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Abstract 

Individuals use diverse strategies to solve mathematical problems, which can reflect their knowledge 

of arithmetic principles and predict mathematical expertise. For example, ‘6 + 38 − 35’ can be solved 

via ‘38 − 35 = 3’ and then ‘3 + 6 = 9’, which is a shortcut-strategy derived from the associativity 

principle. The shortcut may be critical for understanding algebra, however approximately 50% of 

adults fail to use it. We review the research to consider why the associativity principle is challenging 

and highlight an important distinction between shortcut identification and execution. We also 

discuss how domain-specific skills and domain-general skills might play an important role in shortcut 

identification and execution, and provide an agenda for future research.  
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1. Introduction 

Knowledge of arithmetic principles is widely regarded as important for success with mathematics 

(National Council Of Teachers Of Mathematics, 2000) and for developing mathematical expertise 

(McMullen et al., 2016). In the last twenty years, the number of studies investigating individuals’ 

understanding of arithmetic principles has increased (Star, 2005) and as a result, seven arithmetic 

principles are now widely discussed: identity, negation, complementarity, commutativity, inversion, 

equivalence and associativity (Kilpatrick et al., 2002). Table 1 describes these principles.  

Table 1: Description of seven arithmetic principles that are often discussed in the mathematical 

cognition literature. 

Arithmetic principle Description 

Identity 
If an arithmetic operation produces a given result, then repetition of the 

same operation will produce the same result. 

Negation 
Subtracting an integer gives the same result as adding its additive 

inverse, e.g. “2 – 3” = “2 + (−3)”. 

Complementarity If a + b = c then c − b = a and c − a = b. 

Commutativity Some operands can be performed in any order, e.g. a + b = b + a. 

Inversion 
Addition and subtraction, and multiplication and division involving the 

same value result in no change. 

Equivalence Two sides of an equation are equal and interchangeable. 

Associativity 
Some problems can be solved by decomposing and recombining groups 

of operations. 

 

Studies have found that many individuals have an inadequate understanding of arithmetic principles, 

because they fail to use strategies that those principles encourage, or fail to understand the basis of 

the strategy that they choose (Robinson & LeFevre, 2012). One principle that individuals have 

particular difficulty with is associativity (Robinson et al., 2017), the property that permits some 

operations to be performed in a different order from that in which they are presented. Education 

practitioners have called for individuals’ understanding and use of arithmetic principles to improve, 

including associativity (National Mathematics Advisory Panel, 2008) because it may play an 

important role in the transition from basic to more advanced mathematics (Barnett & Ding, 2018). 
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However, compared to other arithmetic principles there is much less research into associativity. 

Studies to date mostly come from cognitive psychology (see Table 2 for a summary of relevant 

literature) with a handful from the mathematics education literature (Barnett & Ding, 2018; Ding et 

al., 2012; Larsen, 2010; Shumway, 1974) and those from cognitive psychology most often used 

associativity as a comparison for other principles rather than investigating it as a standalone 

concept. We aim to synthesise this research by first reviewing the history, importance and 

measurement issues associated with the principle, and summarising the evidence of how frequently 

individuals apply the principle when solving arithmetic problems. We then make an important 

distinction between identifying and executing arithmetic strategies, and suggest that the origin of 

individuals’ low use of the associativity shortcut may lie in the skills required for these two 

processes. In the final section we outline priority questions for the field and suggestions for how 

they could be investigated. The primary goal for research, we suggest, should be to understand why 

the principle is rarely applied during problem-solving and this review discusses the possible 

explanations that future research could explore.  

This review draws on research into other principles that have richer research histories than 

associativity, including a) inversion, the principle that addition and subtraction, and multiplication 

and division, are opposite operations (Baroody, 2003), b) equivalence, the principle that two sides of 

an equation are equal and interchangeable (Kieran, 1981) and c) subtraction complementarity, 

which refers to the insight that if ‘a − b = c’ then ‘a − c = b’ (Baroody et al., 2009; Canobi, 2005). 

Research into these principles could serve as a guide for future investigations into associativity. 

2. Definition and history 

The associativity principle (hereafter ‘associativity’) states that ‘(a + b) + c = a + (b + c)’. In other 

words, because some operations are related, problems can sometimes be solved by first 

decomposing and then recombining their problem sets (Canobi et al., 1998) and the answer to a 

problem can be the same regardless of which group of operations is dealt with first (e.g. a + b − c = b 
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− c + a). In psychology studies, the principle has been studied in different situations, such as with 

problems that contain only addition (e.g. a + b + c = b + c + a), addition and subtraction (e.g. a + b − c 

= b − c + a), only multiplication (e.g. a × b × c = b × c × a), or multiplication and division (e.g. a × b ÷ c 

= b ÷ c × a), (Canobi, 2005; Robinson & Ninowski, 2003). In mathematics education studies, the 

principle has most often been studied in the context of addition-only and multiplication-only 

problems (Barnett & Ding, 2018). 

Research has made good progress in uncovering individuals’ knowledge of some principles, for 

example, numerous studies have focused on inversion and equivalence. However, this has left other 

principles, such as associativity, underexplored. While inversion has been investigated by 

psychologists for nearly 70 years (Piaget, 1952), associativity received little attention until the late 

1990s. At this time, it was predominantly studied through addition problems (a + b + c = b + c + a) 

and problems that inferred conceptual knowledge from the strategies used across sequential trials 

(e.g. recognising the conceptual relationship between ‘3 + 6 + 2’ and the subsequently presented 

problem ‘9 + 2’), (Canobi et al., 1998, 2002, 2003). This approach continues to be fruitful for inferring 

knowledge of associativity (Cragg et al., 2017; Gilmore et al., 2015). 

