 127.8$ (C-1'), 125.5 (C-5"), 119.5 (C- α), 114.4 ($\mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$), 114.2 ($\mathrm{C}-3$ and $\mathrm{C}-5$), 113.7 (C-3"), 112.4 (C-4a"), 112.0 (C-6"), 101.5 (C-8"), $64.8\left(-\mathrm{OCH}_{2}-\right), 64.3\left(-\mathrm{OCH}_{2}-\right)$, $55.4\left(4-\mathrm{OCH}_{3}\right)$, $28.9\left(-\mathrm{CH}_{2}-\right)$, $18.6\left(4{ }^{\prime}{ }^{-}-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 470.1729$, found 470.1688 .
(E)-7-(3-(4-(3-(3-methoxyphenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8k)

Pale yellow powder, yield (84.1\%); $\mathrm{R}_{f}=0.58$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 197.1-199.2 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})(v$ \max / cm^{-1}): $3069\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2960\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1724(\mathrm{C}=\mathrm{O}$ lactone), 1658 ($\mathrm{C}=\mathrm{O}$ ketone), 1607 ($\mathrm{C}=\mathrm{C}$ olefinic), 1510 ($\mathrm{C}=\mathrm{C}$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.42$ $\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ " $\left.-\mathrm{CH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.25\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}_{2} \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ '' $), 6.88(2 \mathrm{H}, \mathrm{m}$, H-6' and H-8''), 6.97 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ', H-5' and H-4), 7.17 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), 7.25 ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6$), $7.34(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 7.50\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5{ }^{\prime}\right), 7.52(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.76(1 \mathrm{H}$, $\mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.7$ (C=O ketone), 162.4 (C-4'), 161.8 (C=O lactone), 161.5 (C-3), 161.2 (C-7"), 155.3 (C-8a"), 152.4 (C$4 "), 143.9$ (C- β), 131.5 (C-1), 130.7 (C-2' and C-6'), 130.1 (C-1' and C-5), 127.8 (C-6), 125.5 (C-5"), 119.6 (C- α), 114.4 (C-3' and C-5'), 114.3 (C-2 and C-4), 113.7 (C-3"), 112.5 (C-4a"), 112.1 (C-6"), $101.6\left(\mathrm{C}-8\right.$ "), $64.8\left(-\mathrm{OCH}_{2}-\right), 64.4\left(-\mathrm{OCH}_{2}-\right)$, $55.4\left(3-\mathrm{OCH}_{3}\right), 29.0\left(-\mathrm{CH}_{2}-\right), 18.6\left(4{ }^{\prime}-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 470.1729$, found 470.1688.

(E)-4-methyl-7-(3-(4-(3-(p-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (81)

Yellow powder, yield (52.2\%); $\mathrm{R}_{f}=0.66$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 180.4-182.7 ${ }^{\circ} \mathrm{C}$. IR (KBr) (v max cm^{-1}): 3068 (C-H $s p^{2}$), 2922 (C-H sp ${ }^{3}$), 1724 (C=O lactone), 1657 (C=O ketone), 1605 (C=C olefinic), 1569 and 1509 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34\left(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.41$ $\left(6 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right.$ and 4 "- CH_{3}), $4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ "), 6.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and $\mathrm{H}-8$ "), $7.01\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-5$ "), $7.50(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.55(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.79(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}$, $\mathrm{H}-\beta), 8.04\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2\right.$ ' and H-6'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.8$ (C=O ketone), 162.5 (C-4'), 161.8 (C=O lactone), 161.2 (C-7"), 155.3 (C-8a"), 152.4 (C-4"), 144.1 (C- β), 140.8 (C-4), 132.3 (C-1), 131.4 (C-1'), 130.7 (C-2' and C-6'), 129.6 (C-3 and C-5), 128.3 (C-2 and C-6), 125.5 (C$5 "), 120.8$ (C- α), 114.3 (C-3' and C-5'), 113.7 (C-3"), 112.4 (C-4a"), 112.1 (C-6"), 101.5 (C-8"), 64.8 ($\left.\mathrm{OCH}_{2}-\right), 64.3\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 21.5\left(4-\mathrm{CH}_{3}\right), 18.6\left(4{ }^{\prime \prime}-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 454.1780$, found 454.1729 .

