la5b02227_si_001.pdf (311.28 kB)

Breast Cancer/Stromal Cells Coculture on Polyelectrolyte Films Emulates Tumor Stages and miRNA Profiles of Clinical Samples

Download (311.28 kB)
journal contribution
posted on 2015-09-15, 00:00 authored by Amita Daverey, Karleen M. Brown, Srivatsan Kidambi
In this study, we demonstrate a method for controlling breast cancer cells adhesion on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the role of tumor and stromal cell interaction on cancer biology. Numerous studies have explored engineering coculture of tumor and stromal cells predominantly using transwell coculture of stromal cells cultured onto coverslips that were subsequently added to tumor cell cultures. However, these systems imposed an artificial boundary that precluded cell–cell interactions. To our knowledge, this is the first demonstration of patterned coculture of tumor cells and stromal cells that captures the temporal changes in the miRNA signature as the breast tumor develops through various stages. In our study we used synthetic polymers, namely poly­(diallyldimethylammonium chloride) (PDAC) and sulfonated poly­(styrene) (SPS), as the polycation and polyanion, respectively, to build PEMs. Breast cancer cells attached and spread preferentially on SPS surfaces while stromal cells attached to both SPS and PDAC surfaces. SPS patterns were formed on PEM surfaces, by either capillary force lithography (CFL) of SPS onto PDAC surfaces or vice versa, to obtain patterns of breast cancer cells and patterned cocultures of breast cancer and stromal cells. In this study, we utilized cancer cells derived from two different tumor stages and two different stromal cells to effectively model a heterogeneous tumor microenvironment and emulate various tumor stages. The coculture model mimics the proliferative index (Ki67 expression) and tumor aggressiveness (HER-2 expression) akin to those observed in clinical tumor samples. We also demonstrated that our patterned coculture model captures the temporal changes in the miRNA-21 and miRNA-34 signature as the breast tumor develops through various stages. The engineered coculture platform lays groundwork toward precision medicine wherein patient-derived tumor cells can be incorporated within our in vitro models to identify potential pathways and drug treatment regimens for individual patients.