In the decade that followed, the inversion literature (which often used problems of the form ‘a + b − 

b’ or ‘a × b ÷ b’ to infer knowledge of the principle) began to include problems such as ‘a + b − c’ and 

‘a × b ÷ c’ as part of their studies. These problems were labelled as ‘standard’ or ‘control’ problems 

for inversion. The inversion problems were expected to be solved through a shortcut strategy 

(where the individual avoids the computation ‘b − b’ or ‘b ÷ b’ and simply picks ‘a’) and the control 

problems were expected to be solved through a left-to-right strategy. Indeed, verbal reports, 

accuracy and response times confirmed that this was the case (Bryant et al., 1999; Gilmore, 2006; 

Gilmore & Bryant, 2006; Robinson et al., 2006). However, in 2000 Klein & Bisanz noticed that some 

individuals solved control problems using a ‘right-to-left’ strategy (e.g. solving ‘6 + 38 − 35’ by ‘38 − 

35 = 3’ and then ‘3 + 6 = 9’), a strategy now known in the psychology literature as an ‘associativity 
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shortcut’ (Eaves et al., 2019, 2020; Robinson et al., 2016; Robinson & Dubé, 2009a, 2012, 2013). The 

‘shortcut’ strategy is therefore one way of solving ‘a + b – c’ problems; for ‘6 + 38 – 35’ it is more 

efficient than a left-to-right strategy. Although there may be alternative ways in which some people 

solve ‘a + b – c’ problems, left-to-right approaches and right-to-left shortcuts are the main strategies 

that are discussed in the literature, and that we focus on in this review. After Klein & Bisanz’s (2000) 

discovery of the shortcut strategy, Robinson & Ninowski (2003) and Robinson et al., (2006)  pushed 

for ‘a + b − c’ problems to be used more widely as a measure of associativity. Their call was 

acknowledged, and today problems with opposing operations (addition and subtraction or 

multiplication and division) are a dominant paradigm used to investigate how well individuals 

understand the principle.  

3. The importance of associativity 

Recently, education practitioners have called for greater research effort to develop students’ 

conceptual knowledge of arithmetic principles and the use of strategies that they permit (National 

Council Of Teachers Of Mathematics, 2000; Common Core State Standards Initiative, 2012). This is 

an issue of international relevance given that some countries (UK, USA and Canada) place little 

emphasis on arithmetic principles in their education curricula, while other countries (Germany, New 

Zealand) place a strong emphasis on them (Ding et al., 2012). The call is warranted for associativity 

in particular because it is thought to be one of the principles that helps with students’ transition 

from arithmetic to algebra (Warren, 2003), to help them understand how to use brackets in 

problems with multiple operations (Gunnarsson et al., 2016), and ultimately to help them progress 

from elementary to more advanced mathematics.   

For example, one way in which understanding associativity may help individuals to progress in 

mathematics is by encouraging them to interpret algebra problems as ‘generalised arithmetic’ 

problems (Alibali et al., 2007; Carraher, 2006; Knuth et al., 2005; Warren, 2003), where using 

principles on arithmetic problems can help individuals to infer the correct processes for solving 
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abstract algebra problems. For example, in the algebraic problem ‘9x + 2 = 6x + 2y’, an individual 

could be asked to make a letter the subject of the equation. Along with other principles such as 

equivalence, associativity could help individuals on this problem because it permits sub-expressions 

to be solved in a different order from that in which they are presented, and therefore builds an 

understanding of how to apply transformations to both sides of the equation and re-order groups of 

operations to obtain the answer. 

Finally, associativity may also help individuals to understand when and how to use brackets 

appropriately in multi-term problems (Gunnarsson et al., 2016). For example, in the problem ‘a – b + 

c’, a left-to-right strategy (‘a – b’ first) and a right-to-left strategy (‘b + c’ first) result in different 

answers and brackets are needed to resolve this ambiguity. However, brackets are not required on 

some problems, for example ‘a + b – c’, where both left-to-right and right-to-left strategies result in 

the same answer. Using brackets when they are not necessary, as would be the case for the problem 

‘a + b – c’, has been found to have negative consequences on mathematical understanding such as 

understanding of the order of operations (Gunnarsson et al., 2016). Knowledge of associativity may 

therefore reduce the reliance on instructive devices, such as brackets, for solving arithmetic 

problems.  

4. Measurement 

Measuring knowledge of arithmetic principles sparks animated debate (Crooks & Alibali, 2014; 

Rittle-Johnson & Schneider, 2014), and associativity is no exception. Methods broadly divide into 

explicit and implicit techniques, and typically involve presenting individuals with arithmetic problems 

(e.g. ‘a + b − c’ or ‘a × b ÷ c’) that they are asked to evaluate, justify or compare (explicit measures), 

or solve themselves (implicit measures). For example, if an individual reports using a right-to-left 

shortcut strategy on ‘a + b − c’ or ‘a × b ÷ c’, the researcher has explicit evidence that they have 

applied their knowledge of associativity. However, while self-reports provide explicit evidence for 

the use of a strategy, they also require conscious awareness and verbal skills to describe the strategy 
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used, making a reliance on them alone sub-optimal (Crooks & Alibali, 2014). Implicit techniques, 

which infer strategy use from solution accuracy and response times, are therefore often used in 

conjunction with verbal reports (Robinson & Ninowski, 2003; Robinson et al., 2006, 2017; Robinson 

& Dubé, 2009a, 2009b, 2013).  

