SUPPLEMENTARY MATERIAL

Chemical characterisation of essential oils of leaves of two Solanaceae: *Solanum rugosum* and *Solanum erianthum* from Côte d'Ivoire.

Toffe Alexis Kouao^a, Bosson Antoine Kouame^{*a}, Zana A. Ouattara^a, Janat Akhanovna Mamyrbekova-Bekro^a, Ange Bighelli^b, Felix Tomi^b and Yves-Alain Bekro^a

^aLaboratoire de Chimie BioOrganique et de Substances Naturelles, UFR-SFA, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire, ^bUMR 6134 SPE, Equipe Chimie et Biomasse, Université de Corse-CNRS, Route des Sanguinaires, 20000 Ajaccio, France.

*Corresponding author. Email : abossonk@gmail.com

Abstract: This study made it possible to characterise by GC (in combination with retention indices), GC-MS and ¹³C NMR, the chemical composition of the essential oils from *Solanum rugosum* and *Solanum erianthum*, two Solanaceae of the Ivorian flora. The two essential oils were characterised by a very high proportion of sesquiterpenes. Specifically, the essential oil of *S. rugosum* was dominated by (E)- β -caryophyllene (33.7%), β -elemol (19.8%) and germacrene D (14.4%), while that of *S. erianthum* was mainly composed of α -humulene (38.6%), β -elemol (17.8%) and (E)- β -caryophyllene (16.7%). The chemical composition of *Solanum rugosum* is described here for the first time.

Keywords: Essential oil composition; *Solanum rugosum; Solanum erianthum*; hydrodistillation; GC-MS; ¹³C NMR

Experimental

Plant material

Leaves of *S. rugosum* and *S. erianthum* were harvested in the Abidjan district respectively at Abobo and Adjamé in the period from July to September 2017 and then dried under permanent cooling at a temperature of 18°C for three days. The identification was made by the botanists of Université Nangui Abrogoua and CNF (Centre National de Floristique) of Université Félix Houphouët-Boigny with references LAA 10504 and LAA 10503.

Hydrodistillation

The extraction of the essential oils was made from a Clevenger type apparatus during 4 hours. Each oil was dried over anhydrous MgSO₄ and then conserved in refrigerator (4° C).

Gas chromatography (GC) analyses

The extracted essential oils were analysed by means of a gas chromatograph (Perkin-Elmer type Clarus 500), equipped with a divider injector, with two columns of apolar and polar silica of 50 x 0.22 mm. internal diameter, 0.25 μ m thick of the film, respectively lined with polydimethylsiloxane (C₂H₆OSi) n and polyethylene glycol, and two flame ionization detectors. The operating conditions are as follows: the carrier gas is hydrogen; the pressure at the top of the column is 20 psi; the temperature of the injector and detectors is 250 ° C. The temperature programming is 60 ° up to 220 ° C at a rate of 2 ° C / min, with a bearing of 20 min at 220 ° C; the injection was done by divider mode with a 1/60 ratio. The quantity of sample injected is 0.5 μ L from a solution containing 50 μ l of HE in 350 μ l of CDCl₃.

Gas chromatography coopled with mass spectroscopy (GC-MS)

The analyses were carried out using a Perkin Elmer autosystem XL chromatograph, equipped with an automatic injector and an apolar column (Rtx-1) (internal diameter: 60 mx 0.22 mm, film thickness 0, 25 μ m), coupled to a Perkin Elmer TurboMass mass detector. The carrier gas is hydrogen (1 mL / min) and exerts a column pressure at 25 psi. The temperature of the injector is 250 ° C and that of the detector 280 ° C. The programming of the temperature consists of an elevation of 60 ° C to 230 ° C, at 2 ° C / min, then a 45-minute plateau at 230 ° C. The injection was done by split mode with a division ratio of 1/50. The quantity of sample injected is 0.2 μ L. The mass spectra are obtained by means of a quadrupole filter detector and the ionization is made by electronic impact by an electron beam of 70 eV.

Nuclear Magnetic Resonance (NMR) analyses

The NMR spectra were carried out using a Bruker 400 AVANCE spectrometer operating at 100.623 MHz for the ¹³C. The spectra were recorded with a 5 mm probe. The solvent is CDCl₃ supplemented with tetramethylsilane (TMS). The chemical shifts are given in ppm (δ) with respect to the TMS taken as internal reference.

