ja1c05602_si_001.pdf (7.99 MB)
Download file

Chapter Open for the Excited-State Intramolecular Thiol Proton Transfer in the Room-Temperature Solution

Download (7.99 MB)
journal contribution
posted on 06.08.2021, 10:29 by Chun-Hsiang Wang, Zong-Ying Liu, Chun-Hao Huang, Chao-Tsen Chen, Fan-Yi Meng, Yu-Chan Liao, Yi-Hung Liu, Chao-Che Chang, Elise Y. Li, Pi-Tai Chou
We report here, for the first time, the experimental observation on the excited-state intramolecular proton transfer (ESIPT) reaction of the thiol proton in room-temperature solution. This phenomenon is demonstrated by a derivative of 3-thiolflavone (3TF), namely, 2-(4-(diethylamino)­phenyl)-3-mercapto-4H-chromen-4-one (3NTF), which possesses an SH···O intramolecular H-bond (denoted by the dashed line) and has an S1 absorption at 383 nm. Upon photoexcitation, 3NTF exhibits a distinctly red emission maximized at 710 nm in cyclohexane with an anomalously large Stokes shift of 12 230 cm–1. Upon methylation on the thiol group, 3MeNTF, lacking the thiol proton, exhibits a normal Stokes-shifted emission at 472 nm. These, in combination with the computational approaches, lead to the conclusion of thiol-type ESIPT unambiguously. Further time-resolved study renders an unresolvable (<180 fs) ESIPT rate for 3NTF, followed by a tautomer emission lifetime of 120 ps. In sharp contrast to 3NTF, both 3TF and 3-mercapto-2-(4-(trifluoromethyl)­phenyl)-4H-chromen-4-one (3FTF) are non-emissive. Detailed computational approaches indicate that all studied thiols undergo thermally favorable ESIPT. However, once forming the proton-transferred tautomer, the lone-pair electrons on the sulfur atom brings non-negligible nπ* contribution to the S1′ state (prime indicates the proton-transferred tautomer), for which the relaxation is dominated by the non-radiative deactivation. For 3NTF, the extension of π-electron delocalization by the diethylamino electron-donating group endows the S1′ state primarily in the ππ* configuration, exhibiting the prominent tautomer emission. The results open a new chapter in the field of ESIPT, covering the non-canonical sulfur intramolecular H-bond and its associated ESIPT at ambient temperature.