For associativity, one recent development is the suggestion that shortcut use can be measured 

implicitly by comparing performance on problems that are ‘conducive’ to the principle to those that 

are not (Edwards, 2013). Conducive problems (e.g. ‘16 + 47 − 45’) encourage the use of associativity 

because the shortcut yields a small positive number (47 − 45 = 2), which makes a right-to-left 

strategy less computationally demanding. Non-conducive problems (e.g. ‘36 + 27 − 45’) are designed 

not to be easier to solve using shortcuts and instead encourage a left-to-right strategy. Studies on 

inversion sometimes used ‘a + b – c’ problems as control problems for inversion, which often varied 

in how conducive they were to an associativity shortcut. Here, we focus on conducive and non-

conducive problems as a way to infer knowledge of associativity. For example, the digits in 

conducive problems can be selected such that the difference in efficiency between a left-to-right 

strategy and a shortcut strategy is substantial, and therefore incentivises individuals to use the 

shortcut. If accuracy and response times are better on conducive than non-conducive problems, it 

can be inferred that an individual is likely to have used the shortcut on the conducive problems. 

Three studies have compared performance on conducive and non-conducive associativity problems 

(Eaves et al., 2019, 2020; Edwards, 2013). Edwards (2013) found that self-reported shortcut use was 

significantly higher on ‘a × b ÷ c’ problems that were conducive to a shortcut than those that were 

not conducive. Eaves et al., (2019) found that self-reported users of the shortcut solved more 

conducive ‘a + b – c’ problems in a restricted timeframe than individuals who did not self-report 

using the shortcut, but that self-reported users and non-users did not differ on non-conducive ‘a + b 

– c’ problems. Comparing performance on conducive and non-conducive problems is therefore one 

way that researchers could investigate implicit associativity shortcut use independently from other 
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concepts. It may also be a useful approach for researchers wanting to measure strategy use in an 

unbiased way. To the best of our knowledge, all but one previous study (Eaves et al., 2020) that used 

self-reported solution strategies did so by asking participants to describe the strategy they used 

multiple times in a short timeframe, i.e. after every trial (e.g. see Dubé, 2014 and Robinson & Dubé, 

2009a, 2009b with children and adolescents). For adults, this approach may be problematic because 

repeatedly asking them about strategy use could provide a hint that alternative strategies exist and 

influence how a person solves subsequent problems (Haider et al., 2014; Siegler & Stern, 1998). By 

comparing accuracy and reaction time on conducive and non-conducive problems, use of the 

associativity shortcut can be inferred without inadvertently encouraging it through repeated 

questioning.  

We note that the inferences that can be drawn from both explicit and implicit measures, however, 

are not clear-cut because strategies and knowledge of arithmetic principles are not perfectly related 

(Baroody & Gannon, 1984; Baroody, 1999; Crooks & Alibali, 2014; Schneider & Stern, 2010). Using a 

shortcut does not guarantee a ‘deep’ understanding of the principle (Baroody et al., 2007; Star, 

2005), i.e. an understanding that because some operations are related (e.g. addition and 

subtraction), groups of operations can sometimes be solved in different orders. Instead, shortcut use 

could reflect ‘superficial’ understanding, where individuals follow a right-to-left approach due to 

previous experience or memorised procedures (Baroody, 1999; Baroody & Gannon, 1984; Karmiloff-

Smith, 1992; Robinson & Dubé, 2012; Siegler & Stern, 1998). The reverse case is also plausible, 

where individuals have a deep understanding of associativity but fail to select a shortcut (see 

sections 6 and 7). Scholars investigating the understanding of any arithmetic principle through 

strategy use should therefore remember that the strategy an individual uses does not just reflect 

how well an individual understands a principle, but also their the ability and willingness to apply 

their knowledge (Siegler, 1988). 
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Furthermore, knowledge of a principle is not “all-or-none” (Gilmore, 2006, p7); as individuals may 

understand some part(s) or form(s) of a principle, but not others (Bryant et al., 1999; Crooks & 

Alibali, 2014) or be able to apply the principle in some situations but not others. Shortcut use on 

arithmetic problems is just one way of measuring knowledge of a principle and the failure to use a 

strategy does not imply a lack of understanding of all forms of a principle. Some researchers have 

therefore used multiple tasks to measure individuals’ understanding, such as tasks where problems 

are presented with objects, tasks where they explain why a strategy is valid, and tasks where they 

evaluate and choose between different strategies (see Crooks & Alibali, 2014 for an overview). 

Bisanz et al., (2009) put forward a framework where these tasks were organised by a) how 

explicit/implicit they were and b) the breadth of understanding that could be inferred from them. 

For example, recognising the validity of a strategy on one task demonstrates implicit, narrow 

understanding of a principle, while explaining a principle on a variety of related tasks demonstrates 

explicit, broad understanding. To characterise the breadth and depth of an individual’s 

understanding, they therefore need to complete a variety of related measures. 

In the case of associativity, few studies have used multiple tasks to assess individuals’ understanding 

(see Robinson & Dubé, 2012, for an exception) and more are warranted to capture the extent to 

which individuals understand and apply their knowledge of the principle. In the cases of inversion, 

complementarity and equivalence for example, children demonstrate a better understanding when 

problems are presented in a concrete format with objects and pictures than an abstract format with 

digits (Canobi, 2005; Canobi & Bethune, 2008; Gilmore & Bryant, 2006; Patel & Canobi, 2010). No 

studies have quantitatively compared performance on concrete and abstract associativity problems, 

although Klein & Bisanz (2000) anecdotally reported that on at least one occasion, 25% of pre-

schoolers used associativity shortcuts on problems presented with poker chips. Asghari & 

Khosroshahi (2016) observed similar behaviours in 5 − 6 year olds. Thus, it can be argued that adults 

are likely to have some form of understanding of associativity given that young children do, and that 
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difficulties may arise when applying that knowledge to more abstract ‘a + b − c’ or ‘a × b ÷ c’ digit-

based problems.  

