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Preface 

Alcohol-related violence is a serious and common social problem. Moreover, violent behaviour is much 

more common in alcohol-dependent individuals. Animal experiments and human studies have provided 

insights into the acute effect of alcohol on aggressive behaviour and into common factors underlying 

acute and chronic alcohol intake and aggression. These studies have shown that environmental factors, 

such as early–life stress, interac with genetic variations in serotonin-related genes that affect serotonergic 

and GABAergic neurotransmission. This leads to increased amygdala activity and impaired prefrontal 

function, which together predispose to both increased alcohol intake and impulsive aggression. In 

addition, acute and chronic alcohol intake can further impair executive control and thereby facilitate 

aggressive behaviour.   

 

Bullet points: 

 Alcohol use is implicated in about 50% of all violent crimes and sexual assaults in industrialized 

nations  

 Both acute and chronic alcohol intake increase the risk for alcohol-associated aggression  

 Not all individuals who drink alcohol become aggressive and psychological studies have 

identified several gender and individual differences that confer risk for alcohol-related aggression  

 Twin and adoption studies observed a significant disposition towards violent behaviour only in 

association with an increased risk to develop alcohol dependence  

 Animal experiments and a limited number studies in humans show that alcohol-related aggression 

is found in a subset of individuals who were exposed to social adversity and carry certain risk 

genotypes  
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 Genetic and environmental factors associated with aggressive behaviour findings point to an 

important role of the serotonin system and its interactions with GABAergic neurotransmission in 

determining vulnerability to alcohol-associated aggression  

 Chronic alcohol intake impairs serotonergic neurotransmission, which (according to studies in 

healthy controls but not yet in alcohol-dependent patients) modulates limbic processing of 

aversive stimuli and prefrontal functions associated with behavioural control  

 Here we suggest that acute alcohol intake facilitates aggression in vulnerable individuals because 

it impairs prefrontal executive functions, disinhibits limbic processing of threatening stimuli and 

elicits expectancies for alcohol-associated aggression 

 

Introduction 

Of all psychoactive substances, alcohol is arguably the most potent agent for eliciting aggression and 

reducing behavioural control in certain individuals1. The relationship between acute and chronic alcohol 

intake, aggression and violence is well documented in the epidemiological literature and is linked with 

burdensome economic costs. For instance, acute alcohol use is implicated in approximately one-half of 

violent crimes2 and sexual assaults3 and also confers risk for intimate partner violence4. Additionally, 

crime trends indicate that the prevalence of alcohol-related aggression has grown over the past fifty 

years5.  

 Alcohol-related aggression is also associated with chronic alcohol intake and alcohol dependence: 

the incidence of violent behaviour in various samples of male alcohol-dependent subjects is estimated to 

be between 20 and 50%6-9, and individuals with alcohol abuse or dependence are more likely to be 

involved in violence compared to individuals without a psychiatric disorder10,11. A meta-analysis of 

studies on chronic alcohol use and criminal and domestic violence indicated that compared to individuals 

with very low or moderate alcohol use, those who get drunk at least once a year are 2 and 1.7 times more 

likely to engage in criminal and domestic violence, respectively12. With regard to intimate partner 

violence, a study showed that treatment-seeking alcoholic men were four times more likely to exhibit 

violence towards their female partner than non-alcoholic controls13. Interestingly, partner violence 

decreased one year after treatment and this effect was clinically significant only in patients who did not 

relapse. Finally, a cross-sectional study in Britain reported that hazardous drinking was associated with 

injury to the victim and perpetrator, and this risk almost doubled for individuals with alcohol 

dependence14.  

Experimental data for the acute effects of alcohol on aggression in more chronic and problem 

drinkers are limited, in part due to ethical limitations. Among individuals in treatment for substance 

abuse, general patterns of alcohol use, as well as alcohol use on the day of conflict, were related to 
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severity of partner violence; moreover, alcohol use was higher on days involving interpersonal conflict 

than on other days15. Additionally, compared to nonviolent partner conflicts, alcoholic men consumed 

more alcohol in the 12 hours prior to violent partner conflict16. Finally, among alcohol-dependent 

individuals in New Zealand, violence was most robustly explained by substance use (including alcohol) 

before the offence10.  

Numerous studies have sought to determine the mechanisms and processes that underlie alcohol-

related aggression, and have indicated that multiple mechanisms play important roles in the relationship 

between acute and chronic alcohol consumption and aggressive behaviour. This review attempts to 

integrate findings regarding the social, cognitive and biological mechanisms that drive aggressive 

behaviour in response to acute alcohol intake and the facilitating role of chronic alcohol consumption. We 

discuss animal experiments and human studies that address why despite alcohol’s well-established and 

robust effect on behavioural inhibition, some individuals respond aggressively following acute 

consumption, and that describe genetic and environmental factors that point to an important role for the 

serotonin system in determining vulnerability to alcohol-induced aggression. In piecing together 

conclusions from animal experiments and human correlative studies, we aim to develop an integrative 

model of alcohol-related aggression and to highlight research areas that warrant further, interdisciplinary 

study. 

 

 
Acute alcohol effects on aggressive behaviour 

Studies in animals  

Studies in rodents show that low doses of alcohol facilitate aggression in a subset of animals, 

while higher doses induce sedation and motor incordination16-18. Additionally, rodents with alcohol-

heightened aggression display an increased number of aggressive acts during a bout of aggression, e.g. 

when confronted with intruders in their cages18,19. Rhesus monkeys exposed to early social isolation stress 

show excessive alcohol intake and impulsive aggression. Such monkeys with a lifetime history of severe 

competitive physical aggression also display higher rates of aggression when intoxicated by alcohol20. 

Again, alcohol appears to increase the number of aggressive behaviours within each aggressive burst19.  

  

 

Studies in humans 

Numerous studies have employed controlled experimental paradigms to examine the acute effects of 

alcohol on aggressive behaviour in humans. In these settings, direct physical aggression is typically 

operationalized as the intensity and duration of shocks or tone blasts administered to a fictitious opponent 
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under the guise of a competitive reaction time task (Taylor Aggression Paradigm21) or to a “student,” 

played by a confederate, for providing incorrect answers (teacher-learner task22). Aggression is also 

measured with the Point Subtraction Aggression Paradigm23, where participants can take points (which 

can be exchanged for money) away from an opponent. Collectively, data from these studies indicate that 

alcohol consumption is causally, though indirectly (see indirect-cause model Table 124), related to the 

expression of aggressive behaviour (e.g.25). More specifically, among a subset of consumers, behavioural 

manifestations of alcohol-induced aggression have been linked to neuropsychological variables. These 

include, first, alcohol-induced interference with or impairment of executive control mechanisms (e.g., 

attention-allocation, inhibition, social information processing); second, various situational factors (e.g, 

provocation, threat, social pressure, self awareness); and third, person-based, individual differences (e.g., 

subjective expectations for the effects of alcohol, gender, aggressive disposition, sober-state executive 

functioning) (for review see25-28). Tables 1, 2 and 3 attempt to summarize the most prominent cognitive 

and social-cognitive mechanisms and theories of alcohol-related aggression that have emerged from 

decades of research with humans. Although increased collaboration across disciplines is needed to garner 

empirical support for the advancement of these models, their inclusion is intended to inform more 

comprehensive research directives to address the serious social problems associated with intoxicated 

aggression. Studies in animals and, to a lesser extent, in humans have aimed to investigate the 

mechanisms by which alcohol affects these variables and the brain areas that mediate them.  

