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Abstract 

 

Between 18,000 and 15,000 years ago, large amounts of ice and meltwater entered 

the North Atlantic during Heinrich Stadial 1.  This caused substantial regional 

cooling, but major climatic impacts also occurred in the tropics.  Here we 

demonstrate that the height of this stadial, ca. 17-16,000 years ago ("Heinrich Event 

1"), coincided with one of the most extreme and widespread megadroughts of the 

last 50,000 years or more in the Afro-Asian monsoon region, with potentially serious 

consequences for Paleolithic cultures.  Late Quaternary tropical drying commonly is 

attributed to southward drift of the Intertropical Convergence Zone, but the broad 

geographic range of the H1 Megadrought suggests that severe, systemic weakening 

of Afro-Asian rainfall systems also occurred, probably in response to sea surface 

cooling. 
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Meridional repositioning of the Intertropical Convergence Zone (ITCZ), the primary 

source of rainfall in most of the tropics, is thought to have been a major source of 

hydrological variability during the late Quaternary (1-4).   For example, ice sheet 

expansion forced the mean latitudinal position of the ITCZ southward along with other 

atmospheric circulation systems in the northern hemisphere during the Last Glacial 

Maximum (3), and abrupt North Atlantic cooling during deglacial melting and ice-rafting 

episodes such as Heinrich Stadial 1 (HS-1), along with associated reductions of marine 

meridional overturning circulation (MOC), is also thought to have had a similar effect on 

rain belts associated with the ITCZ (1, 3, 4).  Some model simulations of northern 

hemisphere climatic changes associated with HS-1 indicate a southward drift of up to 10 

latitudinal degrees (2).  Most of northern Africa became unusually dry around 17-16 

thousand calendar years ago (ka) during the HS-1 ice-rafting peak of Heinrich Event 1 

(H1), including the Sahara and Sahel (5), Ethiopia (6), and the Red Sea region (7), as did 

most of southern Asia (8-11; Figs. 1 and 2).  Affecting most of the northern Old World 

tropics, this arid episode brought some of the most severe drought conditions of the last 

50,000 years or more to many of the terrestrial sites that cover such long time periods in 

detail (Fig. 2; supporting online text).  

 

Under such circumstances, a more southerly-positioned ITCZ would presumably deliver 

less rain to the northern tropics while causing little change near the equator and wetter 

conditions in the southern tropics.  However, a relative scarcity of high-resolution 

paleoclimate records from much of the inner and southern tropics has left this commonly 

cited hypothesis sparsely tested, particularly in Africa.  This, in turn, has also limited 

understanding of the effects of major events such as H1 on global climates.  In this paper, 

we present a collection of new and recently published records from Africa that register 

severe aridity in the equatorial and southern tropics ca. 17-16 ka, thereby showing that 

the H1 Megadrought extended far beyond the northern tropics and was therefore one of 

the most intense and far-reaching dry periods in the history of anatomically modern 

humans.  Together, these records also show that southward drift of the ITCZ cannot have 

been the only cause of low-latitude drought during H1, and instead suggest that a 

significant weakening of tropical rainfall systems also occurred.  

 

If the ITCZ did shift several degrees southwards over Africa and Asia during H1, it 

should still have delivered rains to equatorial regions once or twice annually unless the 

latitudinal shift was unrealistically large, on the order of 20 degrees or more.  However, 

extreme equatorial drying centered on 17-16 ka also occurred in northern Tanzania (12; 

this study), Ghana (13) and the Niger-Sanaga and Congo watersheds (14, 15; Fig. 1) as 

well as in Borneo on the opposite side of the Indian Ocean (16) much as it did in the 

more northerly reaches of the tropics from the Mediterranean Basin to the western Pacific 

(Figs. 1-3; supporting online text). 

 

A dramatic event associated with these equatorial changes was the desiccation of Lake 

Victoria, East Africa (Fig. 1), which today is the world's largest tropical lake.  With 

rainfall over the watershed possibly reduced to less than a quarter of its present amount 

(7), the lake dried out twice between 18 and 15 ka, though the timing of the two low 

stands has previously been unclear (supporting online text).  We present here radiocarbon 
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dates and diatom records from two cores which show that the first of these low stands 

occurred ca. 17-16 ka (Fig. 3D; 17).  The disappearance of Lake Victoria would have had 

severe ecological impacts on regional ecosystems and cultures from eastern equatorial 

Africa to the Mediterranean coast.  It is the largest water source for the Nile River during 

seasonal low flood stages, and Lake Tana, Ethiopia, is the primary source of the Nile's 

seasonal high floods; both lakes dried out completely at that time (6).  

 

In addition, an analysis of diatom assemblages in a core from Lake Tanganyika, Tanzania 

(17), supports geochemical evidence (18) that a major low stand occurred ca. 17-16 ka  

there, as well (Figs. 2D and 3F).  We therefore link the synchronous regressions at Lakes 

Victoria and Tanganyika to the H1 ice-rafting peak that occurred ca. 17-16 ka during the 

longer Heinrich Stadial period in the North Atlantic (3, 19), while recognizing that the 

ages assigned to these events are subject to the limitations of radiocarbon dating, variable 

carbon reservoir effects, and bioturbation.  Together, these equatorial records 

demonstrate that a simple southward shift of the ITCZ cannot have been the only climatic 

mechanism to affect tropical rainfall significantly during H1. 

