3 files

Comparison of model estimates from an intra-city land use regression model with a national satellite-LUR and a regional Bayesian Maximum Entropy model, in estimating NO2 for a birth cohort in Sydney, Australia.

journal contribution
posted on 10.06.2019, 10:52 by CT Cowie, F Garden, E Jegasothy, LD Knibbs, I Hanigan, D Morley, A Hansell, G Hoek, GB Marks
BACKGROUND: Methods for estimating air pollutant exposures for epidemiological studies are becoming more complex in an effort to minimise exposure error and its associated bias. While land use regression (LUR) modelling is now an established method, there has been little comparison between LUR and other recent, more complex estimation methods. Our aim was to develop a LUR model to estimate intra-city exposures to nitrogen dioxide (NO2) for a Sydney cohort, and to compare those with estimates from a national satellite-based LUR model (Sat-LUR) and a regional Bayesian Maximum Entropy (BME) model. METHODS: Satellite-based LUR and BME estimates were obtained using existing models. We used methods consistent with the European Study of Cohorts for Air Pollution Effects (ESCAPE) methodology to develop LUR models for NO2 and NOx. We deployed 46 Ogawa passive samplers across western Sydney during 2013/2014 and acquired data on land use, population density, and traffic volumes for the study area. Annual average NO2 concentrations for 2013 were estimated for 947 addresses in the study area using the three models: standard LUR, Sat-LUR and a BME model. Agreement between the estimates from the three models was assessed using interclass correlation coefficient (ICC), Bland-Altman methods and correlation analysis (CC). RESULTS: The NO2 LUR model predicted 84% of spatial variability in annual mean NO2 (RMSE: 1.2 ppb; cross-validated R2: 0.82) with predictors of major roads, population and dwelling density, heavy traffic and commercial land use. A separate model was developed that captured 92% of variability in NOx (RMSE 2.3 ppb; cross-validated R2: 0.90). The annual average NO2 concentrations were 7.31 ppb (SD: 1.91), 7.01 ppb (SD: 1.92) and 7.90 ppb (SD: 1.85), for the LUR, Sat-LUR and BME models respectively. Comparing the standard LUR with Sat-LUR NO2 cohort estimates, the mean estimates from the LUR were 4% higher than the Sat-LUR estimates, and the ICC was 0.73. The Pearson's correlation coefficients (CC) for the LUR vs Sat-LUR values were r = 0.73 (log-transformed data) and r = 0.69 (untransformed data). Comparison of the NO2 cohort estimates from the LUR model with the BME blended model indicated that the LUR mean estimates were 8% lower than the BME estimates. The ICC for the LUR vs BME estimates was 0.73. The CC for the logged LUR vs BME estimates was r = 0.73 and for the unlogged estimates was r = 0.69. CONCLUSIONS: Our LUR models explained a high degree of spatial variability in annual mean NO2 and NOx in western Sydney. The results indicate very good agreement between the intra-city LUR, national-scale sat-LUR, and regional BME models for estimating NO2 for a cohort of children residing in Sydney, despite the different data inputs and differences in spatial scales of the models, providing confidence in their use in epidemiological studies.


This work was supported by seed grants (07.2012; 02.2013) through the Centre for Air quality and health Research and evaluation (CAR) seed funding, a National Health and Medical Research Council CRE, Australia (APP 1030259).



Environmental Research, 2019, 174, pp. 24-34

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Health Sciences


AM (Accepted Manuscript)

Published in

Environmental Research





Acceptance date


Copyright date


Publisher version



The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.