  

 
Acute alcohol effects on brain function 
 
Alcohol effects on neurotransmission 

Animal experiments showed that acute alcohol intake stimulates serotonin and dopamine release, e.g. in 

the ventral and dorsal striatum29-31. It also exerts an inhibitory effect on cortical activation, by inducing 

GABA release and stimulating GABAA and GABAB receptors, and via a blockade of glutamatergic 

neurotransmission (e.g. via interference with a glycine binding site that modulates NMDA receptor 

function)32-35. Some of the alcohol-induced neurotransmitter alterations resemble effects of social stress: 

for example, stress induces both striatal and frontocortical dopamine release, while alcohol increases 

extracellular dopamine mainly in the striatum but stimulates frontal dopamine release only when applying 

rather low doses 29,30,36,37 In rodents, social defeat stress affects amygdala and prefrontal cortex (PFC) 

functions and their modulation of dopaminergic neurotransmission, and this seems to underlie increased 

intake of a drug of abuse (cocaine) in animals  exposed to social stress38. Socially subordinate monkeys 

display increased striatal dopamine concentrations (measured indirectly via competition with radioligand 

binding to dopamine D2 receptors), which correlates with increased intake of dopaminergic drugs of 
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abuse39. Elevated dopamine in the PFC and nucleus accumbens/ventral striatum is associated with the 

initiation of aggressive attacks and threatening behaviour in rodents, and dopaminergic stimulation of D1 

and D2 receptors in the hypothalamus facilitates active defensive behaviour in cats40. Animal studies 

further suggest that both alcohol and conditioned fear stress induces dopamine release in the 

amygdala41,42, and in humans, dopamine synthesis capacity in the amygdala correlates with functional 

activation of the amygdala and anterior cingulate cortex elicited by aversive visual stimuli43. Acute 

alcohol effects on monoaminergic, excitatory and inhibitory neurotransmitter systems thus affect 

prefrontal and limbic brain areas that are implicated in social conflict and defeat, and alcohol-associated 

increases in dopamine release may facilitate aggressive and defensive behaviour.  

 

Acute alcohol intake, prefrontal cortex function, and aggression 

In humans, most research on alcohol-related aggression focused on acute effects on executive functions 

associated with the PFC26. In individuals in whom PFC function is impaired, marked changes in behaviour 

have been repeatedly observed, including emotional lability and aggression, apathy, anticipating, planning 

and sequencing deficits, deficiencies in initiating behaviour, problems in shifting, adapting and stopping 

behaviour and deficient abstract reasoning44,45. Interestingly, several placebo-controlled studies employing 

neuropsychological measures have shown that alcohol consumption confers similar impairments in PFC 

functioning, including planning46, information processing, inhibitory control and response flexibility47-50, 

attention51 and set-shifting52,53. Additionally, an electrophysiological study showed that very small 

quantities of alcohol reduce activity in the medial PFC in response to errors of performance, and that this 

effect is associated with a reduced ability to adjust behaviour after such errors54. Such deficits may lead to 

careless, inappropriate or exaggerated behaviour that can render one more vulnerable to aggressive or 

even violent responding when confronted with provocations or emotional challenges of the environment55.  

 Importantly, several PFC subregions, notably anterior cingulate cortex and ventromedial PFC, 

send (inhibitory) projections into limbic areas, i.e., the amygdala56,57, and are thought to be part of a circuit 

that helps to regulate emotional behaviour58. Dysfunction of the amygdala seems to play a key role in 

various forms of aggressive behaviour, with instrumental or ‘cold’ aggression being associated with 

reduced, blunted amygdala responses and reactive or ‘hot’ aggression with increased amygdala 

reactivity59-65. Functional neuroimaging in aggressive individuals suggests that deficient activation of 

medial prefrontal structures coupled with exaggerated amygdala responses in emotionally challenging 

situations is a key mechanism in reactive aggression62-64, and thus supports the notion that PFC plays an 

important role in the regulation of aggressive behaviour66 (Figure 1).  

Taken together, the acute effects of alcohol on the PFC may indirectly promote aggression by 

impairing prefrontal executive functions, including prefrontal control of emotional behaviour67. 
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Unfortunately, no published studies to date have attempted to measure activation in brain regions 

associated with executive functions (with imaging or electrophysiological techniques) under alcohol while 

aggressive behaviour is being elicited. 

 

 

Vulnerability factors  

In animals and in humans, only a small number of individuals become aggressive after acute alcohol 

intake, suggesting that alcohol engenders aggression only for those who meet a certain risk profile. In 

mice, alcohol-heightened aggression is a selectable trait68. In humans, manifestation of aggressive 

behaviour following acute alcohol intake depends on individual factors such as gender (higher risk in 

males69,70), executive functioning71, personality (trait anger72; sensation seeking73; difficult temperament74; 

poor anger control75; irritability76; dispositional empathy77), motives for drinking (e.g., drinking to cope, 

drinking to enhance experience78), approving beliefs about aggression79 and expectancies for alcohol to 

elicit aggression28,80,81. Situational features such as provocation82,83, threat84, social pressure85, and 

environmental context (e.g., being in a bar vs. home86) can also interact with extant risk factors to 

promote alcohol-related aggressive behaviour.  

 

A central role for serotonergic dysfunction 

One factor that seems to facilitate alcohol-associated aggression in vulnerable humans is the effect of 

chronic alcohol intake (plus the often comorbid abuse of tobacco) on monoaminergic, specifically 

serotonergic, neurotransmission. Five lines of evidence point in this direction. First,  serotonin depletion 

is associated with increased aggression in individuals with high levels of aggression or hostility, and 

additional alcohol intake has an additive effect on aggression87-89; second, a subgroup of alcohol-

dependent patients with early disease onset and a rather high genetic disposition towards alcohol-

dependence (so-called type 2 alcohol-dependent patients) display low serotonin turnover rates (measured 

via the serotonin metabolite 5-HIAA in the CSF) and increased aggressive behaviour90,91; third, chronic 

alcohol and nicotine consumption induces neuroadaptive and neurotoxic changes in monoaminergic, 

glutamatergic, and GABAergic neurotransmission — including a reduction in raphe serotonin 

transporters, which seems to quickly reverse during alcohol detoxification in non-smokers but not 

smokers92,93; fourth, acute and chronic reductions in central and prefrontal serotonin availability increase 

behavioural rigidity and reduce inhibitory functions94,95, which may contribute to a narrowing of attention 

and response patterns towards threatening stimuli that facilitate aggressive acts; and fifth, the 

pharmacological agent fluoxetine, which blocks serotonin transporters, reduces anger and physical 

aggression in alcohol-dependent perpetrators of domestic violence96.  
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However, such correlational data do not clarify whether excessive alcohol use predisposes to 

aggression or whether there is a common factor that links excessive alcohol use and aggression. 