5. Low use of the associativity shortcut 

Compared to simpler concepts such as inversion, children dislike associativity, and prefer to operate 

left-to-right rather than use a shortcut (Robinson & Dubé, 2012; Robinson et al., 2016). For example, 

on the problem ‘6 + 38 – 35’, they prefer to perform the addition first (‘6 + 38 = 44’) and then the 

subtraction (‘44 – 35 = 9’), rather than use a right-to-left shortcut (‘38 – 35 = 3’ and then ‘3 + 6 = 9’). 

At the age of 6 − 10 years, inversion shortcuts are used approximately 35 − 60% of the time 

(Robinson & Dubé, 2012, 2013), a rate that matches adults by the age of 14 years (approximately 70 

− 75% on multiplication-division inversion problems and 90 − 95% on addition-subtraction inversion 

problems) (Dubé & Robinson, 2010a; Dubé, 2014; Robinson & Ninowski, 2003). In comparison, the 

use of associativity shortcuts lags behind (see Table 2 for a summary of relevant literature). Children 

aged 7 − 10 years use associativity shortcuts only 10 − 25% of the time (Robinson & Dubé, 2009a), a 

rate that remains low (approximately 30%) in early adolescence, aged 11 − 14 years (Robinson et al., 

2006). Even in adulthood (aged 18 years and over), there is substantial room for improvement, 

where associativity shortcut use hovers around 50 − 60% on addition-subtraction problems 

(Robinson & Ninowski, 2003; Robinson & Beatch, 2016) and even some qualified teachers have a 

poor understanding of the principle (Barnett & Ding, 2018).  

These statistics are also interesting to compare to equivalence, because equivalence has a 

reputation for being the most poorly understood arithmetic principle by school-aged children 

(Kieran, 1981). Many children struggle to define the equals sign and make consistent errors on 

problems of the format ‘a + b = c + ?’ where they overlook ‘c’ (McNeil & Alibali, 2005). Indeed, a 

recent study found that children applied the equivalence principle to problems in this format only 10 

− 40% of the time (Robinson et al., 2017). However, in this same study the application of 

associativity to ‘a + b − c’ problems was even lower, at 10 − 15%. Greater recognition of the 
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associativity principle and the fact that few individuals apply it on ‘a + b – c’ problems is therefore 

warranted. 

We note that presentation format can influence the strategy an individual uses on two-term 

arithmetic problems (Caviola et al., 2018). Similarly, shortcuts on ‘a + b – c’ problems may be created 

in other ways, for example in ‘38 + 6 – 35’ the location of the shortcut is split across the left and right 

of the problem (’38 – 35 = 3’ and then ‘3 + 6 = 9’). However, we know of no studies that have 

investigated associativity shortcuts in this ‘split’ format (i.e. ‘a – c’, then ‘+ b’), and therefore focus 

on shortcuts located on the right-hand side (‘b – c’ then ‘+a’) for the purpose of this review.  
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Table 2: A summary of relevant studies that have used explicit and implicit measures of average performance on ‘a + b − c’ and ‘a × b ÷ c’ problems that are 

conducive to the associativity shortcut  

Study Age (years) Operation Percent of trials on which the 

shortcut was used* 

Speed (s)* Accuracy (% correct)* 

Robinson & Ninowski, 

(2003)† 
Adults 

Addition-subtraction 
58% 3.5 78.5% 

Multiplication-division 32.5% 7 76.5% 

Robinson et al., 

(2006)† 

11 Addition-subtraction 

Multiplication-division 

11.5% 

0% 

8 

18 

85% 

65.5% 

 12 Addition-subtraction 

Multiplication-division 

23% 

2.5% 

6 

11.5 

87.5% 

78% 

Robinson & Dubé, 

(2009b) 

7 

8 

9 

 

Addition-subtraction 

 

12% 

26% 

24% 

17.5 

(averaged  

across grade) 

50% 

(averaged 

across grade) 

Dubé & Robinson, 

(2010b)†† 

Adults Multiplication-division 44% 5 98 − 74% 
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Robinson & Dubé, 

(2012) 

7 

8 

9 

 

Addition-subtraction 

13% 

33% 

16% 

12 (averaged  

across grade) 

65% (averaged  

across grade) 

Robinson & Dubé, 

(2013) 

8 

9 

10 

Addition-subtraction 

11% 

8.5% 

24.5% 

5.5 

6.5 

5.5 

21% 

37.5% 

50.5%  

Edwards (2013) Adults Multiplication-division 24.5% 2 − 8 93.5% 

Dubé (2014) 12 

13 

14 

Adults 

Multiplication-division 

14% 

29.5% 

39.5% 

54% 

10 

5.5 

5.5 

4.5 

72% 

83.5% 

89% 

91.5% 

Robinson & Beatch, 

(2016)† 

Adults 

Addition-subtraction 

Multiplication-division 

65% 

75% 

2.5 

2.5 

85% 

75% 

Robinson et al., (2016) 6 

7 

8 

Multiplication-division 

0% 

7.5% 

14.5% 

2.5 (averaged across 

grade) 

42.5% (averaged  

across grade) 
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Robinson et al., (2017) 8 

9 

10 

 

Addition-subtraction 

11% 

15% 

13% 

 

Not reported 

35% 

50% 

58% 

Robinson et al (2018) 10 Addition-subtraction 16%  57% 

  Multiplication-division 2%  24% 

 11 Addition-subtraction 15%  66% 

  Multiplication-division 4% Not reported 40% 

 12 Addition-subtraction 29%  76% 

  Multiplication-division 15%  59% 

Eaves et al., (2019) Adults Addition-subtraction 

17% (Study 1) ** 

32% (Study 2) ** 

37% (Study 3) ** 

Not reported Not reported 

Eaves et al., (2020) Adults Addition-subtraction 

57% (Study 1) 5.5 (Study 1) 92% (Study 1) 

51% (Study 2) Not reported (Study 2) Not reported (Study 2) 

 



16 

 

† Statistics were reported for conducive and non-conducive problems combined rather than separately. 