(E)-4-methyl-7-(3-(4-(3-(m-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8m)

White powder, yield (38.5\%); $\mathrm{R}_{f}=0.75$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1); m.p 172.3-173.5${ }^{\circ} \mathrm{C}$. IR (KBr) (v max cm^{-1}): 3069 (C-H sp ${ }^{2}$), 2922 (C-H sp ${ }^{3}$), 1736 ($\mathrm{C}=\mathrm{O}$ lactone), 1658 ($\mathrm{C}=\mathrm{O}$ ketone), 1607 ($\mathrm{C}=\mathrm{C}$ olefinic), 1571 and 1509 (C=C aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.42\left(6 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right.$ and $\left.4 "-\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ "), $6.88(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and $\mathrm{H}-8$ "), $7.01(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{H}-3$ ' and H-5'), $7.23(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-2), 7.31(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-5), 7.46(2 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}, \mathrm{H}-4$ and $\mathrm{H}-6), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5 "), 7.53(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.78(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-\beta), 8.05\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime}\right.$ and H-6'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6$ (C=O ketone), 162.5 (C-4'), 161.7 (C=O lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 141.7 (C- β), 138.2 (C-3), 134.1 (C-1), 131.3 (C-1'), 131.0 (C-5), 130.8 (C-2'and C-6'), 130.0 (C-4), 126.3 (C-2), 126.2 (C-6), 125.5 (C-5"), 122.9 (C- α), 114.3 (C-3'and C-5'), 113.7 (C-3"), 112.4 (C-4a"), 112.0 (C-6"), 101.5 (C8 "), $64.7\left(-\mathrm{OCH}_{2}\right)$, $64.3\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 19.8\left(3-\mathrm{CH}_{3}\right), 18.6\left(4{ }^{\prime}-\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 454.1780$, found 454.1725 .

(E)-4-methyl-7-(3-(4-(3-(o-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8n)

White powder, yield (41.6\%); $\mathrm{R}_{f}=0.69$ in hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$; m.p 162.7-164.5 ${ }^{\circ} \mathrm{C}$. IR (KBr) (v max $/$ cm^{-1}): $3067\left(\mathrm{C}-\mathrm{H} s p^{2}\right), 2952\left(\mathrm{C}-\mathrm{H} s p^{3}\right), 1722$ ($\mathrm{C}=\mathrm{O}$ lactone), 1656 ($\mathrm{C}=\mathrm{O}$ ketone), 1603 ($\mathrm{C}=\mathrm{C}$ olefinic), 1570 and $1510\left(\mathrm{C}=\mathrm{C}\right.$ aromatic). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\right)$, $2.41\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ " $-\mathrm{CH}_{3}$), $2.50\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xOCH}_{2}\right), 6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ "), $6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " and H-8"), $7.01\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ ' and H-5'), $7.24(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3), 7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-5), 7.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\alpha$ and $\mathrm{H}-5^{\prime \prime}$), $7.70(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6), 8.05(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$ ' and H$\left.5^{\prime}\right), 8.10(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6$ (C=O ketone), $162.5\left(\mathrm{C}-4^{3}\right)$, 161.8 (C=O lactone), 161.2 (C-7"), 155.2 (C-8a"), 152.4 (C-4"), 141.7 (C- β), 138.2 (C-1), 134.1 (C-2), 131.3 (C-1'), 130.8 (C-2'and C-6'), 130.0 (C-3 and C-4), 126.3 (C-6), 126.3 (C-5), 125.5 (C-5"), 123.0 (C- α), 114.3 (C-3'and C-5'), 113.7 (C-3"), 112.4 (C-4a"), 112.1 (C-6"), 101.5 (C-8"), 64.8 ($-\mathrm{OCH}_{2}$-),
$64.4\left(-\mathrm{OCH}_{2}-\right), 28.9\left(-\mathrm{CH}_{2}-\right), 19.8\left(2-\mathrm{CH}_{3}\right), 18.6\left(4{ }^{\prime}-\mathrm{CH}_{3}\right)$. $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 454.1780, found 454.1727.

ADMET profile

Prediction of physicochemical and ADMET properties of the synthesised compounds was carried out in silico with a combination of several web servers such as SwissADME, pkCSM, and ProTox-II, with the procedure as reported in our previous study [11]. Several critical parameters were predicted, including molecular weight (Mol Wt), topological polar surface area (TPSA), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), octanol/water partition coefficient $(\log \mathrm{P}$), aqueous solubility $(\log S)$, Caco-2 permeability (Caco2), brain/blood partition coefficient $(\log \mathrm{BB})$, number of rotatable bonds (Rot), acute toxicity (Acute tox.), predicted LD50 (pLD50), and Ames mutagenicity (Ames).