Moreover, there is a near complete absence of multimodal imaging studies that explore the interaction 

between alterations in neurotransmitter systems measured with positron emission tomography (PET) and 

functional brain activation associated with alcohol-associated aggression. The current state of knowledge 

is thus mainly based on animal experiments that assess the interaction between genetic and environmental 

factors and their respective impact on neurotransmitter systems, functional brain activation and alcohol-

related aggression. We will discuss these animal models and focus on their relevance for alcohol-

associated aggression in humans on the basis of psychological studies that have elucidated neurocognitive 

factors posited to contribute to aggressive behaviour under the influence of alcohol (see Box 1).   

 
Rodent models of vulnerability to alcohol-related aggression 

Studies in rodents have assessed the question of why only a subset of animals become aggressive under 

alcohol. The initiation of aggressive acts has been associated with increased dopamine levels in the 

prefrontal cortex and ventral striatum40, and a low availability of striatal dopamine D2 receptors is 

associated with impulsivity in rodents97. However, impulsive behaviour includes a wide spectrum of 

activities well beyond impulsive aggression, and attempts to causally link individual differences in 

dopamine release (measured via microdialysis) with levels of aggression (e.g. after exposure to an 

intruder to the animals’ cage) following alcohol intake have failed98.  

Alterations in serotonergic neurotransmission do seem to distinguish between mice with and 

without alcohol-heightened aggression. For example, serotonin receptor expression is reduced for all 

receptor subtypes (except for 5-HT3 receptors) in the prefrontal cortex of mice showing alcohol-induced 

aggression68. Stimulation of GABAA (but not GABAB) receptors in the dorsal raphe area increases 

alcohol-related aggression, ostensibly via postsynaptic inhibitory effects on serotonergic neurons 

projecting to the frontal cortex17. Together with the observation that cortical serotonin levels decrease 

during and after an aggressive encounter99, these findings suggest that a frontal cortical serotonin deficit 

mediates an increased propensity for violent behaviour, including alcohol-induced aggression.  

Newer data emphasize specific roles in conveying vulnerability to aggression for different serotonin 

receptors and transporters68. For example, the effects of agonists of GABAB receptors and (inhibitory) 5-

HT1B receptors on aggressive behaviour seem to depend on the specific localisation of application and the 

respective effects of these agonists on serotonergic neurotransmission. Application of a GABAB agonist 

in the dorsal raphe area increases aggression irrespective of alcohol intake; this effect is dependent on the 

activation of serotonergic neurons in the raphe area (because it was blocked by a 5-HT1A agonist) and is 

associated with acute increases  in serotonin levels in the medial prefrontal cortex17,100. Most interestingly, 
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application of a 5-HT1B agonist in the medial prefrontal cortex increases aggression in mice with a 

history of alcohol self-administration, whereas systemic application reduces aggression101,102. 

Additionally, prefrontal serotonin release in these mice is blunted following 5-HT1B receptor stimulation. 

These data suggest that alcohol intake may interact with the expression patterns of specific serotonin 

receptors68, which modulate alcohol’s effect on aggressive behaviour101. Such differences in the effects on 

aggression of specific serotonin receptor agonists and antagonists may be explained by their differential 

effects on GABAergic interneurons, with agonists of 5-HT2A, 5-HT3 receptors facilitating GABA release 

in rat frontal cortex and hippocampus and 5-HT4 receptors regulating the amplitude of GABAergic 

inhibitory postsynaptic currents, whereas agonists of (inhibitory) 5-HT1A and 5-HT1B agonists in 

amygdala, hippocampus and ventral tegmental area inhibit GABAergic interneurons, thus facilitating e.g. 

striatal dopamine release103,104 (Figure 1).    

 

------------------------------Please insert Figure 1 about here----------------------------------- 

 

Primate models of vulnerability to alcohol-related aggression 

Studies on brain serotonin metabolism in nonhuman primates have also indicated that individual 

differences in serotonergic neurotransmission play a role in the biological vulnerability to increased 

alcohol-related aggressiveness. In rhesus monkeys, environmental factors (e.g. early social isolation 

stress105-108) induce a trait–like reduction in central serotonergic neurotransmission107-109, and this is 

associated with increased impulsive aggression and excessive alcohol intake. Specifically, levels of the 

serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF) were reduced 

in monkeys separated from their mothers compared with mother-reared monkeys, and this reduction in 

serotonin turnover rates was trait-like and persisted into adulthood107,108. Imaging studies revealed that 

adult monkeys who experienced early social isolation display a negative correlation between CSF 5-

HIAA levels and the availability of brainstem (raphe) serotonin transporters when assessed with a 

radioligand that is displaced by endogenous serotonin110.  

Importantly, reduced concentration of the serotonin metabolite 5-HIAA in the CSF is not found in 

all rhesus monkeys separated from their mothers; it occurs only in primates carrying one or two SLC6A4 

alleles with a serotonin-transporter-linked polymorphic region (5-HTTLPR) (known as ‘short’ alleles), 

which have been associated with decreased transporter function and expression in humans and non-

human primates111,112. Interestingly, these monkeys showed elevated serotonin transporter (5-HTT) 

availabilities following social isolation stress110, which seems to be due to reduced competition between 

(low) endogenous serotonin and in vivo radioligand binding to serotonin transporters rather than to a 

genetically driven alteration in serotonin transporter density per se110. Indeed, in vivo serotonin depletion 
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and restoration studies showed that binding of the 5-HTT radioligand beta-CIT is displaced by restoration 

of extracellular serotonin concentrations, and that this effect was stronger in monkeys with higher 5-

HIAA levels in the CSF113, suggesting that monkeys with higher CSF 5-HIAA levels also have higher 

extracellular serotonin concentrations in vivo113. In accordance with this hypothesis, assessment of 5-HTT 

density with a radioligand that is not displaced by endogenous serotonin (and thus measures absolute 

transporter density rather than availability relative to extracellular serotonin concentrations) revealed 5-

HTT reductions in the brainstem, thalamus and striatum in monkeys exposed to early social isolation 

stress114,115, confirming an overall impairment of serotonergic neurotransmission.  