†† Some statistics were reported for different clusters of individuals, rather than the whole sample. 

* Percent, speed and accuracy are approximate scores that are averaged over small and large problems. Self-reports are used to determine percent scores. 

** The percent of individuals who self-reported using the shortcut to the first associativity problem presented.  
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Studies have also uncovered different groups or clusters of individuals based on how they solve ‘a + 

b − c’ associativity problems and ‘a + b − b’ inversion problems. These groups are often referred to as 

‘dual concept’, ‘inversion only’, ‘negation’ and ‘no concept’ (Dubé & Robinson, 2010a, 2010b; Dubé, 

2014; Robinson & Dubé, 2009b, 2013, 2017; Robinson et al., 2018), and represent individuals with 

different levels of understanding. Those in the dual concept cluster use shortcuts frequently on both 

inversion and associativity problems, those in the inversion cluster use them on only inversion 

problems, and those in the ‘no concept’ cluster use neither. ‘Negation’ is a term used in the 

literature to describe how some individuals solve ‘a + b − b’ inversion problems, where an individual 

initially uses a left-to-right strategy but then switches to a shortcut part-way through calculating, 

potentially after realising that the last two digits are the same. One notable finding is that these 

clusters exist in all age groups, children and adults alike (Dubé, 2014; Dubé & Robinson, 2010a; 

Robinson & Dubé, 2009b) and that there is no cluster of individuals who understand associativity but 

not inversion. Individual differences in selecting shortcut strategies therefore exist at all stages of 

development and understanding inversion may be an important precursor to understanding 

associativity. Research studies need to investigate why these difficulties and individual differences 

arise if they are to improve knowledge of arithmetic principles (National Council Of Teachers Of 

Mathematics, 2000). We address this topic in section 7.  

6. Identifying vs executing shortcut strategies 

Arithmetic strategies are often discussed in terms of four lower-level components and two higher-

level components (Lemaire & Siegler, 1995; Verschaffel et al., 2009). Lower-level components 

include repertoire (the number of strategies an individual knows), selection (the strategy an 

individual chooses from their repertoire to solve a problem), frequency (the number of times an 

individual uses a strategy) and efficiency (the accuracy and speed with which a strategy is 

performed). Higher-level components consist of flexibility and adaptivity, which refer to the ability to 

switch between strategies, and in a way that maximises efficiency, respectively. In this review, 

strategy selection on ‘a + b – c’ problems (left-to-right or a shortcut) is the primary interest. More 
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specifically, this review focuses on what may be deemed a subcomponent of strategy selection, a 

process that we call identification. 

Identifying an arithmetic strategy is distinct from executing it. Identification refers to noticing a 

strategy for the first time on a given task or within a particular context. In other words, it is the time-

point when an individual first recognises the validity of a strategy for solving a set of problems, akin 

to what Shrager & Siegler (1998) call ‘strategy discovery’. Where the strategy is efficient (and more 

efficient than alternative strategies) identification is likely to be synonymous with the first-time use 

of it. Identification is distinct from executing a strategy, which refers to all of the processes involved 

in performing the strategy after it has been identified, i.e. the decision to use it and the process of 

calculating it. Execution differs from efficiency, where efficiency refers to the speed and accuracy 

with which the calculations (execution) have been performed. This distinction between identification 

and execution can be made apparent by comparing ‘a + b − b’ inversion problems to conducive ‘a + b 

− c’ associativity problems. To use a shortcut on ‘a + b − b’ inversion problems, identification and 

execution coincide, in the sense that if an individual has identified the inversion shortcut, they have 

also executed it. However, for ‘a + b − c’ associativity problems, an individual may identify the ‘b − c’ 

shortcut but choose not to execute it. Strategy execution has been well researched and is typically 

measured by averaging solution accuracy and response time to multiple problems that are solved 

using the same strategy. Measuring the point of identification is more difficult because it requires 

microgenetic techniques, techniques where performance is measured and compared at multiple 

points in a narrow timeframe. For example, in our earlier work (Eaves et al., 2020) we developed a 

novel, implicit method for measuring identification; we recorded participants’ solution times to 

conducive ‘a + b − c’ problems and compared them on a trial-by-trial basis to determine when 

participants’ became more efficient in solving them. We referred to this as the ‘identification point’. 

Studies investigating individuals’ knowledge and application of arithmetic principles rarely mention 

the distinction between identification and execution. However, we judge that the distinction is 

important for scholars investigating individuals’ understanding of arithmetic principles because it 
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highlights that the reason why an individual may find a strategy difficult may be due to one process 

more than the other.  

One consequence of making this distinction is that the two processes of strategy identification and 

execution might draw on different sets of underlying cognitive skills (e.g. attention, working 

memory), or different levels of those skills. Individuals with different profiles of cognitive skills may 

therefore find either strategy identification or strategy execution more difficult. Improving the 

application of arithmetic principles (National Mathematics Advisory Panel, 2008) might therefore 

require an individualised approach, where individuals’ levels of different skills are considered. For 

example, an individual might have a good understanding of the principle and the ability to compute 

the calculations involved in the shortcut (‘b − c’ and then ‘+ a’) but fail to identify it due to 

difficulties, for example, with attention or inhibition (see Section 7). Alternatively, an individual may 

notice the relevance of ‘b − c’ and identify the shortcut but not execute it if they are sufficiently 

efficient in calculating left-to-right. In the following section we consider the skills that might be 

required in the processes of identification and execution in more detail. 