In vitro inhibition study on AChE

The assay for AChE inhibitory activity was done based on a modified protocol reported by Yang et al. [12]. Acetylcholinesterase (Type VI-S, from Electrophorus electricus), 5,5'-dithiobis-2nitrobenzoic acid (Ellman's reagent, DTNB) and acetylthiocholine chloride (ATCI) were purchased from Sigma Aldrich. Enzyme solutions were prepared to give 0.28 units $/ \mathrm{mL}$ aliquots. Stock Solutions were prepared by dissolving 1 mg of tested compounds in 1 mL of DMSO and diluted to a final concentration of $1000,800,600,400,200,100$, and $50 \mu \mathrm{~g} / \mathrm{mL}$. The assay buffer solution ($\mathrm{pH}=8.0$) was prepared by taking 93.2 mL of solution (6 g of sodium dihydrogen phosphate was dissolved in 500 mL of deionized water and mixed with 6.8 mL of solution (7 g of sodium hydrogen phosphate was dissolved in 500 mL of deionized water) and adjusted. Otherwise, 57.7 mL of sodium dihydrogen phosphate and 42.3 mL of sodium hydrogen phosphate were mixed and adjusted to prepare buffer $(\mathrm{pH}=$ 7.0). Furthermore, freshly solutions of 0.01 M DTNB (0.396 g of DTNB and 15 mg NaHCO 3 were dissolved in 100 mL of buffer pH 7.0) in dark place, and 0.075 M ATCI (0.2048 g of ATCI was dissolved in 10 mL of deionized water), were prepared. In 96 -well plates, $20 \mu \mathrm{~L}$ of the test compounds, $10 \mu \mathrm{~L}$ of DTNB, $15 \mu \mathrm{~L}$ of enzyme (AChE) and $140 \mu \mathrm{~L}$ of buffer solution ($\mathrm{pH}=8.0$), were added in dark conditions and incubated for 15 min , followed by the addition of ATCI $(10 \mu \mathrm{~L})$ and incubated again for the same period. The activity was measured by reading the absorbance of the solution at 412 nm . Blanks containing all the components except the enzyme were carried out. IC_{50} values were calculated as the concentration of a compound that produces 50% enzyme activity inhibition, using the GraphPad Prism 8 programme package. Results are expressed as the mean $\pm \mathrm{SD}$ of at least three different experiments performed in triplicate.

Cytotoxicity Studies

Norman human liver cells, THLE-2 were a kind gift from Dr. Biswas, AIMMSCR, Amity University and were cultured in DMEM-F12 (HiMedia) media supplemented with 10% FBS (HiMedia), $70 \mathrm{ng} / \mathrm{mL}$ of phosphoethanolamine (TCI Chemicals), $5 \mathrm{ng} / \mathrm{mL}$ of epidermal growth factor (Gibco), Insulin Transferrin Selenium (ThermoScientific, diluted to 1X), Penicillin-Streptomycin solution, $100 \mu \mathrm{~g} / \mathrm{mL}$ (HiMedia), at $5 \% \mathrm{CO} 2$ in a CO2 incubator. Experiments were carried out when cells were $70-80 \%$ confluent. To perform the cell viability assay, a 96 -well plate (SPL) was coated with collagen peptide and incubated for $2-3$ hours prior to cell seeding. 5×10^{3} of THLE-2 cells were resuspended in complete medium as described above and seeded in each well. After 24 hours, the media was carefully aspirated from the wells. Stock solution of synthesised compounds were prepared in DMSO. Cells were treated with the respective compounds dissolved in complete culture medium at different concentrations for 12 hours. MTT reagent (HiMedia) with a final concentration of $0.5 \mathrm{mg} / \mathrm{mL}$ was added to each well and further incubated for 4 hours. An equal volume of DMSO (SRL) was added to each well to solubilize the formazan crystals with a final incubation of 15-20 minutes. Absorbance was measured
using a Multiskan Microplate Reader (ThermoScientific) at 570 nm wavelength. All experiments were performed in triplicates.

Table S1. Optimum range of physicochemical and ADMET parameters

Molecular descriptor	Optimum range Error! Reference source not found.
Molecular weight (Mol wt) in g/mol	$130-725$
Topological polar surface area in \AA^{2}	$90-140$
No. of hydrogen bond donor groups (HBD)	$0-6$
No. of hydrogen bond acceptor groups (HBA)	$2-20$
Octanol/water partition coefficient (log P)	-2 to 6.5
Aqueous solubility (log S) in mol/L	-6.5 to 0.5
Apparent Caco-2 cell permeability (PCaco) in $10^{-6} \mathrm{~cm} / \mathrm{s}$	<0.25 poor; >5 great
Brain/blood partition coefficient $(\log$ BB)	-0.3 to 1.2
No. of rotatable bonds (Rot)	$0-15$

Figure S1. Prediction of toxicity parameters with ProTox-II

Figure S2. The root mean square deviation (RMSD) of solvated protein backbone and ligand complex during 100 ns MD simulation