In rhesus monkeys exposed to social isolation stress, both low CSF 5-HIAA concentrations and 

associated brainstem serotonin transporter availability are correlated with self-initiated (impulsive) 

aggressive acts and other behaviour patterns that are similar to those associated with early-onset 

alcoholism among humans, i.e., lower social competence and increased anxiety110. Importantly, CSF 5-

HIAA concentrations are correlated with the level of inhibition of prefrontal glucose utilization by a 

GABAA agonist110,116,117, suggesting that the acute sedative (GABA-mediated) effects of alcohol are 

reduced in primates with low CSF 5-HIAA levels, e.g. in those exposed to social isolation stress. A low 

level of sedation following acute alcohol intake is one factor that is known to predispose to excessive 

alcohol intake, hypothetically because subjects lack a warning sign of harmful use118,119. Indeed, monkeys 

with low CSF 5-HIAA levels and associated alterations in brainstem (raphe) serotonin transporter 

availability show increased alcohol intake in a free-choice paradigm, and the amount of alcohol intake 

was positively correlated with the relative availability of brainstem (raphe) serotonin transporters120. This 

behavioural profile is consistent with research in humans which demonstrated that a low response to 

alcohol (i.e., the effects of alcohol consumption are less acute and less aversive) is a partially heritable 

trait that is associated with 5-HTT genotype and, in prospective studies, with excessive alcohol 

intake118,119.  

Thus, findings on the effects of social isolation stress on the serotonin system and behaviour in 

non-human primates seem to be relevant to humans. Indeed, results from a twin study121 emphasized the 

importance of social stress factors in the pathogenesis of both antisocial behaviour and excessive alcohol-

intake. In sum, both genetic and environmental factors contribute to the serotonin turnover rate of non-

human primates105,122,123, and this is robustly associated with both alcohol intake and impulsive 

aggression.  

 

Genetic vulnerability factors for alcohol-related aggression in humans 

Studies in humans showed that heritability accounts for about 35% of the variance in CSF 5-HIAA 

concentrations and that environmental factors, such as early social isolation stress (growing up without a 
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mother and being separated from peers), have an important role in the regulation of the serotonin turnover 

rate117,124. Furthermore, alcohol-dependent patients with early onset of dependence show reduced 

serotonin turnover rates (low 5-HIAA in the CSF) and increased levels of anxiety and impulsive 

aggression90,125. Although some studies117,124 indicate an important role for environmental factors 

interacting with serotonergic neurotransmission in predisposing to aggressive behaviour, it has often been 

suggested that aggressive — and particularly violent — behaviour is under strong genetic influence. 

Moreover, several twin and adoption studies have failed to observe a significant disposition towards 

violent behaviour that is independent of the increased risk to develop alcohol dependence121,126,127. This 

suggests that a common hereditary factor might predispose individuals to both alcohol dependence and 

violent behaviour. Again, the serotonin system was implicated in these studies: Cloninger90 hypothesized 

that both addictive and aggressive behaviour are manifestations of a failure to learn from mistakes and 

punishment90,128, hypothetically due to serotonin dysfunction and resulting impairments in behavioural 

inhibition128. Serotonergic neurotransmission has also been implicated in negative mood states and violent 

suicide attempts in humans with affective and addictive disorders (i.e., anxiety and depression117,129). In 

addition serotonin dysfunction, as indicated by a low serotonin turnover rate measured via the serotonin 

metabolite 5-HIAA in the CSF, has been associated with early onset of alcoholism and both anxiety and 

impulsive aggression in alcohol-dependent patients90,125,130,131. Hence, a genetic predisposition towards 

serotonin dysfunction, possibly exacerbated by adverse environmental experiences, may represent one 

risk factor for the pathogenesis and maintenance of both excessive alcohol consumption and aggressive 

behaviour117. 

 

MAOA and 5-HTTLPR as risk genes 

What genes might underlie this genetic predisposition? A risk gene for aggression in humans was 

identified by the landmark finding that a single mutation in the gene that encodes monoamine oxidase A 

(MAOA, a catabolic enzyme that breaks down biogenic amines including serotonin), was associated with 

criminal behaviour in a Dutch kindred132. Interestingly, a meta-analysis showed that the same MAOA 

genotype is also associated with both increased alcohol intake and negative mood states such as anxiety 

and depression (133 but see 134). To date, MAOA is the best known candidate susceptibility gene for human 

aggression. Although the human functional knockout is rare, common polymorphisms in MAOA exist. 

Most studied among these is a variable-number tandem repeat (VNTR) polymorphism in the upstream 

region of the gene, known as the MAOA u-VNTR. Certain alleles in this region are associated with 

relatively higher MAOA expression (MAOA-H alleles), whereas others are associated with relatively 

lower expression (MAOA-L alleles)135. The MAOA-L variant is associated with increased propensity 

towards impulsive aggression136. 
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Importantly, this MAOA gene is located on the X-chromosome, and a sex-by-genotype interaction 

may contribute to greater occurrence of alcohol-induced aggressive behaviour in males. Functional 

imaging studies revealed that in both sexes, MAOA-L subjects compared to MAOA-H subjects display 

exaggerated limbic (amygdala) and paralimbic (insula) activation during implicit processing of angry and 

fearful faces, with diminished recruitment of regulatory regions of prefrontal cortex (orbitofrontal and 

anterior cingulate cortices) (Figure 2). Subjects with MAOA-L also displayed exaggerated neuronal 

(cingulate cortex) responses to perceived social rejection137.Furthermore, a recent study showed that the 

MAOA-L variant, which is associated with increased propensity towards impulsive aggression, predicted 

increased volume reductions in the limbic system (including cingulate gyrus, amygdala, hippocampus) in 

MAOA-L subjects relative to MAOA-H subjects138. However, only male MAOA-L subjects showed 

greater fMRI activation than MAOA-H males in two limbic areas, the amygdala and hippocampus, during 

the recall of negatively valenced visual scenes, and reduced activation in dorsal cingulate during a go/no-

go task138. Furthermore, connectivity between amygdala and medial prefrontal cortex was modified by 

genotype in a sex-specific fashion: MAOA-L men showed stronger amygdala-ventromedial PFC 

functional coupling than MAOA-H men, whereas no effect of genotype was evident in women139. 

Additionally, Caspi and colleagues observed that the MAOA genotype mediates the impact of early-life 

maltreatment on the development of antisocial — including aggressive — behaviour. More specifically, 

MAOA-L males were more susceptible to the effects of abuse than MAOA-H males with respect to the 

development of antisocial behaviour140. This finding now has meta-analytic support141 and has been 

extended to variation in the serotonin transporter gene (5-HTTLPR)142. More specifically, the common 

polymorphism of the serotonin transporter gene is associated with increased amygdala activation in 

response to aversive pictures and with a higher risk of experiencing negative mood states when exposed 

to traumatic life events140,143,144. Indeed, a study in non-human primates observed increased 

aggressiveness in male rhesus monkeys carrying the 5-HTTLPR s-allele (the genotype correlated with 

decreased CSF 5-HIAA levels following social isolation stress), and aggressive behaviour was even 

higher in monkeys carrying this genotype when they were also exposed to early social adversity145. It is 

thus possible that alterations in serotonergic neurotransmission exert their effect during 

neurodevelopmentally vulnerable periods, which may explain why a recent PET study observed no 

correspondence between MAOA-uVNTR and MAOA activity in adults146.  