Identification of individual constituents

Component identification was based on: (a) comparison of their GC retention indices (RI) on polar and apolar columns determined relative to the retention times of a series of *n*-alkanes (C7-C28) with linear interpolation (Target Compounds software from Perkin Elmer) with those of authentic compounds or literature data (König et al. 2001), (b) on computer matching with a laboratory-made and commercial mass spectral libraries and comparison of spectra with literature data (McLafferty and Stauffer 1994; Adams 2001), (c) on comparison of the signals in the ¹³C NMR spectra of essential oils with those of reference spectra compiled in the laboratory spectral library with the help of laboratory-developed software (Tomi et al. 1995; Rezzi et al. 2002; Ouattara et al. 2014). In the investigated samples, individual components were identified by ¹³C-NMR at contents as low as 0.4 - 0.5%.

References

- Adams RP. 2001. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Co, Carol Stream.
- König WA, Hochmuth D H, Joulain D. 2001. Terpenoids and Related Constituents of Essential Oils, Library of MassFinder 2.1. Institute of Organic Chemistry, Hamburg.
- McLafferty W, Stauffer DB. 1994. Wiley Registry of Mass Spectral Data. 6th ed. Mass Spectrometry Library Search System Bench-Top/PBM, Version 3.10d. Palisade, Newfield.
- Ouattara ZA, Boti JB, Ahibo AC, Sutour S, Casanova J, Tomi F, Bighelli A. 2014. The key role of ¹³C NMR analysis in the identification of individual components of *Polyalthia longifolia* leaf oil. Flavour and Fragrance Journal. 29: 371-379.
- Rezzi S, Bighelli A, Castola V, Casanova J. 2002. Direct identification and quantitative determination of acidic and neutral diterpenes using ¹³C-NMR spectroscopy. Applied Spectroscopy. 56: 312-317.

Tomi F, Bradesi P, Bighelli A, Casanova J. 1995. Computer-aided identification of individual components of essential oils using carbon-13 NMR spectroscopy. Journal of Magnetic Resonance Analysis. 1: 25-34.

N°	Compounds	RIa	RIp	% ^a S.rugosum	% ^a S.erianthum	Identification
1	Hexanal	771	1088	-	0.3	RI, MS
2	(Z)-Hex-3-en-1-ol	833	1386	-	0.3	RI, MS
3	Linalool	1083	1549	2.0	-	RI, MS, ¹³ C NMR
4	α -Terpineol	1171	1698	0.3	-	RI, MS
5	Safranal	1173	1648	0.2	-	RI, MS
6	Geraniol	1233	1849	0.4	-	RI, MS
7	(E)- β -Damascenone	1361	1823	0.4	-	RI, MS
8	β -Elemene	1386	1592	1.3	1.1	RI, MS, ¹³ C NMR
9	(E)- β - Caryophyllene	1417	1599	33.7	16.7	RI, MS, ¹³ C NMR
10	α-Humulene	1448	1669	2.5	38.6	RI, MS, ¹³ C NMR
11	β -Ionone	1462	1939	0.8	0.5	RI, MS, ¹³ C NMR
12	Germacrene D	1474	1710	14.4	3.1	RI, MS, ¹³ C NMR
13	Bicyclogermacrene	1488	1733	1.7	0.2	RI, MS, ¹³ C NMR
14	γ-Cadinene	1504	1746	0.2	-	RI, MS
15	δ -Cadinene	1512	1757	0.5	0.9	RI, MS, ¹³ C NMR
16	β -Elemol	1534	2081	19.8	17.8	RI, MS, ¹³ C NMR
17	Caryophyllene oxide	1567	1980	0.7	0.4	RI, MS, ¹³ C NMR
18	Guaiol	1583	2089	4.4	4.4	RI, MS, ¹³ C NMR
19	Humulene oxide II	1592	2037	-	1.0	RI, MS, ¹³ C NMR
20	γ-Eudesmol	1616	2167	2.2	2.3	RI, MS, ¹³ C NMR
21	τ -Cadinol	1623	2158	-	0.3	RI, MS
22	β -Eudesmol	1632	2219	1.9	1.7	RI, MS, ¹³ C NMR
23	a-Eudesmol	1637	2228	2.4	2.2	RI, MS, ¹³ C NMR
24	α-Cadinol	1639	2230	0.3	-	RI, MS
25	Bulnesol	1650	2201	0.9	1.0	RI, MS, ¹³ C NMR
26	(E)-Phytol	2098	2612	2.5	1.0	RI, MS, ¹³ C NMR
	Total			93.5	93.8	
Oxygenated monoterpenes				2.9	-	
Sesquiterpenes hydrocarbons			54.3	60.6		
Oxygenated sesquiterpenes				32.6	31.1	
Diterpenes				2.5	1.0	
Other				1.2	1.1	
The order of elution and the percentages are given on apolar column (BP-1)						

Table S1. Chemical composition of S. rugosum and S. erianthum leaf essential oil

RIa and RIp: retention indices measured on apolar (BP-1) and polar (BP-20) columns, respectively.