RMS fluctuation

Figure S3. The root mean square fluctuation (RMSF) values of solvated protein-ligand complex plotted against residue numbers

Figure S4. Solvent accessible surface area (SASA) analysis for protein-ligand complex during 100 ns simulation time

IC50 Calculations

Percentage inhibition was calculated by this formula:

$$
\%(\text { Inhibition })=\frac{B-A}{B} \times 100
$$

- $\mathrm{A}=$ absorbance of the enzyme with test sample;
- $B=$ absorbance of enzyme without test sample.
- Each experiment was repeated thrice.
- Concentrations were converted from $\mu \mathrm{g} / \mathrm{mL}$ to $\mu \mathrm{M}$.
- IC_{50} value was calculated by GraphPad Prism.
- Galantamine was used as reference compound.

IR spectrum of 7-Hydroxy-4-methylcoumarin (3)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one (5a)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one (5a)

IR spectrum of (E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5b)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5b)

IR spectrum of (E)-3-(3-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5c)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(3-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5c)

IR spectrum of (E)-3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5d)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5d)

IR spectrum of (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5e)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5e)

IR spectrum of (E)-3-(3-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5f)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(3-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5f)

IR spectrum of (E)-3-(2-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5g)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(2-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (5 g)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (5h)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (5h)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (5i)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (5i)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (5j)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (5j)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one ($5 \mathbf{k}$)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (5k)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(p-tolyl)prop-2-en-1-one (5I)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(p-tolyl)prop-2-en-1-one (51)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(m-tolyl)prop-2-en-1-one (5m)
4"

mame	H2R-CDC13
EXPro	
Priele	20200302
me-	10.39
${ }_{\text {PROEHD }}$	5 mman PABE ${ }^{\text {gpect }}$ EB-
pUL Prog	
TD	${ }_{65536} 65$
${ }_{\text {sis }}^{\text {sivent }}$	cDC13
${ }_{\text {DS }}{ }^{\text {MS }}$	${ }^{16}$
${ }_{\text {swh }}$	$8223.685{ }^{2} \mathrm{~Hz}$
FIDREs	0.125483 Hz
${ }^{\text {a }}$	3.98463887 se
${ }_{\text {DE }}^{\text {DE }}$	${ }_{60.800}^{6.50} \mathbf{u s e c}$
${ }_{\text {TE }}$	300.0 K
D1	1.00000000
	I
	1H
${ }^{\text {P1 }}$	6.00
${ }_{351}$	400.1824 .00 dB
si	$400.1224710{ }_{32768}$
${ }^{\text {gF }}$	400.1300000
	${ }^{\text {cm }}$
${ }_{\text {Li }}$	0.30
${ }_{\text {GB }}$	
pC	1

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(m-tolyl)prop-2-en-1-one (5 m)

IR spectrum of (E)-1-(4-hydroxyphenyl)-3-(o-tolyl)prop-2-en-1-one (5n)

$\stackrel{\substack{8 \\ \sim}}{\sim}$

name	H2R-CDC13
EXPNO	1
procmo	1
Date_	20200302
Time	10.57
INSTRTM	5 Pabspect
PROBHD	5 mm PABEO BB -
PULPROG	zg30
TD	65536
SOLVEMT	CDC13
NS	16
DS	2
swh	${ }^{8223.685 ~ H z}$
FIDRES	0.125483 Hz
${ }^{\text {ac }}$	3.9846387 sec
${ }^{\text {RG }}$	${ }_{60} 406$
DK	60.800 usec
DE	6.50 usec
TE	300.0
D1	1.00000000 sec
TDO	1
NUCl	Chammel fi ${ }_{\text {l }}$
P1	6.00 usec
PL1	-6.00 dB
3 FOl	400.1324710 MHz
SI	32768
SF	400.1300000
\% ${ }^{\text {\% }}$	EM
SSB	0
LB	0.30 Hz
${ }_{\text {GB }}$	
PC	1.00

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-hydroxyphenyl)-3-(o-tolyl)prop-2-en-1-one (5n)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one (7a)

${ }^{1}$ H NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one (7a)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-chlorophenyl)prop-2-en-1-one (7b)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-chlorophenyl)prop-2-en-1-one (7b)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-chlorophenyl)prop-2-en-1-one (7c)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
$\mathrm{Cpd} \mathrm{1:} \mathrm{C} 18 \mathrm{H} 16 \mathrm{Br} \mathrm{Cl} \mathrm{O2}$	0.189	377.9969	11569	$\mathrm{C} 18 \mathrm{H16} \mathrm{Br} \mathrm{ClO}$		378.0022
-14.17						