Together, these findings suggest that these MAOA-L subjects whoare have a stronger disposition 

to display stress-associated aggression, have a higher sensitivity to social rejection, increased amygdala 

activation when confronted with aversive stimuli, and decreased volume and activation of brain areas 

associated with behavioural control, such as the cingulate cortex. A recent study implicated further 

genetic variation in serotonergic neurotransmission in alcohol-associated violence: in mice, knock-out of 
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the 5-HT2B gene was associated with increased impulsivity and response to novelty. In humans, a stop 

codon in the 5-HT2B gene blocks receptor expression in the frontal cortex and is associated with high 

impulsivity in Finnish violent offenders, who mainly aggressed when intoxicated147.Thus, both animal 

experiments and human studies support the notion that individual differences in serotonin function 

contribute to the predisposition to respond aggressively, including after alcohol consumption. Together, 

the studies reviewed here suggest that genetic effects on serotonin receptor, transporter availability and 

metabolism, through an interaction with stress exposure, contribute to excessive alcohol intake, 

aggressive behaviour and negative mood states. 

 

------------------------------Please insert Figure 2 about here------------------------------------ 

 

 
A role for chronic alcohol consumption 

If individual differences in serotonergic neurotransmission and its effect on e.g. the GABAergic system 

predispose some individuals to react aggressively when consuming alcohol, how could chronic alcohol 

intake exacerbate the manifestation of violent behaviour following alcohol intoxication? The association 

between chronic alcohol problems and aggressive behaviour following acute alcohol intake may simply 

be due to the fact that subjects with chronic alcohol problems consume alcohol more often and thus are 

more frequently intoxicated. Alternatively, a common factor that results in, for example, low levels of 

CSF 5-HIAA may underlie both excessive alcohol intake and aggressive behaviour. That is, low CSF 5-

HIAA levels and a relatively high availability of brainstem serotonin transporters (arising from genetic 

factors or early social stress experiences93,110) may predispose to both impulsive aggression and a low 

intoxicating effect of acute alcohol ingestion, which, in adolescents, in turn facilitates excessive alcohol 

intake119,148. Additionally, some studies indicate that in vulnerable individuals, certain neurobiological 

effects of chronic alcohol intake may interact with exactly those neurotransmitter systems that are already 

implicated in the disposition to alcohol-associated violence. One example is the effect of chronic alcohol 

intake on dopaminergic neurotransmission, which seems to increase impulsive behaviour149. 

 

Impulsivity and neuroadaptation to chronic alcohol 

It is posited that alcohol dependence, like other forms of chronic drug abuse, is characterized by 

dysfunctional reward expectation with an overemphasis on immediate rewards and a discounted value for 

delayed outcomes (i.e., impulsivity) (for review see149). This profile may lead to early onset of alcohol 

dependence and social problems117,150. A number of studies suggested that alcohol-dependent patients are 

more impulsive than controls151,152 and that impulse control disorders (including impulsive-violent 
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behaviour) are more common among alcohol-dependent subjects than in healthy volunteers125,153. 

Impaired reward expectation, putatively associated with alcohol-associated dysfunction of the ventral 

striatum, may therefore contribute to impulsivity and impulsive aggression. Indeed, rodents with a low 

striatal dopamine D2 receptor availability display high levels of impulsivity compared to animals with 

high striatal D2 levels97. Although a low dopamine D2 receptor availability in the striatum may be a 

partially heritable trait, chronic alcohol intake further reduces striatal dopamine D2 receptor availability 

and sensitivity in animals and humans154-157. Such reductions in dopamine D2 receptor availability can 

interfere with dopaminergic modulation of ventral striatal activation during reward expectation. Indeed, 

Beck et al. (2009) observed increased impulsivity and reduced ventral striatal activation during reward 

anticipation (i.e. the processing of reward-indicating cues) in alcohol-dependent patients compared with 

healthy volunteers. In both healthy controls and alcohol-dependent patients, increased impulsivity was 

associated with reduced activation of the ventral striatum during reward anticipation158, suggesting that 

impulsive subjects may have difficulty maintaining reward expectation, which can contribute to increased 

delay discounting159. Reduced striatal responsiveness to delayed rewards may also provoke increased 

reward-seeking — such as for alcohol — as a means of compensation, and propel subjects into risky 

situations that in turn enhance aggressive, violent actions160. Such alcohol-related risky behaviour may be 

further increased when executive functioning is impaired, and a recent study observed that impaired 

connectivity between the ventral striatum and prefrontal cortex during a reversal learning task correlated 

with increased craving and a reduced learning rate in alcohol-dependent patients161. Given that measures 

of impulsivity are often associated with aggression162,163, impulsivity could be a mediating factor for the 

relationship between alcohol and aggression (Figure 1).  

Importantly, impulsivity is a multi-faceted construct that can be expressed in several ways, 

including in the motor (inability to inhibit behavioural responses) and cognitive (impulsive decision-

making and inability to maintain intentions and goals) domains164 and mediated by different 

neurotransmitter systems. Alcohol acutely increases diverse facets of impulsive behaviour, including 

response inhibition and rapid decision making165,166, and it has long been suggested that serotonin 

dysfunction contributes to impulsive behaviour via impairment of response inhibition90,167. Again, effects 

of chronic alcohol intake on serotonergic neurotransmission may further exacerbate alcohol-associated 

impulsivity and aggressive behaviour in vulnerable individuals. Animal studies showed that following 

chronic alcohol intake, both serotonin and dopamine turnover rates increased, suggesting that the low 

dopamine and serotonin turnover rates that characterize alcohol-preferring animals are counteracted by 

alcohol-induced stimulation of dopamine and serotonin release (e.g. measured via microdialyses or 

assessment of the respective metabolites in CSF)117,168. However, in mice showing alcohol-induced 

aggression, there was a blunted serotonin release in the prefrontal cortex following application of a 5-
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HT1B agonist101 (Figure 1). This is a key finding, because it suggests that in individuals predisposed to 

showing alcohol-induced aggression, effects of chronic alcohol intake may interact with serotonergic 

neurotransmission in the prefrontal cortex, resulting in altered neuronal excitation in this area and thus 

interfering with behavioural control.  