We emphasise that this distinction is relevant to researchers investigating a variety of arithmetic 

principles, not just associativity. For example, the distinction can be applied to commutativity, which 

is sometimes measured through the ‘tens strategy’ where ‘4 + 37 + 6’ is solved by ‘4 + 6 = 10’ and 

then ‘10 + 37 = 47’, or through a ‘look back’ strategy where solving ‘7 + 6’ helps to subsequently 

solve ‘6 + 7’ (Godau, 2014). The calculations in both strategies should be straightforward for adults 

to execute, but they may be difficult to notice or identify. Equally, individuals may identify the 

strategy but fail to execute it if they incorrectly believe that looking back to a previous problem is 

not permitted (Peters et al., 2010; Robinson & LeFevre, 2012).  

7. Skills involved in identifying and executing shortcut-strategies 

We theorise that a variety of skills could be required to notice and select a strategy for the first time 

(strategy identification), as well as to perform the computations involved in applying the strategy 
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(strategy execution). These skills may be domain-specific or domain-general (see Figure 1). Domain-

specific skills apply to the context of interest (in this case, mathematics) while domain-general skills 

apply to a broad range of tasks. We suggest that varying levels of domain-specific and domain-

general skills might be involved in each process. 

INSERT FIGURE 1 HERE 

Figure 1: Skills that might be required to identify and execute the associativity shortcut on conducive 

‘a + b − c’ problems. Thicker lines are hypothesised to play a greater role in each process. Solid lines 

indicate a hypothesised positive relationship, dashed lines indicate a hypothesised negative 

relationship. 

Calculation skill and knowledge of the order of operations are two domain-specific skills that might 

be important for both identifying and executing the associativity shortcut. First, proficient 

calculation skills (accurate and quick calculations) could help individuals to identify the shortcut as it 

may give them time to solve a conducive problem through multiple strategies (e.g. left-to-right and a 

shortcut), compare the result of those strategies, and deduce that the shortcut is valid if both 

strategies return the same answer. However, proficient calculation skills might reduce the likelihood 

of executing the shortcut if the individual calculates a left-to-right strategy with similar accuracy and 

speed as the shortcut itself. These two possibilities could be investigated in future research. 

Knowledge of the order of operations may also be important for both processes. The associativity 

literature rarely discusses the order of operations, but it is a factor that could be very relevant. It 

refers to the convention (Zakis & Rouleau, 2017) that for problems with mixed operations (e.g. ‘2 + 4 

× 5’), multiplication and division should be performed before addition and subtraction, but within 

multiplication and division and within addition and subtraction order does not alter the result. In the 

mathematics education literature, case studies, interviews and analyses of the errors individuals 

make when solving multi-term problems suggest that some individuals have misconceptions with 



21 
 

the acronyms that are used to teach it (Hewitt, 1999). For example, in the United States, the 

acronym ‘PEMDAS’ (‘Parentheses, Exponents, Multiplication, Division, Addition, Subtraction’) is 

used. Some individuals have a literal interpretation of this acronym and incorrectly believe that 

multiplication must be performed before division, and addition must be performed before 

subtraction (Glidden, 2008). In our research some individuals report having a ‘left-to-right’ 

interpretation, and incorrectly believe that if only multiplication and division are present in the 

problem, or only addition and subtraction, then the problem must be solved in a left-to-right 

manner (Eaves, Attridge, & Gilmore, in prep). Literal and left-to-right interpretations could hinder 

the search for the shortcut on conducive ‘a + b − c’ problems because a) the addition is earlier in the 

acronym and b) the addition is presented on the left-hand side of the problem, respectively. 

Similarly, for an individual who does notice and identify ‘b − c’, they may refrain from executing it if 

they have a strong literal or left-to-right misconception. This may be similar to, or even explain why, 

some children say that they see shortcuts as “cheating” (Robinson & Dubé, 2012). 

Domain-general skills include attention, working memory, inhibition and switching, all of which are 

frequently suggested to be important for mental arithmetic. There are several reviews and meta-

analyses of their role in executing calculations (DeStefano & LeFevre, 2004; Friso-Van Den Bos et al., 

2013; Peng et al., 2016; Raghubar et al., 2010; Yeniad et al., 2013) and scholars have begun to 

hypothesise that they may be specifically important for solving three-term inversion and 

associativity problems (Robinson et al., 2018; Robinson & Dubé, 2012). In what follows we focus on 

identification, and discuss mechanisms for how domain-general skills might help individuals to 

identify arithmetic strategies rather than execute them. The roles of the skills are not necessarily 

mutually exclusive and may operate together. 

First, attention is a domain-general skill that consists of different components (see Petersen & 

Posner, 2012 and Robertson et al., 1996 for more in-depth discussion); selective attention refers to 

the prioritised processing of certain stimuli (Zentall, 2005) and spatial attention refers to the 
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prioritised processing of information at a relevant location (Kim & Cave, 1995). In the context of 

identifying the shortcut in conducive ‘a + b − c’ associativity problems, these components are likely 

to play a similar role of helping to direct visual resource toward the location of ‘b − c’ on the right-

hand side. Indeed, in one model of strategy discovery, the Strategy Choice and Discovery Simulation 

model (SCADS*), attention is the first cognitive process hypothesised to be required for identifying 

the ‘b − b’ shortcut on ‘a + b − b’ inversion problems (Siegler & Araya, 2005).  