 

The occurrence of major droughts to the south of equatorial Africa during H1 even more 

clearly requires a mechanism other than southward drift of the ITCZ over the continent, 

which would be expected to make those regions wetter as the north became drier (Figs. 1-

3).  These sites included Lake Malawi (20), the Zambezi and Limpopo watersheds (21, 

22), and other locations in southeastern Africa (Fig. 1; supporting online text). 

 

In contrast, parts of southwestern Africa became wetter during H1 (cf. 23), but hydrology 

there can also be influenced by rainfall systems other than the ITCZ, such as winter 

storms carried on the austral mid-latitude westerlies.  The complexity of the interactions 

between subtropical and Southern Ocean dynamics is highlighted in a stable isotope 

record from the Western Cape, where changes in sea surface temperatures (SST) as a 

result of variability in MOC and/or the Agulhas Current caused progressively wetter 

conditions in that region across H1 (24; Fig. 1).  Further north, in the Kalahari, Burrough 

et al. (25) favored an easterly ITCZ rainfall source for an enlarged paleolake 

Makgadikgadi, proposed largely on the basis of sandy deposits on western shorelines, but 

droughts to the north and east, along with the possibility of distant runoff sources in 

addition to deflation and downwind sediment deposition during dry seasons, suggest an 

alternative interpretation, as well.  Wetter conditions in the Kalahari at that time might 

also be consistent with a northward extension of winter rains, which could have brought 

increased precipitation to Namibia during H1 (26).  Wetter conditions could also reflect 

enhanced runoff from high stratiform clouds and fogs in the Angola highlands related to 

cooling along the Benguela coast (27), rather than a southward shift of the ITCZ alone.   

 

Hydrological conditions in the New World tropics are difficult to interpret in this context.  

Extreme aridity is registered in cores from the Cariaco Basin ca. 17-16 ka (1), and 

regional increases in precipitation occurred farther south in the tropical Andes and parts 

of Amazonia during H1 (1, 3). This pattern appears to be consistent with a southward 

shift of the mean position of the ITCZ, though it is not found universally (supporting 

online text).  Most importantly in the context of this study, however, the development of 
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wet conditions in numerous neotropical sites suggests that the proposed general 

weakening of rainfall systems over Africa did not occur in South America, and that it 

apparently represented regional, rather than uniformly global changes in tropical 

atmospheric circulation.   

 

General circulation models (GCMs) often have more difficulty in simulating precipitation 

than temperature, and GCM reconstructions of tropical rainfall are less well supported by 

historical instrumental weather data than those that focus on the northern temperate zone.  

Furthermore, to our knowledge no modeling studies of deglacial climates have as yet 

been constrained by a detailed array of paleohydrological records spanning most of the 

African continent. Our findings are therefore useful for evaluating model reconstructions 

of past climates in Africa and of the global effects of H1, and we summarize several 

GCM simulations here in order to illustrate the difficulty of reconciling current GCM 

output with paleoclimatic reconstructions.  For example, while Mulitza et al. (5) correctly 

simulated Sahel aridity in response to weakened MOC that was typical of the HS-1 

interval, the model shows wetting over much of central Africa that is inconsistent with 

the data available.  Kageyama et al. (2) correctly inferred Indian aridity but did not fully 

extend it to equatorial and southern Africa, while simulations by Thomas et al. (4), which 

identified wetting in the Angola-Kalahari region, did not completely capture the extreme 

aridity that occurred in much of the rest of the continent.  

 

Given the mismatches between recent GCM simulations and paleoclimate records of H1 

in the Afro-Asian region, we suggest several possible causal mechanisms here.  The 

occurrence of droughts throughout tropical Africa indicates that they most likely involved 

a reduction of convection and/or moisture content in the ITCZ, with or without a 

concurrent shift in its position.  Surface warming in Lake Tanganyika during the driest 

interval of a 60,000 year sediment record (18; Fig. 2D), for example, might indicate 

reduced evaporative cooling and upwelling linked to a weakening of atmospheric 

circulation over East Africa during H1; a severe reduction of summer monsoon wind 

activity was also registered in the Arabian Sea then (8).  It has been hypothesized 

elsewhere that the southern limb of the tropical Hadley circulation system weakened 

during the longer HS-1 interval (3), which would also be consistent with the paleoclimate 

records indicating drought in equatorial and southern Africa.   

 

Cooler sea surface temperatures (SST) in the SE Atlantic and Indian Oceans also 

represent plausible mechanisms for the inferred reductions of tropical rainfall because 

lower SSTs would tend to reduce the evaporative moisture content of the ITCZ.  Cooling 

along the West African coast likely contributed to summer monsoon failure there (5, 27), 

and low SSTs in the western Indian Ocean (28) may likewise have contributed to aridity 

over eastern Africa. Conditions elsewhere along the margins of the Indian Ocean basin 

during H1 probably made SST cooling particularly widespread there, as well.  Stronger 

upwelling in the Southern Ocean may have cooled the southern margins of the Indian 

Ocean (29) and deflected cold, eastward-flowing water masses equatorward.  

Additionally, at that time much of today's warm Pacific through-flow was blocked by 

landmasses in the Indonesian region due to a sea level low-stand, thereby reducing 

Pacific heat inputs into the area, and reduced SSTs in much of the northern Indian Ocean 
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(8, 21), might have resulted from cooling by strong, south-trending winter monsoon 

winds over landmasses that were concurrently chilled by conditions upwind in the 

Mediterranean and North Atlantic (3). 