Animal experiments and human studies indeed support the hypothesis that serotonin dysfunction 

interferes with prefrontal cortical functions such as executive controlled behaviour adaptation, particularly 

in the face of demands for flexible behaviour adaptation and response inhibition, e.g.? for example. in 

personal confrontations or hostile situations94,95. It is well documented that alcohol-dependent patients 

demonstrate deficits across a range of executive functioning abilities (e.g.,169-172). Additionally, a 

comprehensive review of the PET, fMRI and neuropsychological data concluded that alcoholism is 

characterized by frontal lobe dysfunction173. Correspondingly, in human subjects who demonstrate 

impulsive-aggression, prefrontal cortex activation following a serotonergic challenge with fenfluramine is 

blunted, indicating impaired serotonergic modulation of, specifically, orbitofrontal, ventral medial frontal 

and cingulate cortex174. Additionally, relative to controls, impulsive murderers show less prefrontal 

cortical excitation as indexed by lower bilateral prefrontal glucose metabolism175. Given the evidence that 

the relationship between alcohol and aggression is stronger for individuals with lower levels of executive 

functioning71, alcohol-dependent individuals may be more prone to respond aggressively under alcohol 

due to the chronic effects of alcohol on executive functions. To date, this hypothesis has not been directly 

tested in patients with chronic alcohol problems and alcohol-associated aggression. Given the social 

relevance of alcohol-related aggression, such studies in individuals with excessive alcohol intake are 

highly warranted. 

 

Perception of threat and limbic dysregulation 

Beyond the impairment of frontocortical behavioural control, human studies indicate that previous 

experiences and expectation of alcohol-related violence facilitate the manifestation of aggressive 

behaviour in intoxicated individuals (see Box 1). Under alcohol, individuals who possess such strong 

expectancies may be more inclined to perceive relatively harmless social encounters as threatening, and 

react with violent behaviour. As discussed above, serotonergic neurotransmission in interaction with other 

transmitter systems has been implicated in the perception of aversive, threat-related and anxiety-

provoking environmental stimuli117,176. In a study by Knutson et al. (1998), administration of a selective 

serotonin reuptake inhibitor known to increase synaptic serotonin concentrations in animals177 was 

correlated with decreased anxiety and decreased insecurity in human volunteers178. These volunteers 

showed reductions in aggressive behaviour in a competitive game, which may be seen as evidence for a 

direct link between serotonin and aggression. However, the effect of the serotonergic medication was 
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even stronger on negative affect, and the observed reduction in aggressiveness was statistically explained 

by the decrease in negative emotions178. This suggests that increased serotonin neurotransmission 

primarily reduces negative emotions, which then lowers aggressive behaviour, possibly because of 

decreased perceptions of insecurity or threat. This interpretation is supported by animal experiments 

showing that increased serotonin turnover is induced by social success and in turn improves social 

competence in competitive games179,180. In contrast, serotonin depletion induced insecure and anxious 

behaviour patterns181. 

Human studies have suggested a prominent role of limbic brain areas such as the amygdala and its 

prefrontal regulation in threat perception and anxiety. Additionally, these areas are known to be 

modulated by serotonin transporter genotype, such that 5-HTTLPR carriers show stronger activation of 

the amygdala in response to negative affective visual stimuli143,144. Such genetic effects on serotonin 

transporter expression may be exacerbated in alcohol-dependent patients, who display a reduction in 

brainstem (raphe) serotonin transporter availability, depending their on serotonin transporter 

genotype93,176. Individuals with trait-like alterations in serotonin function (for example carrying the 

vulnerable MAOA or 5-HTT genotype and/or having suffered early social isolation stress)110,140 (Figure 1) 

may thus display a disposition towards increased limbic activation when confronted with threatening 

situations (mediated via amygdala activation). However, the experience of threat associated with 

amygdala activation should not be equated with anxiety – in situations of imminent danger, individuals 

can react with fight or flight. Human studies confirmed that in social drinkers, alcohol consumption can 

be associated with either aggression or anxiety182. Neurobiologically, whether the balance is tipped 

towards aggression or anxious withdrawal may depend on individual differences in specific aspects of 

serotonergic neurotransmission: passive avoidance, e.g. in the rodent paradigm of learned helplessness, 

has been associated with acutely increased serotonin release183, whereas alcohol-associated aggression 

mediated via 5-HT1B receptors (which are inhibitory) was associated with a decrease in prefrontal 

serotonin release101. As prefrontal serotonin depletion and potential impairments in prefrontal functioning 

impair flexible control of behaviour94 (which is associated with prefrontal cortex dysfunction), subjects 

may respond with aggressive behaviour if they have previously experienced that aggressive or violent 

behaviour is a normal or even appropriate response in such threatening situations. We suggest that when 

these individuals consume alcohol, aggressive expectancies for alcohol, combined with an attentional bias 

towards threatening stimuli, plus impairment of executive functions associated with both chronic and 

acute alcohol intake, may increase the likelihood of engaging in violent behaviour27. 
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Summary and outlook 

Alcohol-related aggression is characterized by a nexus of interacting factors including, but not limited to, 

alcohol-associated (pharmacological) alterations of key neurotransmitter systems and their respective 

effects on frontal and limbic brain areas, cognitive deficits associated with acute and chronic alcohol 

intake, social learning and contextual influences, and associative connections between alcohol and 

aggression in memory. Here we suggest that alcohol-associated aggression may result from acute alcohol 

effects that impair PFC executive functions and disinhibit limbic processing of threatening stimuli, and   

elicit alcohol-associated experiences of aggression. Individual differences in alcohol-associated 

aggression seem to be partly mediated by differences in functioning of the serotonin system and its 

interaction with raphe (brainstem) and prefrontal GABAergic neurotransmission, which affect both limbic 

processing of aversive, threatening environmental stimuli and flexible behavioural control by the 

prefrontal and cingulate cortex. The resulting tendency for impulsive aggression may further be 

augmented by increased discounting of delayed reward due to alterations in the neural correlates of 

reward anticipation following chronic alcohol intake. It should be noted that this model of alcohol- and 

stress-associated impulsive aggression, which assumes limbic dysregulation and impaired prefrontal 

control, does not preclude the possibility that other types of aggression and antisocial behaviour are based 

on limbic hyporeactivity and lack of empathy59,184. 

Our model is thus compatible with an imbalance between “hot” and “cold” systems of emotion 

regulation and aims to integrate social, cognitive and neurobiological findings. Specifically, human and 

primate studies point to the relevance of maltreatment and social isolation or exclusion stress in the 

development of aggressive behaviour, and highlight findings that suggest gene-environment interactions 

may be involved in this110,117,138,140. Although to date animal experiments provide a rather coherent picture 

of the neurobiological correlates of alcohol-related aggression, more research in humans is warranted, 

especially considering the societal impact of alcohol-induced aggression. Such studies in humans need to 

take into account that beyond the effects of acute and chronic alcohol intake suggested by animal 

experiments, cognitive variables such as implicit and explicit expectations regarding the effects of alcohol 

and previous experiences of violent encounters can modify alcohol-associated aggression. 