Second, working memory may help individuals to identify the associativity shortcut by enabling them 

to build ‘mental models’ of novel problems (Edwards, 2013; Laski et al., 2013). Mental models refer 

to visual images of problems that are spatially represented in memory. Being able to hold a mental 

image of ‘a + b − c’ problems in mind might allow individuals to move their attention around the 

problem, and from one group of operations (‘a + b’) to another (‘b − c’) in order to locate the 

shortcut. After locating the shortcut individuals might then need working memory to evaluate the 

subexpression ‘b − c’ (i.e. to judge whether it is easy or difficult), navigate back to the left-hand side, 

compare it to ‘a + b’, and select the strategy that they prefer. For a more in-depth discussion of the 

structure and role of working memory in arithmetic, please see Baddeley & Hitch, (1974), Cowan, 

(2016), Cragg et al (2017), Edwards (2013) and Rasmussen et al (2003). 

Inhibition refers to the ability to stop or override a mental process with or without instruction 

(Macleod, 2007). It may enable identification by helping individuals to resist interference from 

irrelevant information (e.g. the digit ‘a’ in the context of ‘a + b − c’ problems), help them to forget 

previously learnt material (e.g. rules or procedures they were taught at school), and help them to 

resist using pre-potent strategies (i.e. strategies that have become familiar through practice). In 

western societies, one would expect the pre-potent strategy on ‘a + b − c’ problems to be a left-to-

right approach because classroom-based mathematics teaches and encourages individuals to solve 

problems in a left-to-right manner (Torbeyns et al., 2009). In order to identify the associativity 

shortcut, these strategies must therefore be suppressed and counteracted. For a more in-depth 
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discussion of the structure and role of inhibition in arithmetic, please see Cyders & Coskunpinar, 

(2011), Dempster (1993), Dubé & Robinson (2010b), Friedman & Miyake (2004), Gilmore et al., 

(2015), Harnishfeger & Pope (1996), Hasher et al., (2007) and Nigg, (2000).  

Lastly, switching refers to changing from one mental set to another (Yeniad et al., 2013). Switching 

might help individuals to identify the shortcut by allowing them to change from a (non-shortcut) 

strategy that they executed on a previous problem, to considering alternative strategies on the 

current problem. For example, in everyday settings and experimental studies, individuals are 

presented with a variety of arithmetic problems that can be solved through different strategies. To 

identify the shortcut, they therefore need to be able to change from one mindset or previously used 

approach, to another. This might involve shifting the focus of their attention, i.e. from the left to the 

right, or from one type of operation (addition first) to another (subtraction first). Research into 

switching skills in mathematics are still at a very early stage, however relevant papers for a more in-

depth discussion include Andersson (2008), Cragg et al., (2017), Gilmore et al., (2018), Watchorn et 

al., (2014) and Yeniad et al. (2013).  

Most of the research that has investigated the role of domain-general skills in the understanding and 

application of arithmetic principles focuses on children, with problems that measure the application 

of simpler principles such as inversion, commutativity and complementarity (e.g. Cragg et al., 2017; 

Dubé & Robinson, 2010; Fyfe et al., 2017; Gilmore et al., 2015; Gilmore et al., 2018; Rasmussen et 

al., 2003). A handful of studies have included three-term associativity problems: collectively they 

provide some evidence that in children, inhibition might be related to the use of addition-

subtraction inversion and associativity shortcuts (Robinson & Dubé, 2013) and that in adults, spatial 

skills may be important (Edwards, 2013). No studies have explored working memory and switching 

with associativity problems, although findings from the inversion literature indicate that they may 

play a role (Dubé & Robinson, 2010). Attention is theoretically expected to play a role in solving 

inversion problems (Siegler & Araya, 2005) but there is no empirical evidence that it is important on 
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‘a + b − c’ and ‘a × b ÷ c’ problems (Dubé & Robinson, 2010b; Eaves et al., 2020). Further research 

into the role of domain-specific and domain-general skills in strategy identification and execution is 

therefore warranted. 

8. Future research 

Only three published studies have investigated associativity as a standalone concept, rather than as 

a comparison for other principles (Eaves et al., 2019, 2020; Edwards, 2013). Given the theoretical 

importance of associativity in algebra learning and the transition from basic to advanced 

mathematics, further research is warranted. Indeed, associativity may be as important as 

equivalence to progressing in mathematics, and of similar or even greater difficulty for individuals to 

understand and apply (Robinson et al., 2017). Associativity should therefore be investigated with as 

much rigour, and the equivalence literature could serve as a guide for how. Substantial research 

effort has been invested into equivalence, with studies investigating attention and perception, 

working memory, teaching materials, prior conceptions, its relation to subsequent algebra learning, 

and how it can be taught  (Alibali et al., 2017; Chesney et al., 2018; Crooks & Alibali, 2013; Fyfe et al., 

2017; Knuth et al., 2006; McNeil et al., 2006, 2011, 2012). Associativity research could benefit by 

using that literature as a guide for the range of questions that are important to consider, and for 

generating ideas of methodologies that could be used to answer them, which we now discuss.  

We propose a series of priority research questions for the field. The first question we need to 

address is “why are associativity shortcut strategies used so infrequently?” In this review we 

highlighted a selection of domain-specific and domain-general skills that might be important for 

identifying and executing the shortcut. Correlational and experimental studies in children, 

adolescents and adults could be conducted to investigate whether and to what extent their role is 

empirically supported. The studies in section 7 offer a starting point for how they could be 

investigated. To understand how those skills help an individual select the shortcut strategy though, 

new methods might need to be created. For example, measures that can separate the process of 
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strategy identification from strategy execution (Eaves et al., 2020) might be more likely to capture 

the contribution of the skills involved because they target mechanisms more precisely (i.e. 

identification or execution).   