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(2-chlorophenyl)prop-2-en-1-one (7d)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(2-chlorophenyl)prop-2-en-1-one (7d)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(2-chlorophenyl)prop-2-en-1-one (7d)

Compound Table

Compound Table
Compound Label RT Mass Abund Formula Tgt Mass Diff (ppm) Cpd 1: $\mathrm{C} 18 \mathrm{H} 16 \mathrm{BrClO2}$ 0.198 377.9977 32030 C 18 H 16 BrClO 378.0022-11.9

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: $\mathrm{C} 18 \mathrm{H} 16 \mathrm{Br} \mathrm{Cl} \mathrm{O2}$	381.003	0.198	Find By Formula	377.9977

IR spectrum of (E)-3-(4-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7e)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(4-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7e)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C18 H16 Br2 O2	0.207	421.9465	83164	C18 H16 Br2 O2	421.9517	-12.4

IR spectrum of (E)-3-(3-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7f)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-3-(3-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7f)
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C18 H16 Br2 O2	0.201	421.9464	10400	C18 H16 Br2 O2	421.9517	-12.51

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: $\mathrm{C} 18 \mathrm{H} 16 \mathrm{Br} 2 \mathrm{O2}$	424.9519	0.201	Find By Formula	421.9464

IR spectrum of (E)-3-(2-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7g)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-3-(2-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7g)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-3-(2-bromophenyl)-1-(4-(3-bromopropoxy)phenyl)prop-2-en-1-one (7g)
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C18 H16 Br2 O2	0.198	421.9467	17538	$\mathrm{CC} 18 \mathrm{H} 16 \mathrm{Br} 2 \mathrm{O2}$	421.9517	-11.74

Compound Label	\mathbf{m} / \mathbf{z}	RT	Algorithm	Mass
Cpd 1: C18 H16 Br2 O2	424.9523	0.198	Find By Formula	421.9467

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-nitrophenyl)prop-2-en-1-one (7h)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-nitrophenyl)prop-2-en-1-one (7h)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-nitrophenyl)prop-2-en-1-one (7i)

 $\infty \infty \infty$

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-nitrophenyl)prop-2-en-1-one (7i)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-nitrophenyl)prop-2-en-1-one (7i)

Compound Table
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C18 H16 Br N O4	0.191	389.0273	1624	$\mathrm{C} 18 \mathrm{H16} \mathrm{BrNO4}$	389.0263	2.59

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C18 H16 Br N O4	390.0294	0.191	Find By Formula	389.0273

MS Spectrum Peak List

$\boldsymbol{m} / \boldsymbol{z}$	Calc $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)	z	Abund	Formula	Ion
390.0294	390.029	-1.01	1	1623.55	C18H16BrNO4	$\mathrm{M}+$
391.0339	391.0239	-25.7	1	307.43	C 18 H 16 BrNO 4	$\mathrm{M}+$
392.0269	392.0271	0.43	1	1518.64	C 18 H 16 Br NO 4	$\mathrm{M}+$

HRMS of compound $7 \mathbf{i}$

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (7j)

${ }^{1} \mathrm{H}$ NMR spectrum of (E $)$-1-(4-(3-bromopropoxy)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (7j)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (7k)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(p-tolyl)prop-2-en-1-one (7l)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(p-tolyl)prop-2-en-1-one (7l)

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(m-tolyl)prop-2-en-1-one (7 m)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(m-tolyl)prop-2-en-1-one (7m)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C19 H19 Br O2	0.188	358.0535	99342	$\mathrm{C} 19 \mathrm{H} 19 \mathrm{Br} \mathrm{O2}$	358.0568	-9.4

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C19 H19 Br O2	361.059	0.188	Find By Formula	358.0535

MS Spectrum Peak List

$\boldsymbol{m} / \boldsymbol{z}$	Calc $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)	z	Abund	Formula	Ion
358.0488	358.0563	21.01	1	114.01	C19H19BrO2	$\mathrm{M}+$
359.0609	359.0641	8.89	1	99164.11	C19H19BrO2	$(\mathrm{M}+\mathrm{H})+$
360.0636	360.0675	10.8	1	18413.21	$\mathrm{C} 19 \mathrm{H} 19 \mathrm{BrO2}$	$(\mathrm{M}+\mathrm{H})+$
361.059	361.0623	9.22	1	99342.4	$\mathrm{C} 19 \mathrm{H} 19 \mathrm{BrO2}$	$(\mathrm{M}+\mathrm{H})+$
362.0617	362.0655	10.74	1	17730.4	$\mathrm{C} 19 \mathrm{H} 19 \mathrm{BrO2}$	$(\mathrm{M}+\mathrm{H})+$
363.0646	363.0685	10.63	1	2309.79	$\mathrm{C} 19 \mathrm{H} 19 \mathrm{BrO2}$	$(\mathrm{M}+\mathrm{H})+$
364.0665	364.0713	13.11	1	207.77	$\mathrm{C} 19 \mathrm{H} 19 \mathrm{BrO2}$	$(\mathrm{M}+\mathrm{H})+$