 
 

Box 1. Individual differences in human cognition and their relation to alcohol-associated aggression  

Executive function 

It has been suggested that acute alcohol intake increases aggressive behaviour because it impairs 

executive behavioural control and disinhibits impulsive responding, including violent behaviour. 
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Executive functioning comprises several cognitive abilities that contribute to the planning, initiation and 

regulation of goal-directed behaviour185. Burgeoning evidence from clinical populations suggests that 

individual differences in executive functioning may have a distal and indirect influence on alcohol use 

and drinking outcomes more generally (see186 and 27). According to an integrative executive functioning 

framework of alcohol-related aggression27, alcohol promotes impulsive aggression indirectly by 

disrupting executive functioning, and this relationship is strongest in individuals with lower sober-state 

executive functioning (Table 3). Empirical studies have primarily examined the effect of alcohol on 

isolated executive functions, and compelling evidence suggests that individuals with low executive 

functioning are more prone to aggressive behaviour (e.g., 187) and one study demonstrated that males with 

low executive functioning (compared to high executive functioning) reacted more aggressively under 

alcohol71. Future research should include neuropsychological testing batteries to better account for the 

contribution of executive functioning to individual differences in proclivity towards intoxicated 

aggression and impulsive behaviour.   

Alcohol Outcome Expectancies (AOEs) 

It has also been suggested that some individuals react aggressively under the influence of alcohol because 

of their expectation that alcohol makes them act more aggressively. Traditional accounts of expectancy 

theory188 (Table 2) propose that this purely psychological effect is the driving force behind intoxicated 

behaviour. Within this framework it is thought that the act of drinking activates AOEs stored within an 

individual’s schematic representation of alcohol in memory189, that in turn influence behaviour (for 

review see189) (Table 2). Importantly, AOEs have powerful predictive validity concerning a wide range of 

drinking outcomes, including alcohol effects on aggressive behaviour190,191. AOEs have been documented 

in young children who have never consumed alcohol192, and the development of AOEs is therefore 

perhaps best explained under Bandura’s Social Learning Theory193. 

Although AOEs are initially shaped by social learning, their potency is thought to increase with 

increasing experience with alcohol such that the outcomes of using alcohol reinforce expectations and in 

turn, expectancies influence outcomes194,195. Hence, connections between expectancies and outcomes in 

memory become solidified and can be accessed with greater efficiency195. Consequently, explicit 

awareness of AOEs declines and upon activation, they may influence behaviour in a seemingly automatic 

fashion (see196). Indeed, AOEs are theorized to function as a memory “template” and activation of alcohol 

concepts in memory can bias the generation and selection of behavioural options as well as how events 

are interpreted189,195. For instance, one study found that even in the absence of drink consumption, 

exposure to alcohol-related primes elicited faster response-times to aggressive words, and perceptions of 

ambiguous behaviour were judged as more hostile by participants exposed to alcohol-related 

advertisements, especially in participants with stronger AOEs for aggression197. Thus, ambiguously 
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hostile encounters in the presence of alcohol cues (e.g., a bar) or under the influence of alcohol would be 

more likely to provoke aggressive responses in individuals with stronger memory associations between 

alcohol and aggression. 
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Figure 1: A neurobiological model for alcohol-associated aggression.   
 
Above: Brain areas strongly implicated in alcohol-associated aggression. Acute alcohol impairs executive 
functions associated with the prefrontal cortex (PFC) and stimulates dopamine release in the ventral 
striatum (which can facilitate initiation of aggressive attacks40). Chronic alcohol intake may facilitate 
alcohol-associated aggression by impairing serotonergic neurotransmission in the amygdala and PFC, 
which can disinhibit limbic processing of threatening stimuli and impair flexible control of 
behaviour94,143,144. Furthermore, dopamine D2 receptor down-regulation in the ventral striatum following 
chronic alcohol intake can increase impulsive and risk-taking behaviour156,158. 
Below: Neurotransmitter system alterations implicated in alcohol-associated aggression are shown in 
blue. Systems influenced by genetic variation and environmental events are indicated in purple.   Genetic 
variation in serotonin reuptake (serotonin transporter genotype, 5-HTTLPR) and monoamine metabolism 
(MAOA)  modulates amygdala functioning and connectivity. In individuals exposed to averse life events 
this predisposes to increased aggression137-144. Animal studies further suggest that alcohol intake plus 
experimental GABAA-mediated inhibition of raphe serotonin neurons17 as well as a blunted serotonin 
release in the prefrontal cortex following local 5HT1B stimulation101 is associated with alcohol-heightened 
aggression in rodents with a history of alcohol-related aggressive behaviour. Reduced dopamine D2 
receptors as a heritable trait and/or following chronic alcohol intake contribute to increased 
impulsivity97,155-158. Dotted arrows indicate inhibitory (mainly GABAergic) neurotransmission; black 
arrow indicate excitatory (mainly glutamatergic) neurotransmission.   
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Figure 2. Functional and structural neural correlates of aggressive behaviour and genetic risk 
towards violence. 
(A) Functional magnetic resonance imaging (fMRI) reveals reduced activation of dorsal anterior cingulate 
cortex during the viewing of negative compared to neutral affective pictures in adolescents with 
heightened levels of aggression (drawn from data from Sterzer et al. 200564). Anterior cingulate cortex 
plays a key role in the inhibitory regulation of activity in limbic brain areas. Reduced activation of this 
brain region in aggressive individuals is consistent with the notion of impaired cognitive control of 
negative affects as a basis of aggressive behaviour.  
(B) Structural (left) and functional (right) MRI summary statistics data comparing healthy individuals 
carrying or not carrying the MAOA-L aggression risk variant (based on data from Buckholtz and Meyer-
Lindenberg, 2008198), which is associated with an increased likelihood of engaging in stress-related 
aggression and violence. Left: reduced volume in amygdala and cingulate cortex (blue) for both sexes in 
MAOA-L carriers, and a sex by genotype interaction with increased volume in orbitofrontal cortex (red) 
in male MAOA-L carriers only. Right: reduced activation of anterior cingulate (top and middle areas) and 
increased activation of amygdala (bottom area) in carriers of the risk allele in both sexes. 
Part (A) reproduced from Figure 3, with permission, from Sterzer et al. 200564 (c) 2005 Elsevier   ; Part 
(B) reproduced, with permission from figure 2E in Buckholtz & Meyer-Lindenberg, 2008198 (c) 2008 Cell 
Press.   
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Table 1  
Theories inciting cognitive disruption in intoxicated aggression  
Theory/Terms Basic Tenets Citation 
Indirect cause model * Alcohol does not directly cause aggression rather 

it compromises important processes in multiple 
domains and thereby increases the probability of 
aggressive behaviour 

Graham (1980)24 

Disinhibition 
Hypothesis 

* Pharmacological properties of alcohol disrupt 
brain centres implicated in maintaining inhibitory 
control over behaviour  

Best articulated by 
Graham (1980)24 

Alcohol Myopia * General term employed by several theories which 
describes an alcohol-induced narrowing of 
attentional resources that limits the perceptual field 
*Analogy: disinhibition is looking at a scene 
through a distorted or blurry camera lens; myopia 
is using the zoom function so that only a small part 
of the scene can be viewed with clarity.  