 

More than half of all humanity is strongly influenced by Afro-Asian rainfall systems 

today, and anatomically modern humans evolved under their influence, yet the 

mechanisms behind precipitation variability in these regions remain relatively poorly 

understood and difficult to model.  Furthermore, the unusual intensity and exceptionally 

broad geographic distribution of the H1 Megadrought have not yet been widely 

recognized.  The records presented here show that it was one of the most intense and 

extensive tropical dry periods of the last 50,000 years or more (Figs. 1, 2), spanning 

roughly 60 latitudinal degrees, virtually all of southern Asia, and most of the African 

continent, and that it must have involved a systemic, as yet unexplained weakening of 

regional rainfall systems in addition to southward displacement of the ITCZ.  Whatever 

its exact cause, such a catastrophic drought would have had powerful effects on 

Paleolithic cultures.  For example, the desiccations of Lakes Tana and Victoria 

reorganized the distribution of wet and arid-environment resources in the region, Middle 

Eastern drying would have hindered overland migrations into or out of Africa, and aridity 

around this time period likely contributed to major reductions in human populations in 

southern Asia (30). 
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Figure 1: Site map of records showing hydrological conditions during the 17-16 ka 

interval (details listed in Table 3, supporting online material).  Red dots: reduced 

precipitation-evaporation.  Blue dots: increased precipitation-evaporation.  Vertically 

divided red/blue dots indicate signals of uncertain climatic significance.  Horizontally 

divided dots indicate a trend of progressively moister climates across HS-1.  Note that 

only the specific study sites and some of the major watersheds are indicated; the full 

geographic area affected by the H1 Megadrought is not completely colored in.  For 

example, records from marine sites 5 and 6 reflect climatic conditions in much of 

northwestern Africa.  Purple shading in the Kalahari region indicates wetter conditions of 

uncertain origin, timing, and/or geographic extent. 
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Figure 2.  Examples of terrestrial paleohydrological records in which the H1 signal was 

among the most intense of the last 50 kyr or more.  (A) Dongge Cave, China, speleothem 

δ
18

O (9), (B) Hulu Cave, China, speleothem δ
18

O, composite time series (10), (C) Sofular 

Cave, Turkey, speleothem δ
18

O (11), (D) Lake Tanganyika, East Africa, δD (18).   

Although these records do not mean that all intervening sites necessarily experienced 

uniquely intense drought during H1, they do establish that the pattern was widely 

distributed, spanning southern Asia and extending south of the equator in East Africa. 

Colored column represents the 19-13 ka time period illustrated in Figure 3. 
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Figure 3.  Paleoclimatic records of the 19-13 ka interval from Africa and Borneo, 

ordered from north to south (latitude on right for each site). (A) Lake Tana, Ethiopia, 

relative level, no units (after 6), (B) Lake Bosumtwi magnetic mineral concentration (13), 

(C) Borneo speleothem,  δ
18

O series (16),  (D) Lake Victoria relative lake level (this 

study), (E) Congo basin soil pH (15), (F) Lake Tanganyika % periphytic diatoms 

(inverted; this study), (G) Lake Malawi Aulacoseira nyassensis with lower % indicating 

less windy and/or drier conditions (after 20), (H) Stalagmite T7 from Cold Air Cave, 

δ
13

C series (31).  Brown bar: approximate H1 interval.  Dotted lines bracket approximate 

HS-1 interval. All time series are arranged with drying trends oriented downwards. 

 

 

 



 9 

References and notes 

 

1. L. C. Peterson, G. H. Haug, K. A. Hughen, U. Röhl, Science 290, 1947 (2000). 

 

2. M. Kageyama et al., Clim. Past 5, 551 (2009). 

 

3. G. H. Denton et al., Science 328, 1652 (2010). 

 

4. D. S. G. Thomas, R. Bailey, P. A. Shaw, J. A. Duncan, J. S. Singarayer, Quaternary 

Science Reviews 28, 526 (2009). 

 

5. S. Mulitza et al., Paleoceanography 23, PA4206 (2008). 

 

6. H. F. Lamb et al., Quaternary Science Reviews 26, 287 (2007). 

 

7. W. S. Broecker, D. Peteet, I. Hajdas, J. Lin, E. Clark, Quaternary Research 50, 12 

(1998). 

 

8. H. Rashid, B. P. Flower, R. Z. Poore, T. M. Quinn, Quaternary Science Reviews 26, 

2586 (2007). 

 

9. D. Yuan, et al., Science 304, 575 (2004).  

 

10. Y. J. Wang et al., Science 294, 2345  (2001).   

 

11. D. Fleitmann et al., Geophysical Research Letters 36, L19707 (2008).  

 

12. D. Verschuren et al., Nature 462, 637 (2009). 

 

13. J. A. Peck et al., Palaeogeography, Palaeoclimatology, Palaeoecology 215, 37 

(2004). 

 

14. S. Weldeab, D. W. Lea, R. R. Schneider, N. Andersen, Science 316, 1303 (2007). 

 

15. J. W. H. Weijers, E. Schefuß, S. Schouten, J. S. S. Damsté, Science 315, 1701 (2007). 

 

16.  J. W. Partin, K. M. Cobb, J. F. Adkins, B. Clark, D. P. Fernandez, Nature 449, 452 

(2007). 