HRMS of compound 7 m

IR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(o-tolyl)prop-2-en-1-one (7n)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(o-tolyl)prop-2-en-1-one (7n)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-1-(4-(3-bromopropoxy)phenyl)-3-(o-tolyl)prop-2-en-1-one (7n)

Compound Table
Compound Label RT Mass Abund Formula Tgt Mass Diff (ppm) Cpd 1: C19 H19 Br O2 0.189 358.0526 36626 $\mathrm{C} 19 \mathrm{H} 19 \mathrm{Br} \mathrm{O2}$ 358.0568-11.86

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C19 H19 Br O2	359.0599	0.189	Find By Formula	358.0526

HRMS of compound 7n

IR spectrum of 7-(3-(4-cinnamoylphenoxy)propoxy)-4-methyl-2 H -chromen-2-one (8a)

${ }^{1} \mathrm{H}$ NMR spectrum of 7-(3-(4-cinnamoylphenoxy)propoxy)-4-methyl-2H-chromen-2-one (8a)

IR spectrum of (E)-7-(3-(4-(3-(4-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one ($8 \mathbf{8 b}$)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C28 H23 Cl O5	0.205	474.118	66174	C 28 H 23 Cl 05	474.1234	-11.35

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C28 H23 Cl O5	475.1256	$\mathbf{0 . 2 0 5}$	Find By Formula	474.118

HRMS of compound $\mathbf{8 b}$

IR spectrum of (E)-7-(3-(4-(3-(3-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8c)

${ }^{1}$ H NMR spectrum of (E)-7-(3-(4-(3-(3-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8c)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C28 H23 Cl 05	0.216	474.1193	73562	C28 H23 Cl 05	474.1234	-8.7

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C28 H23 Cl 05	475.1268	0.216	Find By Formula	474.1193

MS Zoomed Spectrum

HRMS of compound 8 C

IR spectrum of (E)-7-(3-(4-(3-(2-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8d)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-7-(3-(4-(3-(2-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2 H -chromen-2-one (8d)

$\angle Z 981-$
$\angle 9682-$

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-7-(3-(4-(3-(2-chlorophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2 H -chromen-2-one (8d)
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C28 H23 Cl O5	0.21	474.119	106185	$\mathrm{C} 28 \mathrm{H} 23 \mathrm{Cl} \mathrm{O5}$	474.1234	-9.39

Compound Label	m / z	RT	Algorithm	Mass
Cpd 1: $\mathrm{C} 28 \mathrm{H} 23 \mathrm{Cl} \mathrm{O5}$	475.1266	0.21	Find By Formula	474.119

MS Spectrum Peak List

m / z	Calc m/z	Diff(ppm)	z	Abund	Formula	Ion
475.1266	475.1307	8.58	1	106185.4	C28H23Cl05	(M+H)+
476.1294	476.1341	9.79	1	29292.55	C28H23Cl05	$(\mathrm{M}+\mathrm{H})+$
477.1239	477.1291	10.87	1	34881.14	C28H23Cl05	(M+H)+
478.1266	478.1317	10.79	1	9405.45	C28H23Cl05	(M+H)+
479.129	479.1344	11.26	1	1698.52	C28H23Cl05	$(\mathrm{M}+\mathrm{H})+$
480.1348	480.1371	4.82	1	323.5	C28H23Cl05	$(\mathrm{M}+\mathrm{H})+$
481.1335	481.1397	12.88	1	189.99	C28H23Cl05	(M+H)+

HRMS of compound $\mathbf{8 d}$

IR spectrum of (E)-7-(3-(4-(3-(4-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2 H -chromen-2-one (8e)

${ }^{1}$ H NMR spectrum of (E)-7-(3-(4-(3-(4-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8e)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C28 H23 Br 05	0.239	518.0664	67578	C28 H23 Br 05	518.0729	-12.48

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C28 H23 Br O5	521.0723	0.239	Find By Formula	518.0664

MS Zoomed Spectrum

IR spectrum of (E)-7-(3-(4-(3-(3-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8f)

${ }^{1}$ H NMR spectrum of (E)-7-(3-(4-(3-(3-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2 H -chromen-2-one ($\mathbf{8 f}$)