Steele & Josephs 
(1990)199 

Attention-Allocation  
Hypothesis 

* Alcohol limits amount of attention available to 
process information;  as such proximal, instigatory 
cues in the immediate context (e.g., being bumped 
into in a bar) are awarded far more salience and 
attention than external, inhibitory cues (e.g., 
considering that it was accidental).  
* Inhibition conflict (competition for attention 
between inhibitory and instigatory cues) must be 
present for alcohol to elicit aggressive behaviour.  
* Under the influence of alcohol and in the 
presence of cognitively-taxing inhibition conflict, 
decisions are more influenced by instigatory cues 
and less so by conflict-mitigating information. 

Steele & Josephs 
(1990)199; Steele & 
Southwick (1985)200; 
Giancola & Corman 
(2007)201  

Hostile Attribution Bias * Alcohol disrupts processing of threat-related 
information – so that under the influence of 
alcohol, ambiguous interpersonal cues may be 
misinterpreted as hostile intentions.  
*Alcohol is more likely to impact aggression under 
conditions of low provocation because the effect of 
high provocation on aggression is already so robust 
that alcohol has little additional impact. 

Nasby et al., (1980)202; 
Giancola et al., 
(2002)82 

Self-Awareness 
Hypothesis; Social-
Cognitive Information 
Processing 

* Alcohol engenders aggressive behaviour to the 
extent that it disrupts higher order encoding of self-
relevant information necessary to sustain self-
awareness. Increasing self-focused attention 
(looking into a mirror) can bridge the alcohol-
induced gap between internal states and external 
standards of comportment28 
* Intoxicated individuals are more likely to respond 
aggressively to interpersonal provocation because 
alcohol disrupts critical aspects of social 
information processing  

Hull (1981)203; Sayette 
(1993)204 

Impaired Fear Response Alcohol elicits aggression because it disrupts Ito, Miller & Pollack 
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ability to accurately detect and evaluate cues that 
signal danger and threat (detect less threat; failure 
to consider physical size of opponent). 

(1996)28; Pihl, 
Peterson & Lau 
(1993)205.  

Increased Arousal Alcohol increases general arousal but dampens the 
physiological stress-response (e.g., response to 
threat or provocation) which in turn promotes 
increased aggression. 

Hoaken, Campbell, 
Stewart, & Phil, 
(2003)206 
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Table 2:  
Theories inciting social learning, memory structures and functional relationships with alcohol 
expectancies. 
Theory/Terms Basic Tenets Citation 
Expectancy Theory  Conservative accounts posit that expectations for 

alcohol engender aggressive behaviour – not the 
pharmacological properties of alcohol 

MacAndrew & 
Edgerton (1969)188 

Alcohol Outcome 
Expectancies/Schematic 
Memory Structures 

Under the influence of alcohol, individuals with 
strong associations in memory between alcohol and 
aggression and those who expect alcohol to make 
them more aggressive are more likely to 
demonstrate aggressive behaviour upon 
encountering stimuli perceived as threatening. 

e.g, Goldman et al., 
(1999)190  
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Table 3: Multidimensional social-cognitive conceptualizations of intoxicated aggression 
Theory/Terms Basic Tenets Citation 
Two Channel Theory Links alcohol expectancy and cognitive disruption 

theories and is based on the supposition that 
alcohol interferes with individuals’ ability to 
accurately evaluate the ambiguous behaviours of 
others. Once memory structures representing 
alcohol expectancies are activated (primed), it 
becomes difficult for individuals to objectively 
evaluate the behaviour of others – especially when 
intoxicated – because increased cognitive effort is 
required to think outside of the primed schema. In 
these circumstances we tend to rely on our 
expectancies and use only the most salient 
information to reach a conclusion (e.g., he bumped 
into me, he did it on purpose). 

Lange (2002)207 

Impairment of 
Executive Functioning 

4 key abilities associated with executive function 
are used to inhibit impulsive acts of aggression are 
impaired by alcohol (i.e., attending to and 
appraising situational information, taking the 
perspective of others, considering consequences of 
one’s actions, defusing a hostile situation). 
Impulsive aggression, in response to provocation, 
is only engendered by alcohol to the extent that it 
disrupts EF. Alcohol is more likely to promote 
aggressive behaviour among individuals with 
lower executive functioning. 

Giancola (2000)27 

Dual-Process Model 2 types of processes dictate addictive behaviours. 
1) Impulsive process: fast, associative, automatic 
appraisal of stimuli based on affective and 
motivational significance 2) Reflective process: 
slow, rule based, deliberate, goal-regulated, 
heavily dependent on executive control (EC) 
functions. As alcohol begins to cause EC to wane, 
reflective processes diminish and impulsive 
processes dominate. Individuals who hold 
aggressive associations with alcohol will be more 
prone towards aggression under alcohol. 

Wiers et al., 2009208  
Deutsch & Strack, 
2006209 

 



 41

Glossary Terms: 
 
Alcohol Outcome Expectancy: predictions or beliefs about the social, cognitive, and affective 

consequences of alcohol consumption that are shaped by social learning and personal experience 
with alcohol. 

 
Alcohol Schema: the theoretical structure in which information (e.g., experience, beliefs) about alcohol is 

organized and stored in memory.   
 
Bandura’s Social Learning Theory: posits that learning takes place in a social context whereby we can 

learn from observing others and this learning can occur without a change in behaviour. 
 
Delay Discounting: Delay Discounting is the reduced ability to choose larger but delayed rewards 

compared to smaller but earlier rewards (seen as an index of impulsive tendencies). 
 
Fenfluramine: a pharmacological drug that releases serotonin; it reverses reuptake by serotonin 

transporters and disrupts vesicular storage of serotonin 
 
Go/No-Go task: Task that requires participants to press a key in response to one type of stimulus and to 

not press a key when another stimulus type occurs. Go/No-Go tasks are typically used to assess 
cognitive inhibitory control of behaviour. 

 
Hot and Cold System of Emotional Processing: neural systems implicated in emotion regulation; the 

cold system refers to the rational and logical reasoning usually conducted under low emotion and 
arousal whereas the hot system in indicated in decision making under high levels of emotion and 
arousal that occurs in  the immediate situation. 

 
Reward Expectation: Reward expectation describes an anticipatory processing in the face of upcoming 

positive reinforcement (reward) 
 
 


