(Supporting Information)

Chemical Constituents from the Peels of Citrus sudachi

Hiroyuki Nakagawa, Yoshihisa Takaishi," Naonobu Tanaka, Koichiro Tsuchiya, Hirofumi Shibata, Tomihiko Higuti.

Graduate school of Pharmaceutical Sciences, University of Tokushima, Shomachi, 1-78, Tokushima 770-8505, Japan
"To whom correspondence should be addressed.

Tel: 81-886337275.

Fax: 81-886339501.
E-mail: takaishi@ph.tokushima-u.ac.jp.
University of Tokushima.

Known Compounds from the Peels of Citrus sudachi

Following 27 known compounds were isolated from the peels of C. sudachi; isoobacunoic acid (8), ${ }^{1}$ limonin (9), ${ }^{2}$ methyl deacetylnomilinate (10), ${ }^{3}$ nomilinic acid (11), ${ }^{4}$ vanillic acid (12), ${ }^{5} 1 S, 2 S, 4 R$-limonene-1,2-diol (13), ${ }^{6}(+)-4 S$-7-hydroxypiperitone (14), ${ }^{7}$ methyl ferulate (15), ${ }^{8}$ ferulic acid (16), ${ }^{9}$ citrusin III (17), ${ }^{10}$ citrusin IX (18), ${ }^{11}$ sudachitin (6), ${ }^{12} 3^{\prime}$-demethoxysudachitin (7), ${ }^{12} 7$-methylsudachitin (19), ${ }^{13}$ xanthomicrol (20), ${ }^{13}$ jaceosidin (21), ${ }^{14}$ sudachiin $\mathrm{B}(\mathbf{2 2}),{ }^{15}$ sudachiin $\mathrm{C}(\mathbf{2 3}),{ }^{15}$ prunin (24), ${ }^{16}$ narirutin (25), ${ }^{17}$ naringin (26), ${ }^{17}$ hesperidin (27), ${ }^{17}$ neohesperidin (28), ${ }^{18}$ eriocitrin (29), ${ }^{19}$ poncirin (30), ${ }^{20}$ hesperetin 7-O-(2",6"-di- O - α-rhamnopyranosyl)- β-glucopyranoside (31), ${ }^{17}$ naringenin $7-O-\left(2^{\prime \prime}, 6^{\prime \prime}-\mathrm{di}-O-\alpha\right.$-rhamnopyranosyl)- β-glucopyranoside (32). ${ }^{21}$ Their structure were identified by the analysis of their NMR spectral data, and then by comparison with those of literature listed below, respectively. Eleven compounds (8,10, 12-18, 24, 32) were the first isolation from C. sudachi.

Isolation of Known Compounds

The EtOAc soluble fraction (54 g , the extraction and the partion were described in text) was subjected to silica gel column chromatography ($1 \mathrm{~kg}, 11 \times 100 \mathrm{~cm}$). The column was eluted with solvents of increasing polarity (n-hexane-EtOAc, EtOAc, EtOAc-MeOH, MeOH) to give 15 major fractions (frs. 1-15). Fraction 1 (460 mg) was separated on GPC $\left(\mathrm{CHCl}_{3}\right)$, $\mathrm{Si} \mathrm{HPLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5\right)$ to give $15(5 \mathrm{mg})$. Fraction 3 (477 mg) was separated by $\mathrm{Si} \mathrm{HPLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$, $\mathrm{GPC}(\mathrm{MeOH})$ to give 12 (3 $\mathrm{mg}), \mathbf{1 3}(15 \mathrm{mg}), \mathbf{1 9}(6 \mathrm{mg}), \mathbf{2 0}(10 \mathrm{mg})$. Fraction $4(3.7 \mathrm{~g})$ was chromatographed on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to give three fractions (frs 2.1-2.3) and $7(300 \mathrm{mg})$. Fraction 2.3 was separated by a Toyopearl HW-40 column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 1: 1$), Si

HPLC ($\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$, GPC (MeOH) to give $\mathbf{1 4}(7 \mathrm{mg}), \mathbf{1 6}(8 \mathrm{mg}), \mathbf{2 1}(5 \mathrm{mg})$. Fraction $5(1.1 \mathrm{~g})$ was subjected on $\mathrm{Si} \mathrm{HPLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to give $6(360 \mathrm{mg})$. Fraction $6(2.4$ g) was chromatographed on a Toyopearl HW-40 column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to give four fractions (frs 6.1-6.4). Fraction 6.3 was separated by Si HPLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$, GPC (MeOH) to give $\mathbf{8}(13 \mathrm{mg}), \mathbf{1 0}(44 \mathrm{mg})$. Fraction $7(19.0 \mathrm{~g})$ was chromatographed on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to give seven fractions (frs 7.1-7.7). Fraction 7.3 was subjected on recrystallization (MeOH); fraction 7.4 subjected on Si HPLC (hexaneEtOAc) to give $\mathbf{9}(1.0 \mathrm{~g}), \mathbf{1 1}(5 \mathrm{mg})$, respectively. Fraction $11(3.0 \mathrm{~g})$ was separated by a Sephadex LH-20 (MeOH) column, GPC (MeOH), ODS $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$ to give 24 (2 $\mathrm{mg})$. Fractions $12(1.9 \mathrm{~g})$ was recrystallized from MeOH to give $22(144 \mathrm{mg})$. Fraction 13 (1.9 g) was separated by a Sephadex LH-20 (MeOH) column, recrystallization $(\mathrm{MeOH}), \mathrm{GPC}(\mathrm{MeOH})$ to give $25(138 \mathrm{mg}), 29(60 \mathrm{mg})$. Fraction $14(8.3 \mathrm{~g})$ was separated by a Sephadex LH-20 (MeOH) column to give seven fractions (frs 14.1-14.7) and a mixture of 27, $\mathbf{2 8}(2.5 \mathrm{~g}, 3: 2)$. Fraction 14.7 was separated by GPC (MeOH), ODS ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) to give $27(193 \mathrm{mg}), \mathbf{3 0}(1 \mathrm{mg})$, a mixture of $\mathbf{2 5}, 26(85 \mathrm{mg}, 1: 1)$ and that of 26, 29 ($63 \mathrm{mg}, ~ 2: 5$). Fraction $15(1.5 \mathrm{~g})$ was separated by a Sephadex LH-20 (MeOH) column, GPC (MeOH), ODS $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$ to give $17(63 \mathrm{mg}), \mathbf{1 8}(29 \mathrm{mg}), \mathbf{2 3}(13 \mathrm{mg})$, 31 (11 mg).