$\begin{array}{llllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum of (E)-7-(3-(4-(3-(3-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one ($\mathbf{8 f}$)

Compound Label	m / z	RT	Algorithm	Mass
Cpd 1: $\mathrm{C} 28 \mathrm{H} 23 \mathrm{Br} \mathrm{O5}$	521.0709	0.218	Find By Formula	518.068

MS Zoomed Spectrum

IR spectrum of (E)-7-(3-(4-(3-(2-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one ($8 \mathbf{g}$)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-7-(3-(4-(3-(2-bromophenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one ($\mathbf{8 g}$)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C28 H23 Br O5	0.199	518.074	24025	C $28 \mathrm{H} 23 \mathrm{Br} \mathrm{O5}$	518.0729	2.24

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: $\mathrm{C} 28 \mathrm{H} 23 \mathrm{Br} \mathrm{O5}$	521.0722	0.199	Find By Formula	518.074

MS Zoomed Spectrum

IR spectrum of (E)-4-methyl-7-(3-(4-(3-(4-nitrophenyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8h)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(4-nitrophenyl)acryloyl)phenoxy)propoxy)-2 H -chromen-2-one (8 h)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(4-nitrophenyl)acryloyl)phenoxy)propoxy)-2 H -chromen-2-one ($\mathbf{8 h}$)
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C28 H23 N 07	0.218	485.1419	94265	C28 H23 N 07	485.1475	-11.4

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C28 H23 N 07	486.1495	0.218	Find By Formula	485.1419

MS Zoomed Spectrum

HRMS of compound $\mathbf{8 h}$

IR spectrum of (E)-4-methyl-7-(3-(4-(3-(3-nitrophenyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8i)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(3-nitrophenyl)acryloyl)phenoxy)propoxy)-2 H -chromen-2-one ($\mathbf{8 i}$)

-28.963
-18.639

$\begin{array}{llllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ 20 & 10 & \text { pprr }\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(3-nitrophenyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one ($\mathbf{8 i}$)
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C28 H23 N O7	0.213	485.1414	60022	C28 H23 N O7	485.1475	-12.5

Compound Label	m / z	RT	Algorithm	Mass
Cpd 1: C28 H23 N O7	486.1489	$\mathbf{0 . 2 1 3}$	Find By Formula	485.1414

HRMS of compound $\mathbf{8 i}$

IR spectrum of (E)-7-(3-(4-(3-(4-methoxyphenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one ($8 \mathbf{j} \mathbf{j})$

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-7-(3-(4-(3-(4-methoxyphenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8j)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C29 H26 O6	0.21	470.1688	87803	C29 H26 O6	470.1729	-8.8

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C29 H26 O6	471.1763	0.21	Find By Formula	470.1688

HRMS of compound $\mathbf{8 j}$

IR spectrum of (E)-7-(3-(4-(3-(3-methoxyphenyl)acryloyl)phenoxy)propoxy)-4-methyl-2H-chromen-2-one (8k)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-7-(3-(4-(3-(3-methoxyphenyl)acryloyl)phenoxy)propoxy)-4-methyl-2 H -chromen-2-one ($\mathbf{8 k}$)

응
BRUKER

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C29 H26 06	0.204	470.1688	94882	C 29 H 2606	470.1729	-8.87

Compound Label	m / z	RT	Algorithm	Mass
Cpd 1: C29 H26 06	471.1762	0.204	Find By Formula	470.1688

HRMS of compound $\mathbf{8 k}$

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(p-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (81)

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C29 H26 O5	0.221	454.1729	26214	C29 H2605	454.178	-11.39

Compound Label	m / z	RT	Algorithm	Mass
Cpd 1: C29 H26 05	455.1799	0.221	Find By Formula	454.1729

MS Zoomed Spectrum

HRMS of compound 81

IR spectrum of (E)-4-methyl-7-(3-(4-(3-(m-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8 m)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(m-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8 m)

200	190	180	170	160	150	140	120	120	110	100	90	80	70	60	50	40	30	20

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-4-methyl-7-(3-(4-(3-(m-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8 m)
Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff $(\mathbf{p p m})$
Cpd 1: C29 H26 O5	0.207	454.1725	100141	C 29 H 2605	454.178	-12.11

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 1: C29 H26 O5	455.1799	0.207	Find By Formula	454.1725

MS Zoomed Spectrum

HRMS of compound 8 m

IR spectrum of (E)-4-methyl-7-(3-(4-(3-(o-tolyl)acryloyl)phenoxy)propoxy)-2H-chromen-2-one (8n)

Compound Label $\boldsymbol{m} / \boldsymbol{z}$ RT Algorithm Mass Cpd 1: C29 H26 O5 455.1802 0.194 Find By Formula 454.1727					