 

17. Materials and methods are available as supporting material on Science Online. 

 

18. J. E. Tierney et al., Science 322, 252 (2008). 

 

19. E. Bard, F. Rostek, J.-L. Turon, S. Gendreau, Science 289, 1321 (2000). 



 10 

20. F. Gasse, P. Barker, T. C. Johnson, in The East African Great Lakes: Limnology, 

Palaeoclimatology and Biodiversity, E. O. Odada, D. O. Olago, Eds. (Kluwer Academic 

Publishers, Dordrecht, 2002),  pp. 393-414.  

 

21. L. Dupont, T. Caley, B. Malaize, J. Girardeau, Geophysical Research Abstracts 12,  

(2010). 

 

22. Y. Wang, T. Larsen, N. Andersen, T. Blanz, R. Schneider, Geophysical Research 

Abstracts 12, (2010). 

 

23. B. M. Chase, M. E. Meadows, Earth-Science Reviews 84, 103 (2007). 

 

24. B. M. Chase et al., Geology 39, 19 (2011). 

 

25. S. L. Burrough, D. S. G. Thomas, J. S. Singarayer, Earth-Science Reviews 96, 313 

(2009). 

 

26. J.-B. W. Stuut et al., Marine Geology 180, 221 (2002). 

 

27. L. M. Dupont, H. Behling, J. H. Kim, Clim. Past 4, 107 (2008). 

 

28. E. Bard, F. Rostek, C. Sonzogni, Nature 385, 707 (1997). 

 

29. R. F. Anderson et al., Science 323, 1443 (2009). 

 

30. S. Kumar et al., BMC Evolutionary Biology 8, 230 (2008). 

31.  K. Holmgren et al., Quaternary Science Reviews 22, 2311 (2003). 

 

32. Acknowledgements: This study was supported by National Science Foundation grant 

EAR-0822922. FSRP has been supported by the Norwegian Research Council through 

the DecCen and ARCTREC projects. 

 

 

Supporting Online Material 

www.sciencemag.org 

Materials and Methods 

Supporting online text 

Figs. S1, S2 

Tables 1, 2, 3 



Supporting Online Material for MS#1198322 

 

Catastrophic drought in the Afro-Asian monsoon region during Heinrich Event 1. 

 

J. Curt Stager, David B. Ryves, Brian M. Chase, and Francesco S.R. Pausata 

 

 

Materials and Methods 

 

Lake Victoria cores 

 

The timing of the first desiccation of Lake Victoria was based on two sediment records.  

The Damba Channel core was collected from 32 m depth in Ugandan coastal waters (S1), 

and the V95-2P core was collected from a mid-lake station at 66-68 m water depth (S2).  

Both cores displayed twinned desiccation surfaces of late Pleistocene age; water content 

dropped sharply across the uppermost discontinuity and less so in the older, lower break.  

In the Damba Channel core, mollusk shell lags were also present atop each desiccation 

surface.  Previous estimates of the timing of the two low stands have been limited by a 

scarcity of radiocarbon dates; a comprehensive review of the subject yielded a range of 

ca. 18-17 ka for the onset of the first low stand and ca. 16-14 ka for the second one (S3). 

 

Chronology 

 

Conversions of radiocarbon ages to calendar year ages were undertaken with CALIB 

version 6.0 (S4), using the INTCAL09 dataset (S5), which can yield ages that are slightly 

different from those that have been used on these cores in the past.  Originally, two 

standard radiocarbon dates were obtained on 30 cm long subsections of the Damba 

Channel core above the upper break and from the base of the core (S1).  No plant remains 

have been obtained in quantities sufficient for AMS dating in this core, but an ancient 

carbon correction factor of 330 years has been estimated for other sediment records in the 

Ugandan sector of the lake (S6) and was applied to all sediment and shell dates in the 

Damba Channel core (Table 1).  For this study, two additional AMS dates were obtained 

on sediments situated between the two desiccation horizons and another one for a sample 

taken beneath the lower discontinuity (Fig. S1, Table 1).  Each centimeter of desiccated 

sediment between the discontinuities was estimated to represent ca. 35 years, although 

the overlapping 2-sigma error bars on the two AMS dates did not permit precise 

determinations (range: 0-185 yr cm
-1

).  The 35 yr estimate was approximated from the 

mean age-depth relationship just above the younger shell lag (21 yr cm
-1

), assuming that 

desiccation had compressed the sediments. 

 

Two AMS dates were originally obtained for plant remains collected just above and 

below the upper desiccation surface in mid-lake core V95-2P (S2); no ancient carbon 

correction was applied to these dates (Fig. S1, Table 1).  Time increments for the inter-

discontinuity sediments were estimated to be slightly larger than in the Damba Channel 

core because the age-depth relationship in this core was 26 yr cm
-1

; we therefore selected 

40 yr cm
-1 

for the inter-discontinuity sediments in this case. 
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Diatom analyses 

 

Diatom analyses were conducted previously for sediments above the desiccation surfaces 

in these cores (S1, S7, S8). For this study, additional analyses were also performed on 

sediments between the two discontinuities; no diatoms were present beneath the 

lowermost discontinuity in either core, presumably because of subaerial exposure and 

weathering.  The aim of these analyses was to use the presence of diatom assemblages to 

identify the top of the older sedimentary break, and to reconstruct water conductivity time 

series that could be used for temporal alignment of the two core sequences.  Diatoms 

were less numerous in these sediments than in the unexposed sediments above the 

discontinuities, but their quantities and preservation were sufficient for analysis.   