One percent of $n-\mathrm{BuOH}$ soluble fraction $(3.8 \mathrm{~g})$ was chromatographed on a Sephadex LH-20 (MeOH) column chromatography to give five fractions (frs 1-5). Fraction 2 (1.3 g) was subjected on GPC (MeOH) to give $31(4 \mathrm{mg}), \mathbf{3 2}(21 \mathrm{mg})$. Fraction $3(460 \mathrm{mg})$ was separated by GPC (MeOH), ODS $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$ to give a mixture of $\mathbf{2 5}, 26$ (104 $\mathrm{mg}, 1: 1)$ and that of $\mathbf{2 7}, \mathbf{2 8}(106 \mathrm{mg}, 1: 2)$. Fractions $4(155 \mathrm{mg})$ was subjected on GPC
(MeOH) to give a mixture of $\mathbf{2 5}, \mathbf{2 6}(36 \mathrm{mg}, 3: 2)$ and that of $\mathbf{2 7}, \mathbf{2 8}(22 \mathrm{mg}, 1: 1)$, that of 26, 29 ($37 \mathrm{mg}, 1: 3$).

References and Notes

[1] Raymond, D.B.; Hasegawa, S.; Zareb, H. Phytochemistry 1989, 28, 2777-2781.
[2] Ming, K.; Gray A.I.; Waterman, P.G. Journal of Natural Products 1987, 50, 11601163.
[3] Bennet, R.D.; Hasegawa, S. Tetrahedron 1981, 37, 17-24.
[4] Ellis, B.E.; Amrhein, N. Phytochemistry 1971, 10, 3069-3072.
[5] Sakushima, A.; Coskun, M.; Maoka, T. Phytochemistry 1995, 40, 257-261..
[6] Demyttenaere, J.C.R.; Belleghem, K.V.; Kimpe, N.D. Phytochemistry 2001, 57, 199208.
[7] Delgado, G.; Rios, M.Y. Phytochemistry 1991, 30, 3129-3131.
[8] Fujita, M.; Inoue, T; Nagai, M. Yakugaku zasshi 1985, 105, 240-248.
[9] Ternai, B.; Markham, K.R. Tetrahedron 1976, 32, 565-569.
[10] Matsubara, Y.; Yusa, T.; Sawabe, A.; Iizuka, Y.; Takekuma, S.; Yoshida, Y. Agric. Biol. Chem. 1991, 55, 2923-2929.
[11] Matsumoto, T.; Shishido, A.; Takeya, K. Tennen Yuki Kagobutsu Toronkai Koen Yoshishiu 2001, 43th, 407-412.
[12] Greenham, J.; Vassiliades, D.D.; Harborne, J.B.; Williams, C.A.; Eagles, J.; Grayer, R.J.; Veitch, N.C. Phytochemistry 2001, 56, 87-91.
[13] Horie, T; Nakayama, M. Phytochemistry 1981, 20, 337-338.
[14] Martinez, V.; Barbera, O.; Parareda, J.S.; Marco, J.A. Phytochemistry 1987, 26,

2619-2624.
[15] Horie, T.; Tsukayama, M.; Yamada, T.; Miura, I.; Nakayama, M. Phytochemistry 1986, 25, 2621-2624.
[16] Lewinsohn, E.; Berman, E.; Mazur, Y.; Gressel, J. Phytochemistry 1986, 25, 25312535.
[17] Kumamoto, H.; Matsubara, Y.; Iizuka, Y.; Okamoto, K.; Yokoi, K. Nippon Nogeikagaku Kaishi 1985, 59, 683-687.
[18] Matsubara, Y.; Kumamoto, H.; Yonemoto, H.; Iizuka, Y.; Okamoto, K.; Yokoi, K. Nippon Nogeikagaku Kaishi 1985, 59, 405-410.
[19] Miyake, Y.; Yamamoto, K.; Osawa, T. Food Sci. Technol. Int. Tokyo 1997, 3, 8489.
[20] Kim, D.H.; Bae, E.A.; Han, M.J. Biol. Pharm. Bull. 1999, 22, 422-424.
[21] Kim, H.K.; Jeon, W.K.; Ko, B.S. Planta Medica 2001, 67, 548-549.

