Supplemental material

Bioactive compounds from Curcuma aeruginosa and the effect of comosone II on the

migration and invasion of breast cancer cells

Germacrone (1):

Obtained as colourless prism. IR *ν*_{max} (KBr) cm⁻¹: 1672.94; ¹H-NMR (CDCl₃, 500 MHz), δ 1.43 (3H, s, H₃-14), 1.62 (3H, s, H₃-15), 1.72 (3H, s, H₃-12), 1.77 (3H, s, H₃-13), 2.06-2.18 (3H, m, H₁-2, H₂-3), 2.32-2.40 (1H, m, H₁-2), 2.85 (1H, dd, *J* = 11.0, H₁-6), 2.93-2.98 (2H, m, H₁-9, H₁-6), 3.41 (1H, d, *J* = 10.5 Hz, H₁-9), 4.70 (1H, d, *J* = 11.5 Hz, H₁-5), 4.98 (1H, d, *J* = 11.5 Hz, H₁-1); ¹³C-NMR (CDCl₃, 500 MHz),), δ 208.0 (C-8), 137.3 (C-11), 135.0 (C-10), 132.7 (C-1), 129.5 (C-7), 126.7 (C-4), 125.4 (C-5), 55.9 (C-9), 38.1 (C-3), 29.3 (C-6), 24.1 (C-2), 22.4 (C-13), 19.9 (C-12), 16.7 (C-15), 15.6 (C-14). EI-MS, m/z (%): 218.2 [M]⁺ (10), 175.1 (20), 135.1 (80), 107.1 (100), 67.1 (46).

Figure 1S. Chemical structure of germacrone (1)

Abundance

Figure 2S. EI-MS chromatogram of germacrone (1)

Figure 3S. FT-IR spectrum of germacrone (1)

Figure 4S. ¹H-NMR spectrum (500 MHz, CDCl₃) of germacrone (1).

Figure 5S. ¹³C-NMR spectrum (125 MHz, CDCl₃) of germacrone (1).

100

50

ppm

150

Furanodienone (2):

Obtained as colourless prism. IR ν_{max} (KBr) cm⁻¹: 1644.66, 1610.08; ¹H-NMR (CDCl₃, 500 MHz), δ 1.29 (3H, s, H₃-15), 1.85-2.47 (4H, m, , H₂-2, H₂-3), 1.98 (3H, s, H₃-14), 2.11 (3H, s, H₃-13), 3.68 (2H, br. d, *J* = 3.5 Hz H₂-9), 5.16 (1H, dd, *J*=4.5, 11.5 Hz, H₁-1), 5.79 (1H, s, H₁-5), 7.06 (1H, s, H₁-12); ¹³C-NMR (CDCl₃, 500 MHz),), δ 189.8 (C-6), 156.5 (C-8), 145.8 (C-5), 138.1 (C-12), 135.4 (C-10), 132.5 (C-4), 130.5 (C-1), 123.7 (C-11), 122.2 (C-7), 41.7 (C-3), 40.7 (C-9), 26.5 (C-2), 19.0 (C-14), 15.8 (C-15), 9.6 (C-13). EI-MS, m/z (%): 230.1 [M]⁺ (50), 215.1 (8), 122.1 (100), 94.1 (36), 65.1 (13).

Figure 6S. Chemical structure of furanodienone (2)

Figure 8S. FT-IR spectrum of furanodienone (2)

Figure 9S. ¹H-NMR spectrum (500 MHz, CDCl₃) of furanodienone (2)

Curzerenone (3):

Obtained as colourless crystals. ¹H-NMR (CDCl₃, 500 MHz), δ 1.18 (3H, s, H₃-15), 1.83 (3H, s, H₃-14), 2.17 (3H, s, H₃-13), 2.78 (1H, d, *J* = 17.5 Hz, H₁-9), 2.90 (1H, d, *J* = 17.5 Hz, H₁-9), 3.01 (1H, s, H₁-5), 4.75 (2H, s, H₁-3), 4.94-5.0 (3H, m, H₂-2, H₁-3), 5.80 (1H, dd, *J* = 11.0, 17.5 Hz, H₁-1), 7.08 (1H, s, H₁-12); ¹³C-NMR (CDCl₃, 500 MHz),), δ 194.9 (C-6), 165.5 (C-8), 145.5 (C-1), 141.1 (C-4), 139.5 (C-12), 120.1 (C-7), 119.2 (C-11), 115.6 (C-3), 113.0 (C-2), 64.1 (C-5), 42.8 (C-10), 33.6 (C-9), 24.9 (C-14), 24.8 (C-15), 9.0 (C-13). EI-MS, m/z (%): 230.1 [M]⁺ (36), 122.0 (100), 94.0 (32), 65.1 (13).