 

Up to 300 valves were identified for each sample, spaced at 1 cm increments in each 

core.  Diatom taxa indicative of shallow and/or evaporatively concentrated conditions 

were more common in these deposits than in the sediments above the upper discontinuity, 

indicating that Lake Victoria lay below its outlet for extended periods.  Such taxa in both 

cores included Cyclotella meneghiniana, C. cf. ocellata, Thalassiosira cf. faurii, small 

Fragilaria spp. sensu lato, and various small Pennales.  In total, 43 samples were 

analyzed from the Damba Channel sequence, and 18 from the V95-2P sequence. 

 

Analog matching of fossil samples was performed within the combined African salinity 

dataset (n = 370 samples) from the European Diatom Database (S9; EDDI; 

http://craticula.ncl.ac.uk/Eddi/jsp/), which includes modern samples from northern and 

eastern Africa (S10). As the closest analogs in all cases were from East African sites (n = 

179), the East African subset of the database was used for our conductivity 

reconstructions. Inferred conductivity (μS cm
-1

) was derived from fossil assemblages (% 

data) using a weighted-average transfer function with inverse de-shrinking. The 

conductivity model performs well when internally validated by leave-one-out jack-

knifing (r
2

jack = 0.78, RMSEP=0.41 log units. 

  

Following earlier work which showed that including benthic taxa in fossil data tends to 

produce over-estimates of surface water lake conductivity (S6, S11), we based our 

conductivity analyses only on euplanktonic taxa. For most samples, there is very good 

coverage between fossil and modern training sets (average of 70.3% of fossil data 

covered for the Damba Channel core, with only 3 samples <50%, and average of 86.4% 

for V95-2P, with 2 samples <50%). Goodness-of-fit was assessed by considering the 

proportion of fossil data used in each sample for reconstructions, and the minimum 

dissimilarity coefficient (MinDC) between each fossil sample and the training set. Other 

studies have suggested that good analogs exist in a training set where minimum 

dissimilarity coefficients are 100–150 or less (S9, S12). No samples exceeded this 

threshold for MinDC of >150. For Damba Channel samples, average MinDC is 91 (range 

62-132), and for V95-P2, average MinDC is 104 (range 73-148). Quantitative 

reconstructions were carried out using the ERNIE (v.1.2) software package within EDDI 

(S9). 

http://craticula.ncl.ac.uk/Eddi/jsp/
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Not all of the euplanktonic taxa appeared in the EDDI database, so some substitutions 

were made on the basis of published data (e.g. S10, S13, S14) and personal experience 

with African lacustrine diatom ecology. The name Nitzschia cf. gracilis EDDI was 

assigned to our N. gracilis Hantz., N. acicularis (Kütz.) W. Smith and to the broken tips 

of long Nitzschia valves. Our Nitzschia vanoyei Choln. was assigned to N. lancettula 

O.Müll., and Nitzschia palea (Kütz.) W. Smith and similar forms to N. palea agg. EDDI. 

All forms of Aulacoseira granulata (vars. granulata, angustissima,  angustissima fo. 

curvata, jonensis) were combined into A. granulata (agg.) EDDI, and all forms of A. 

agassizii (Osten.) Simonsen assigned to A. agassizii + var. malayensis EDDI. 

 

The age of first desiccation 

 

The conductivity profiles obtained from the inter-discontinuity interval in both cores 

displayed a distinctive peak that occurred just above the lower break which, along with 

the first appearance of diatoms in the record, permitted the two time series to be 

temporally aligned (inverted scales in Fig. S2B,C).  This greatly narrowed the range of 

possible ages for the resumption of lacustrine sedimentation at each site (shown as red 

bars in Fig. S2B,C).  We used the overlapped portions of these two time spans to 

represent the most likely time period during which Lake Victoria rose again after its 

original low stand (dotted red lines in Fig. S2B,C; blue box in Fig. S2A). 

 

A third AMS date on sediment from beneath the lower desiccation surface in the Damba 

Channel core yielded an age range (17.2-16.8 ka) that was only a few centuries older than 

that of the AMS date from just above the break (Table 1, Figs. S1B and S2B).  This 

further helped to bracket the onset of the dry period, showing that it was a relatively brief 

event lasting no more than several centuries, rather than an extended low stand associated 

with other long-term deglacial or glacial events. 

 

These new data represent strong evidence that the first desiccation of Lake Victoria 

occurred some time during the 17-16 ka interval, during which Lake Tana also dried out 

and other tropical African lakes experienced low stands (see main text).  The drought that 

caused the second desiccation of Lake Victoria ca. 15-14 ka was not as widespread, but 

similar dual low stands did occur elsewhere in equatorial East Africa (S15, S16). 

 

Lake Tanganyika core 

 

Core T97-52V was collected from ca. 40 m depth atop the Kavala Ridge in the east-

central portion of Lake Tanganyika and has been described elsewhere (S17).  No ancient 

carbon corrections are considered necessary for late Pleistocene dates in this lake (S18).  

Conversion of the 11 radiocarbon dates to calendar years for this study was performed 

with CALIB version 6.0.  Diatom remains in sediments that were deposited during the 

10-20 ka time interval were analyzed (at least 300 valves identified per sample) and 

segregated into planktonic and littoral taxa.  High percentages of littoral taxa in offshore 

sediments in Lake Tanganyika have previously been used to indicate low water stands 

(S19) during which exposed near-shore deposits are mobilized by wave action and 
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redeposited in the deep waters offshore.  The maximum percentages of near-shore taxa, 

including Rhopalodia spp., Staurosirella pinnata, Navicula seminuloides, and 

miscellaneous Pennales, occurred in the 17-16 ka interval (Fig. 3F). 