The second question that we need to answer is whether knowledge of arithmetic procedures (i.e. 

the order of operations) and knowledge of the associativity principle conflict. We identified 

misconceptions of the order of operations as one reason why individuals might not execute the 

associativity shortcut. This offers a different perspective on the relationship between procedural and 

conceptual knowledge; most researchers converge on the view that they are positively and 

iteratively related (Rittle-Johnson et al., 2001), but our suggestion implies that this may not always 

be the case. In some situations, the two types of knowledge may conflict. This could be tested by 

mirroring the methodologies that have been used in the equivalence literature; for example, Crooks 

& Alibali (2013) intentionally activated misconceptions of the equals sign in adults by exposing them 

to words such as ‘total’ and ‘sum’, and then measured the accuracy with which they reconstructed 

equivalence problems. For associativity, exposing adults to multi-term problems that contain 

brackets might activate misconceptions of acronyms such as PEMDAS. This might reduce the 

identification and execution of associativity shortcuts on subsequent problems, compared to a group 

without that activation. 

The third question relates to our assumption that most adults have some level of understanding of 

associativity and that difficulties with the principle arise when applying that understanding to the 

context of digit-based problems. This suggestion could be tested by comparing individuals’ strategies 

on conducive ‘a + b − c’  and ‘a × b ÷ c’ associativity problems presented in different formats (e.g. 

digit, word problems and object-based formats), as has been done with inversion (Gilmore & Bryant, 

2006), equivalence (Sherman & Bisanz, 2009), commutativity, complementarity (Ching & Nunes, 

2017) and addition-only associativity (Canobi & Bethune, 2008). If individuals execute associativity 
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strategies on ‘a + b − c’ and ‘a × b ÷ c’ more frequently with concrete materials (word problems, 

objects) than abstract materials (digits), this would lend support to our suggestion.  

The fourth question relates to the assumption that associativity serves an important function in 

higher-level mathematics and algebra (Alibali et al., 2007; Carraher, 2006; Knuth et al., 2005;  

Warren, 2003). Although it is a logical suggestion, no studies have empirically investigated whether 

such a link exists. Again, to mirror the equivalence literature (Knuth et al., 2006) this could be 

explored by comparing algebra performance in a group of individuals with a good understanding of 

associativity to a group with a poorer understanding, after controlling for general mathematical 

achievement.   

Perhaps the most challenging research priority is to devise ways that associativity can be optimally 

taught. This goal is challenging because the principle needs to be taught in a manner that is direct 

enough for individuals to a) understand the meaning of it, b) correct any misconceptions they may 

have and c) avoid any confusion with similar principles such as commutativity. This final point is 

relevant because people have been found to conflate ordering operands (commutativity) with 

ordering operations (associativity), which is thought to create difficulty when transitioning from 

arithmetic to algebra (Barnett & Ding, 2018). Additionally, the principle needs to be taught in a way 

that does not prescribe solution strategies and instead allows the individual to explore how it can be 

used in different contexts. The danger with directly teaching strategies is that it can cause some 

individuals to adopt ‘fixed’ mindsets, where they persevere with a taught strategy even when it is no 

longer relevant (ErEl & Meiran, 2011). This phenomenon is known as the Einstellung effect (Luchins, 

1942) and in the case of associativity it could manifest as people applying the same strategy on 

problems where it is not valid (e.g. solving ‘38 − 5 + 6’ by ‘5 + 6 = 11’ and then ‘38 − 11 = 27’). 

Interventions that teach arithmetic principles must therefore be designed to encourage the use of 

strategies only when they are appropriate and efficient, and to switch to an alternative when they 

are not. Techniques that do not prescribe strategies and instead increase awareness of those 



27 
 

available may be more likely to achieve this (Alfieri et al., 2011; Fuson et al., 1997; Hiebert et al., 

1996; Jonsson et al., 2016; Piaget, 1973). 

9. Summary 

Associativity is a principle that many children, adolescents, adults and teachers struggle to apply on 

arithmetic problems such as ‘a + b − c’ and ‘a × b ÷ c’. To date, few researchers have investigated 

associativity independently of other concepts, with only a handful of studies from the psychology 

and mathematics education literature. However, the principle is thought to be important for the 

transition from elementary to more advanced mathematics, and studies that answer calls for further 

research into it are overdue (National Mathematics Advisory Panel, 2008). We provide a number of 

priority research questions for the field along with suggestions for how they could be investigated. 

Furthermore, we suggest that researchers may have overlooked an important distinction between 

strategy identification and strategy execution, and that we need to consider this distinction when 

investigating why individuals may not use efficient or adaptive strategies. The distinction may help 

us to understand whether and how different domain-specific skills (calculation skill and knowledge 

of the order of operations) and domain-general skills (attention, working memory, inhibition and 

switching) are involved in applying conceptual knowledge to solve arithmetic problems. Ultimately, 

we suggest that associativity research could benefit from the lessons learnt in the equivalence 

literature, which is an equally important and similarly difficult principle with a much richer research 

history.  
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Captions 

Figure 1: Skills that might be required to identify and execute the associativity shortcut on conducive 

‘a + b − c’ problems. Thicker lines are hypothesised to play a greater role in each process. Solid lines 

indicate a hypothesised positive relationship, dashed lines indicate a hypothesised negative 

relationship. 