HRMS of compound $\mathbf{8 n}$

References

1. M.S. Holden and R.D. Crouch. The Pechmann Reaction. J. Chem. Ed. 75(12) (1998) 1631. https://doi.org/10.1021/ed075p1631.
2. J. Liu, C. Chen, F. Wu, and L. Zhao. Microwave-Assisted Synthesis and Tyrosinase Inhibitory Activity of Chalcone Derivatives. Chemical Biology \& Drug Design. 82(1) (2013) 39-47. https://doi:10.1111/cbdd.12126.
3. J.R. Dimmock, N.M. Kandepu, M. Hetherington, J.W. Quail, U. Pugazhenthi, A.M. Sudom, M. Chamankhah, P. Rose, E. Pass, T.M. Allen, S. Halleran, J. Szydlowski, B. Mutus, M. Tannous, E.K. Manavathu, T.G. Myers, E. De Clercq, and J. Balzarini. Cytotoxic Activities of Mannich Bases of Chalcones and Related Compounds. Journal of Medicinal Chemistry. 41(7) (1998) 1014-1026. https://doi.org/10.1021/jm970432t.
4. S. Kumari, R. Singh, and R. Walia. Synthesis and Bioevaluation of 3-(substitutedphenyl)-1-(4-hydroxyphenyl)-2-propen-1-ones and their Carbamate Derivatives against Root-Knot Nematode (Meloidogyne javanica). Oriental Journal of Chemistry. 30(3) (2014) 1293-1302. http://dx.doi.org/10.13005/oic/300346.
5. B.N. Acharya, D. Saraswat, M. Tiwari, A.K. Shrivastava, R. Ghorpade, S. Bapna, and M.P. Kaushik. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. European Journal of Medicinal Chemistry. 45(2) (2010) 430-438. https://doi.org/10.1016/j.ejmech.2009.10.023.
6. J. Montes-Avila, S.P. Díaz-Camacho, J. Sicairos-Félix, F. Delgado-Vargas, and I.A. Rivero. Solution-phase parallel synthesis of substituted chalcones and their antiparasitary activity against Giardia lamblia. Bioorganic \& Medicinal Chemistry. 17(18) (2009) 6780-6785. https://doi.org/10.1016/j.bmc.2009.02.052.
7. S. Iwata, T. Nishino, N. Nagata, Y. Satomi, H. Nishino, and S. Shibata. Antitumorigenic activities of chalcones. I. Inhibitory effects of chalcone derivatives on 32Pi-incorporation into phospholipids of HeLa cells promoted by 12-O-tetradecanoyl-phorbol 13-acetate (TPA). Biological and Pharmaceutical Bulletin. 18(12) (1995) 1710-1713. https://doi.org/10.1248/bpb.18.1710.
8. H.-r. Liu, X.-j. Liu, H.-q. Fan, J.-j. Tang, X.-h. Gao, and W.-K. Liu. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorganic \& Medicinal Chemistry. 22(21) (2014) 6124-6133. https://doi.org/10.1016/j.bmc.2014.08.033.
9. D.-J. Fu, S.-Y. Zhang, Y.-C. Liu, L. Zhang, J.-J. Liu, J. Song, R.-H. Zhao, F. Li, H.-H. Sun, H.-M. Liu, and Y.-B. Zhang. Design, synthesis and antiproliferative activity studies of novel dithiocarbamate-chalcone derivates. Bioorganic \& Medicinal Chemistry Letters. 26(16) (2016) 3918-3922. https://doi.org/10.1016/j.bmcl.2016.07.012.
10. V.V. Truong, T.D. Nam, T.N. Hung, N.T. Nga, P.M. Quan, L.V. Chinh, and S.-H. Jung. Synthesis and antiproliferative activity of novel azazerumbone conjugates with chalcones. Bioorganic \& Medicinal Chemistry Letters. 25(22) (2015) 5182-5185. https://doi.org/10.1016/j.bmcl.2015.09.069.
11. A.H. Hasan, S. Murugesan, S.I. Amran, S. Chander, M.M. Alanazi, T.B. Hadda, S. Shakya, M.R.F. Pratama, B. Das, S. Biswas, and J. Jamalis. Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chemistry. 119 (2022) 105572.
https://doi.org/10.1016/j.bioorg.2021.105572.
12. Z. Yang, D. Zhang, J. Ren, M. Yang, and S. Li. Acetylcholinesterase inhibitory activity of the total alkaloid from traditional Chinese herbal medicine for treating Alzheimer's disease. Medicinal Chemistry Research. 21(6) (2012) 734-738. https://doi.org/10.1007/s00044-011-9582-8.