Figure 11S. Chemical structure of curzerenone (3)

Figure 12S. EI-MS chromatogram of curzerenone (3)

Abundance

Figure 13S. ¹H-NMR spectrum (500 MHz, CDCl₃) of curzerenone (**3**)

Curcumenol (4)

Obtained as colourless solid. IR *v*_{max} (KBr) cm⁻¹: 3369.03; ¹H-NMR (CDCl₃, 500 MHz), δ 1.02 (3H, d, *J*=6.0 Hz, H₃-14), 1.59 (3H, s, H₃-12), 1.66 (3H, s, H₃-13), 1.82 (3H, s, H₃-15), 1.88-1.94 (6H, m, H₂-2, H₂-3, H₁-4), 2.07 (1H, d, *J*=14.7Hz, H-1), 2.11-2.17 (1H, m, H₁-6), 2.64 (1H, bd, s, H₁-6), 5.76 (1H, bd, s, H₁-9); ¹³C-NMR (CDCl₃, 500 MHz),), δ 139.2 (C-7), 137.3 (C-10), 125.6 (C-9), 122.3 (C-11), 101.5(C-8), 85.7 (C-5), 51.2 (C-1), 40.4 (C-4), 37.2 (C-6), 31.2 (C-3), 27.6 (C-2), 22.3 (C-12), 21.0 (C-15), 18.9 (C-13), 11.9 (C-14). EI-MS, m/z (%): 234.2 [M]⁺ (41), 189.1 (67), 147.1 (56), 133.1 (67), 105.1 (100).

Figure 15S. Chemical structure of curcumenol (4)

Figure 16S. EI-MS chromatogram of curcumenol (4)

Figure 17S. FT-IR spectrum of curcumenol (4)

Figure 18S. ¹H-NMR spectrum (500 MHz, CDCl₃) of curcumenol (4)

Zederone (5)

Obtained as colourless crystals. IR *ν*_{max} (KBr) cm⁻¹: 1661.94; ¹H-NMR (CDCl₃, 500 MHz), δ 1.24-1.32 (1H, m, H₁-3), 1.33 (3H, s, H₃-14), 1.60 (3H, s, H₃-15), 2.11 (3H, s, H₃-13), 2.21-2.31 (1H, m, H₁-2, H₁-3), 2.50-2.53 (1H, m, H₁-2), 3.66-3.78 (2H, m, H₂-9), 3.81 (1H, s, H₁-5), 5.46-5.49 (1H, m, H₁-1); 7.08 (1H, s, H₁-12), ¹³C-NMR (CDCl₃, 500 MHz),), δ 192.2 (C-6), 157.1 (C-8), 138.1 (C-12), 131.2 (C-1), 131.1 (C-10), 123.3 (C-7), 122.2 (C-11), 66.6 (C-5), 64.0 (C-4), 41.9 (C-9), 38.0 (C-3), 24.7 (C-2), 15.7 (C-15), 15.2 (C-14), 10.3 (C-13). EI-MS, m/z (%): 246.1 [M]⁺ (36), 175.1 (100), 122.0 (71), 91.0 (36), 65.1 (21).

Figure 20S. Chemical structure of zederone (5)

2

13

Figure 21S. EI-MS chromatogram of zederone (5)

Figure 22S. FT-IR spectrum of zederone (5)

S24

Figure 24S. ¹³C-NMR spectrum (125 MHz, CDCl₃) of zederone (5)

Comosone II (6)