 

Supporting text 

 

Interpretation of regional paleoclimate records 

 

The coherent signal of intense H1 aridity in such a large number of widely distributed 

Afro-Asian records, along with the diversity of paleoclimatic indicators used (including 

δ
18

O, δ
13

C, δD, pollen, diatoms, and varve thicknesses) lends strong support to the 

conclusions made in this paper.  However, not all such records are of equal length, 

completeness, or clarity, and not all of them come with universally accepted 

interpretations.  We discuss here some of these points further, by region. 

 

 

African sites 

 

In addition to the Lake Tanganyika record of East African drought during H1 (Figs. 2D 

and 3F; S20), a marine record from the Senegal coast (S21) also indicates that the driest 

conditions of the last 60 kyr occurred in much of the western Sahara-Sahel region, as 

well.    

 

Climatic conditions at several African sites have been designated "uncertain" on Figure 1 

because of unresolved aspects of the content and/or published interpretations of 

paleoclimate records from those locales.  For example, beach deposit records from Lake 

Chilwa, Malawi (S22), and the sediment record of Lake Masoko, Tanzania (S23-25), 

have yielded interpretations that are at odds with those from other sites in the region, and 

discontinuous records and/or alternative explanations for some datasets around the H1 

interval might indicate low stands rather than wet conditions.  In addition, high δ
13

C 

values (indicating an increased C4 grass component in the vegetation) in speleothems 

from Cold Air Cave, South Africa (Fig. 3H), have previously been taken to represent 

wetter conditions (S26).  This interpretation, however, has subsequently been shown to be 

inconsistent with other paleoclimatic proxies from the region (S27).  A more 

parsimonious conclusion, and one that is more consistent with the majority of published 

interpretations of δ
13

C time series in the tropics, would be that rising δ
13

C reflects an 

expansion of dry grassland relative to woodlands in response to increased aridity (S28, 

S29).  

 

Asian sites 

 

Although most terrestrial paleohydrological records worldwide cover less than 50 kyr, 

several sites in southern Asia do register unusually intense drought during H1.  The 

associated δ
18

O signals in speleothems from monsoonal China, for example, yield the 

most extreme values of the last >50 kyr (Fig. 2A,B; S30, S31), with the Sanbao-Hulu 

Cave composite time series (S32) registering the most extreme δ
18

O excursion of the 130 
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kyr record during the H1 interval.  In far western Asia, Lake Van dried out completely 

when African lakes Victoria and Tana did (S33), and a 50 kyr long speleothem record 

from NE Turkey registered the most extreme aridity in the entire time series (Fig. 3C: 

S34).  Long speleothem records from Soreq Cave (S35) and Jerusalem West (S36) also 

indicate unusually severe drought during H1 although that drying signal was, in both 

cases, matched by another episode ca. 35 ka; those two drought periods, however, were 

apparently the most intense in at least 130 and 170 kyr, respectively.  The western sites 

were strongly influenced by conditions upwind in the Mediterranean Basin; those to the 

east would primarily represent changes in the Asian monsoon system.   

 

As in the case of equatorial Africa, aridity in the vicinity of equatorial Borneo (Fig. 3C; 

S37) during H1 argues against southward drift of the ITCZ alone as an explanation for 

drought there.  Simultaneous wetting at Lynch's Crater, NE Australia (S38) does not 

necessarily indicate changes within the Asian monsoon system because that region is also 

strongly influenced by El Niño-Southern Oscillation (ENSO) variability and SSTs in the 

western tropical Pacific. 

 

South American sites 

 

In contrast with the Afro-Asian region, most evidence from South America broadly 

supports the hypothesis of a southward shift of the ITCZ during H1. Aridity during H1 is 

registered at many sites in the northern neotropics, including the Cariaco Basin (S39), 

Panama (S40) and Guatemala (S41), although wetter conditions might have begun to 

develop then along the western coast of Colombia (S42).  This possible exception, as well 

as others noted below, indicate that strict adherence to a conceptual model focused on a 

southward drift of the ITCZ may risk overlooking potentially significant aspects of 

variability within the regional climate system. 

  

The geography of tropical South America complicates paleoclimatic interpretations 

because hydrological conditions in various subregions are not only affected by the ITCZ 

but also by ENSO, the austral westerlies, orography, and local glacier dynamics.  This 

complexity is evident in the wetter conditions that developed in much of the southern 

tropical Andes (S42, S43) and in western Peru (S45) during H1, while some evidence 

from the adjacent southwestern Amazon Basin indicates general aridity (S46).  What may 

be clearer evidence for southward drift or equatorward compression of the ITCZ during 

H1 comes from wetting signals in near-equatorial NE Brazil and in SE Brazil (S47, S48), 

which are linked to a pronounced increase of western tropical Atlantic SSTs in response 

to reduced MOC (S49).  It is important to note concerning our conclusions regarding the 

causes of H1 megadroughts in the Old World that this period of warmer western Atlantic 

SSTs occurred while SSTs surrounding Africa were unusually cool.   