Obtained as colorless solid; IR *v*_{max} (KBr) cm⁻¹: 1657.62; ¹H-NMR (CDCl₃, 500 MHz): δ 1.57 (3H, s, H₃-15), 1.75-1.82 (3H, m, H₁-2, H₂-3), 1.86 (3H, s, H₃-13), 1.92 (3H, s, H₃-14), 2.05 (3H, s, H₃-12), 2.18-2.21 (1H, m, H₁-2), 2.73 (1H, br. s, H₁-1), 3.75 (1H, br. s, H₁-6), 4.91 (1H, br. s, H₁-5), 5.89 (1H, s, H₁-9); ¹³C NMR (CDCl₃, 125 MHz) δ: 191.8 (C-8), 158.4 (C-10), 141.7 (C-11), 135.0 (C-4), 133.5 (C-7), 130.8 (C-9), 122.0 (C-5), 39.8 (C-6), 38.3 (C-1), 26.0 (C-3), 25.3 (C-2), 23.4 (C-15), 23.0 (C-12), 21.8 (C-13), 20.8 (C-14); EI-MS, m/z (%): 216.1 [M]⁺ (100), 201.1 (61), 159.1 (90), 105.1 (56), 77.1 (36). EI-MS, m/z (%): 216.1 [M]⁺ (100), 201.1 (62), 150.1 (90), 105.1 (56), 77.1 (36).

Figure 25S. Chemical structure of comosone II (6)

Figure 26S. EI-MS chromatogram of comosone II (6).

Figure 28S. ¹H-NMR spectrum (500 MHz, CDCl₃) of comosone II (6).

(1*E*,4*E*,8*R*)-8-hydroxygermacra-1(10),4,7(11)-trieno-12,8-lactone (7)

Obtained as colorless solid; ¹H-NMR (CDCl₃, 500 MHz): δ 1.62 (6H, s, H₃-14 & H₃-15), 1.86 (3H, s, H₃-13), 1.89-1.94 (1H, m, H₁-6), 2.08-2.11 (1H, m, H₁-2), 2.23-2.29 (2H, m, H₁-2 & H₁-6), 2.41 (1H, d, *J* = 14.0 Hz, H₁-9), 3.03-3.09 (2H, m, H₁-3 & H₁-9), 3.19 (1H, d, *J* = 14.0 Hz, H₁-3), 4.27 (1H, d, *J* = 10.5 Hz, H₁-5), 4.80 (1H, d, J = 11.5 Hz, H₁-1). ¹³C NMR (CDCl₃, 125 MHz) δ: 171.2 (C-12), 161.8 (C-7), 134.3 (C-4), 132.8 (C-10), 132.0 (C-1), 127.7 (C-11), 123.4 (C-5), 109.2 (C-8), 51.6 (C-9), 38.4 (C-6), 25.7 (C-2), 25.3 (C-3), 17.4 (C-15), 16.9 (C-14), 8.8 (C-13).

Figure 30S. Chemical structure of (1*E*,4*E*,8*R*)-8-hydroxygermacra-1(10),4,7(11)-trieno-12,8-lactone (7)

 $\begin{array}{c} & OH \\ & OH \\ \hline 2 & 10 & 9 & 7 \\ \hline 3 & 5 & 6 & 15 \\ \hline 3 & 4 & 6 & 11 \\ \hline 14 & 13 & 13 \end{array}$

Figure 31S. ¹H-NMR spectrum (500 MHz, CDCl₃) of (1E,4E,8R)-8-hydroxygermacra-1(10),4,7(11)-trieno-12,8-lactone (**7**)

Figure 32S. ¹³C-NMR spectrum (500 MHz, CDCl₃) of (1E,4E,8R)-8-hydroxygermacra-1(10),4,7(11)-trieno-12,8-lactone (7)

13-hydroxygermacrone (8)

Obtained as colorless solid; ¹H-NMR (CDCl₃, 500 MHz): δ 1.42 (3H, s, H₃-14), 1.62 (3H, s, H₃-15), 1.81 (3H, s, H₃-12), 2.04-2.18 (4H, m, H₂-2, H₂-3), 2.91-2.98 (3H, m, H₂-6, H₁-9), 3.43 (1H, d, *J* = 10.5 Hz, H₁-9), 4.18 (1H, d, *J* = 12.0 Hz, H₁-13), 4.29 (1H, d, *J* = 12.5 Hz, H₁-13), 4.66 (1H, d, *J* = 14.0 Hz, H₁-5), 4.98 (1H, d, *J* = 10.5 Hz, H₁-1); ¹³C NMR (CDCl₃, 125 MHz) δ: 207.1 (C-8), 139.8 (C-11), 135.7 (C-4), 133.1 (C-1), 131.3 (C-7), 126.4 (C-10), 125.0 (C-5), 62.8 (C-13), 55.5 (C-9), 38.1(C-3), 28.6 (C-6), 24.1 (C-2), 17.8 (C-12), 16.6 (C-15), 15.6 (C-14).

Figure 33S. Chemical structure of 13-hydroxygermacrone (8)

Figure 34S. ¹H-NMR spectrum (500 MHz, CDCl₃) of 13-hydroxygermacrone (8)

Figure 35S. ¹³C-NMR spectrum (125 MHz, CDCl₃) of 13-hydroxygermacrone (8)

Furanodienone 1,10-epoxide (9):

Obtained as colorless solid; IR ν_{max} (KBr) cm⁻¹: 1657.00, 1622.42; ¹H-NMR (CDCl₃, 500 MHz): δ 1.02 (3H, s, H₃-15), 1.30-1.42 (1H, m, H_{\alpha}-2), 2.01 (3H, s, H₃-14), 2.18 (3H, s, H₃-13), 2.19-2.23 (2H, m, H_β-2), 2.31-2.42 (2H, m, H₂-3), 2.72 (1H, d, *J* = 17.0 Hz, H_β-9), 2.96 (1H, dd, *J* = 2.5, 11.0 Hz, H_β-1), 3.59 (1H, d, *J* = 17.0 Hz, H_α-9), 6.28 (1H, s, H_β-5), 7.06 (1H, s, H_α-12); ¹³C NMR (CDCl₃, 125 MHz) δ : 189.0 (C-6), 155.7 (C-8), 149.8 (C-4), 138.2 (C-12), 129.1 (C-5), 124.0 (C-7), 122.5 (C-11), 69.9 (C-1), 58.9 (C-10), 40.2 (C-9), 35.6 (C-3), 24.4 (C-2), 19.7 (C-14), 16.6 (C-15), 9.9 (C-13). HRESIMS m/z 247.1327 [M + H]⁺ (calcd for C₁₅H₁₈O₃H⁺ 247.1328). EI-MS, m/z (%): 246.1 [M]⁺ (13), 217.1 (100), 163.1 (82), 122.0 (77), 94.1 (32), 55.1 (26).

Figure 36S. Chemical structure of furanodienone 1,10-epoxide (9)

Figure 39S. UV spectrum of furanodienone 1,10-epoxide (9)

Figure 40S. FT-IR spectrum of furanodienone 1,10-epoxide (9)

12

Figure 41S. ¹H-NMR spectrum (500 MHz, CDCl₃) of furanodienone 1,10-epoxide (9)

Figure 42S.¹H-NMR spectrum (500 MHz, CDCl₃) of furanodienone 1,10-epoxide (9)

Figure 43S. DEPT 135 spectrum of furanodienone 1,10-epoxide (9) in CDCl₃

Figure 44S. DEPT 90 spectrum of furanodienone 1,10-epoxide (9) in CDCl₃

,12

11

Figure 45S. ¹H-¹³C HSQC spectrum of furanodienone 1,10-epoxide (9) in CDCl₃

Figure 46S. ¹H-¹H-COSY spectrum of furanodienone 1,10-epoxide (9) in CDCl₃

Figure 47S. ¹H-¹³C HMBC spectrum of furanodienone 1,10-epoxide (9) in CDCl₃

Figure 48S. ¹H-¹³C NOESY spectrum of furanodienone 1,10-epoxide (9) in CDCl₃

Obtained as colorless solid; ¹H-NMR (CDCl₃, 500 MHz): δ 1.11 (3H, s, H₃-15), 1.70-1.78 (2H, m, H₂-2), 2.03 (3H, s, H₃-14), 2.22 (3H, d, *J* = 1.5 Hz, H₃-13), 2.29-2.31 (2H, m, H₂-3), 2.75 (1H, d, *J* = 17.0 Hz, H_β-9), 3.09 (1H, d, *J* = 17.0 Hz, H_α-9), 3.80 (1H, dd, *J* = 4.5, 11.5 Hz, H_β-1), 7.06 (1H, s, H₁-12); ¹³C NMR (CDCl₃, 125 MHz) δ: 187.7 (C-6), 164.5 (C-8), 145.6 (C-4), 139.2 (C-12), 134.4 (C-5), 120.0 (C-7), 119.6 (C-11), 76.6 (C-1), 43.3 (C-10), 37.0 (C-9), 33.6 (C-3), 26.9 (C-2), 22.3 (C-14), 19.7 (C-15), 9.2 (C-13).