 

Dry conditions also prevailed in parts of southern Brazil (S50, S51) while precipitation 

increased at temperate latitudes farther south beyond the reach of the ITCZ (S52).  It 

therefore appears that the austral westerlies may have moved equatorward over southern 

South America during H1, possibly restricting migration of the ITCZ there to regions 

situated relatively close to the equator. 
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Supporting figures 

 

 

 

 
 

 

Figure S1. Diatom records used to reconstruct relative levels of Lake Victoria during 

HS-1 and H1. (A) Mid-lake core V95-2P (S2), (B) Damba Channel core (S1).  

Conductivities were inferred from planktonic diatom assemblages as described in 

Methods.  Dashed lines represent two desiccation episodes; line 1 = ca. 17-16 ka, line 2 = 

ca. 14 ka. Asterisks indicate positions of radiocarbon dates. 
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Figure S2. Qualitative reconstruction of Victoria lake level curve between 20 and 13 ka.  

(A) Composite chart of relative lake levels.  Hatched boxes indicate likely ranges of time 

within which the lake dried out.  (B and C) Inferred conductivity versus time for the 

Damba Channel and V95-2P cores.  Boxes indicate 2-sigma ranges of radiocarbon ages; 

arrows and asterisks indicate samples chosen for the age models.  Grey bars: new AMS 

dates on bulk sediment obtained for this study. Red bars: most likely dates for recovery 

from desiccation.  Dotted red lines: ages used to constrain the duration of the low stand.  

Dashed blue line: indicates presence of lake inferred from diatomaceous sediments in 

offshore core IB3 (S3). 
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Supporting tables 

 

Table 1. Radiocarbon dates from Lake Victoria cores. The sediment and shell dates have 

330 years subtracted to compensate for ancient carbon effects (S5). Calendar year 

conversions were calculated with CALIB 6.0 (S4). Asterisks indicate AMS dates 

obtained for this study. 

 

Sample depth 

(m) 

Material 
14

C age 

 

Cal yr range 

(min-max, 2-σ) 
Sample # 

DAMBA  

CORE 

    

5.39 sediment 

(bulk) 

7580 ±80 8201-8542 Beta 5455 

8.03 sediment 

(bulk) 

11,380 ±120 12,959-13,480 Beta 5454 

8.34 snail shell 11,970 ±130 13,471-14,115 AA-33751 

8.34 snail shell 12,585 ±95 14,216-15,178 AA-34698 

8.56-8.61* sediment 12,820 ±70 14,916-15,871 Beta 253782 

8.71* sediment 13,290 ±70 15,588-16,771 Beta 253783 

9.01* sediment 13,860 ±70 16,763-17,156 Beta 253784 

9.75 sediment 

(bulk) 

16,980 ±300 19,446-21,073 Beta 2153 

     

V95-2P 

CORE 

    

4.60 pollen & 

algae 

7850 ±50 8522-8973 CAMS 22970 

6.81 charcoal 12,400 ±70 14,086-14,973 CAMS 22962 

7.02 charcoal 13,240 ±80 15,447-16,728  
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Table 2.   Diatom data from Lake Victoria cores V95-2P and Damba Channel, and 

Tanganyika core T97-52V. 

     

Depth (m) Cal yr BP Pennales 

(%) 

Brackish 

taxa (%) 

Conductivity 

(μS cm
-1

) 

V95-2     

6.20 12900 4 2 341 

6.30 13100 4 6 393 

6.40 13300 6 5 382 

6.50 13500 2 6 333 

6.60 13700 3 5 305 

6.70 13920 4 5 309 

6.80 14120 66 18 263 

6.90 15800 35 14 453 

7.00 16200 64 12 641 

7.10 16360 16 24 558 

     

DAMBA     

7.78 12975 23 0 343 

7.81 13023 15 1 321 

7.83 13070 23 0 320 

7.86 13118 27 0 332 

7.88 13165 24 1 311 

7.91 13213 17 0 373 

7.93 13260 16 0 349 

7.96 13308 30 0 416 

7.98 13355 40 1 357 

8.01 13403 43 0 405 

8.03 13450 48 0 386 

8.06 13502 50 1 391 

8.08 13555 50 0 447 

8.11 13607 67 0 403 

8.13 13660 71 1 365 

8.16 13712 67 1 394 

8.18 13765 43 2 437 

8.21 13817 36 2 426 

8.23 13869 28 4 447 

8.26 13922 22 1 352 

8.28 13974 22 0 301 

8.31 14027 22 0 316 

8.33 14079 17 0 243 

8.34 14100 13 5 402 

8.36 14475 5 5 487 

8.41 14650 10 7 434 

8.51 15000 12 5 424 

8.61 15350 4 5 521 
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8.76 15875 12 11 548 

8.81 16050 26 9 642 

8.91 16400 13 3 467 

     

     

T97-52V     

1.50 12855 29   

1.60 13557 34   

1.70 14259 21   

1.80 14961 3   

1.90 15663 49   

2.01 16453 72   

2.11 17462 59   

2.21 18472 36   

2.31 19481 29   

2.41 20491 8   
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Table 3.   Paleoclimate records documenting major hydrological disruptions during the 

17-16 ka interval (plotted as colored dots in Figure 1). 