Figure 49S. Chemical structure of curcolone (10)

Figure 53S. ¹H-NMR spectrum (500 MHz, CDCl₃) of curcolone (**10**)

Figure 54S. ¹³C-NMR spectrum (125 MHz, CDCl₃) of curcolone (10)

Figure 55S. DEPT 135 spectrum of curcolone (10) in CDCl₃

Figure 56S. DEPT 90 spectrum of curcolone (10) in CDCl₃

¹H-¹³C HMBC:

HMBC (H→C)		
Position	2J	3 <i>J</i>
2	1	
3	4	
9	8, 10	5, 15
12		8
13		7, 12
14	4	3, 5
15	10	1, 5, 9,

Figure 59S. ¹H-¹³C HMBC spectrum of curcolone (10) in CDCl₃

¹H-¹H NOESY:

Figure 60S. ¹H-¹³C NOESY spectrum of curcolone (**10**) in CDCl₃

Curcuzederone (11)

Obtained as colourless solid. IR ν_{max} (KBr) cm⁻¹: 3446.82, 1735.41, 1683.55; ¹H-NMR (CDCl₃, 500 MHz), δ 1.16 (3H, s, H₃-15), 1.33 (3H, s, H₃-14), 1.46-1.58 (1H, m, H_β-2 & H_α-3), 2.18 (3H, s, H₃-13), 2.23 (1H, br. d, *J* =12.0 Hz, H_α-2), 2.41 (1H, br. d, *J* = 13.0 Hz, H_β-3), 2.83 (1H, d, *J* =16.5 Hz, H_β-9), 2.94 (1H, br. d, *J* = 10.0 Hz, H_α-1), 3.69 (1H, d, *J* =17.0 Hz, H_α-9), 3.79 (1H, s, H_β-5), 7.10 (1H, s H₁-12); ¹³C-NMR (CDCl₃, 500 MHz), δ 189.9 (C-6), 156.2 (C-8), 138.5 (C-12), 123.5 (C-11), 122.7 (C-7), 69.1 (C-1), 63.7 (C-4), 63.3 (C-5), 58.0 (C-10), 39.6 (C-9), 36.1(C-3), 23.8 (C-2), 16.8 (C-15), 15.3 (C-14), 10.6 (C-13).

Figure 61S. Chemical structure of curcuzederone (11)

Figure 62S. FT-IR spectrum of curcuzederone (11)

Figure 63S. ¹H NMR spectrum (500 MHz, CDCl₃) of curcuzederone (11)

Figure 64S. ¹³C NMR spectrum (125 MHz, CDCl₃) of curcuzederone (11)

Demethoxycurcumin (12):

Obtained as yellow colored granules; ¹H-NMR (CDCl₃, 500 MHz): δ 3.95 (3H, s, -OCH3 at C-3'), 5.79 (1H, s, H₁-4), 6.48 (1H, dd, *J* = 2.0, 16.0 Hz, H₁-2 & H₁-6), 6.86 (2H, d, *J* = 8.5 Hz, H₁-3'' & H₁-5''), 6.93 (1H, d, *J* = 8.0 Hz, H₁-5'), 7.05 (1H, d, *J* = 1.5 Hz, H₁-2'), 7.12 (1H, dd, *J* = 1.5, 8.0 Hz, H₁-6'), 7.46 (2H, d, *J* = 8.5 Hz, H1-2'' & H1-6''), 7.60 (1H, dd, *J* = 8.5, 16.0 Hz, H₁-1 & H₁-7); ¹³C NMR (CDCl₃, 125 MHz) δ : 183.4 (C-3/5), 183.3 (C-3/5), 157.7 (C-4''), 147.9 (C-3') 146.8 (C-4'), 140.6 (C-1), 140.2 (C-7), 130.0 (C-2 & 6), 127.8 (C-1'), 127.7 (C-1''), 123.0 (C-6'), 121.7 (C-6''), 116.0 (C-3'' & C-5''), 114.8 (C-5'), 109.6 (C-2''), 101.3 (C-2'), 56.0 (OCH3 at C-3').

Figure 65S. Chemical structure of demethoxycurcumin (12)

Figure 66S. ¹H-NMR spectrum (500 MHz, CDCl₃) of demethoxycurcumin (**12**)

Figure 67S. ¹H-NMR spectrum (500 MHz, CDCl₃) of demethoxycurcumin (12)