       

# Site name Latitude Longitude Description Change Source 

       

1 Portugal 

(SU81-18) 

37°46'N 10°11'W marine 

sediment 

drier  S53 

2 Sofular Cave, 

Turkey 

41°25'N 31°56'E speleothem drier S34 

3 Soreq Cave,  

Israel 

31°N 34°E speleothem drier S35 

4 Lake Van, 

Turkey 

38°39'N 42°54'E lake 

sediment 

desiccated S33 

5 Western 

Sahara 

(MD03-2705) 

18° 05'N 21°09'W marine 

sediment 

drier S54 

6 Senegal coast 

(GeoB950805) 

15°29'N 17°56'W marine 

sediment 

drier 

inland  

S21 

7 Red Sea 20°N 39°E marine 

sediment 

drier S55 

8 Lake Tana, 

Ethiopia 

12°N 37°15'E lake 

sediment 

desiccated S56 

9 Socotra Island, 

Yemen 

12°'N 53°'E speleothem drier S57 

10 Lake 

Bosumtwi 

6°30'N 1°25'W lake 

sediment 

low stand S58 

11 Lake Barombi 

Mbo, 

Cameroon 

4°40'N 9°24'E lake 

sediment 

drier S59 

12 Gulf of 

Guinea 

(MD03-2707) 

Niger-Sanaga 

watersheds 

2°20'N 9°23'E marine 

sediment 

drier S60 

13 Lake Albert, ca. 1°N ca. 30°E lake 

sediment 

desiccated S15 

14 Sacred Lake, 

Kenya 

0°03'N 37°32'E lake 

sediment 

drier S16 

15 Lake Kivu, 

Ruanda,Congo 

2°S 29°E lake 

sediment 

low stand S61 

16 Burundi 

Highlands 

ca. 2-

4°S 

ca. 30°E lake 

sediment 

drier S62 

17 Lake Victoria, 

Kenya, 

Uganda, 

Tanzania 

ca. 0-

2°S 

ca. 32-

34°E 

lake 

sediment 

desiccated S1-3 
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18 Lake Challa, 

Tanzania 

3°19'S 37°42'E lake 

sediment 

extreme 

lowstand 

S63 

19 Congo River 

Mouth           

(GeoB 6518) 

5°35'N 

 

11°13'E 

 

marine 

sediment 

drier S64,S65 

20 Lake 

Tanganyika 

ca. 3-

9°S 

ca. 29-

31°E 

lake 

sediment 

low stand S19, S20 

21 Lake Cheshi, 

Zambia 

9°05'S 29°45'E lake 

sediment 

low stand S66 

22 Lake Masoko, 

Tanzania 

9°20'S 33°45'E lake 

sediment 

uncertain S23-25 

23 Lake Malawi, 

Malawi 

ca. 10-

14°S 

ca. 33-

35°E 

lake 

sediment 

drier S67 

24 Angola, (1078 

Hole C) 

13°4'S 11°92'E marine 

sediment 

uncertain S68 

25 Lake Chilwa, 

Malawi 

15°15'S 35°41'E beach 

deposits 

uncertain S22 

26 Zambezi 

watershed, 

Mozambique 

Channel 

(core 16160-3) 

18°14'S 37°52'E marine 

sediment 

drier S69 

27 Namibia 

(MD962094) 

9°27'S 20°E marine 

sediment 

wetter S70 

28 Makgadikgadi, 

Botswana 

20°42'S 25°32'E beach 

deposits 

uncertain S71 

29 Tswaing 

Crater, South 

Africa 

25°24'S 26°06'E lake 

sediment 

uncertain S72 

30 Wonderkrater, 

South Africa 

28°57'S 24°38'E peat deposit uncertain S73 

31 Cold Air 

Cave, South 

Africa 

24°1'S 29°11'E speleothem drier S26 

32 Limpopo 

watershed 

(MD96-2048), 

South Africa 

26°10'S 34°01'E marine 

sediment 

drier S74 

33 De Rif, 

Namibia 

19°22'S 32°45'E hyrax 

midden 

wetter S75 

34 Boomplaas 

Cave, South 

Africa 

ca. 34°S ca. 23°E cave 

sediment 

wetter S76 

35 Lake 

Tritrivakely, 

Madagascar 

19°47'S 46°55'E lake 

sediment 

drier S28 
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36 Arabian Sea 

Oxygen 

Minimum 

Zone 

(136KL) 

23°N 66°E marine 

sediment 

drier S77, S78 

37 Indus River 

Mouth 

23°N 

core 

67°E core marine 

sediment 

drier S79 

38 Western 

Ghats, India 

(SK-128A-30) 

ca. 15°N 

(core 

15N) 

ca. 75°E 

(core 

71°N 

41'E) 

marine 

sediment 

drier S80 

39 Lake Naleng, 

Mongolia 

31°10'N 99°75'E lake 

sediment 

drier S81 

40 Lanzhou, 

China 

36°N 104°E peat deposit drier S82 

41 Midiwan, 

China 

37°39'N 108°37'E soil profiles drier S83 

42 Sanbao Cave, 

China 

31°40'N 110°26'E speleothem drier S32 

43 Hulu Cave, 

China 

32°30'N 119°10'E speleothem drier S30 

44 Dongge Cave, 

China 

25°17'N 108°5'E speleothem drier S31 

45 Andaman Sea 

(RC12-344) 

(Thailand dry) 

12.5°N 96°E marine 

sediment 

drier  S78 

46 Borneo 4°N 114°E speleothem drier S37 

47 Sunda Islands, 

Indonesia 

(core G6-4) 

10°47'S 118°E pollen in 

marine 

sediment 

drier  S38 

48 Lynch's 

Crater, 

Australia 

17°37'S 145°70'E lake 

sediment 

wetter S84; S38 
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