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OPEN

ARTICLE

BH3-Only protein bmf is required for the maintenance of
glucose homeostasis in an in vivo model of HNF1α-MODY
diabetes
S Pfeiffer1, L Halang1, H Düssmann1, MM Byrne2 and JHM Prehn1

Heterozygous loss-of-function mutations in the hepatocyte nuclear factor 1α (HNF-1α) gene can lead to diminished amounts of
functional HNF-1α, resulting in the onset of a particularly severe form of maturity-onset diabetes of the young (MODY). We have
previously shown that induction of a dominant-negative mutant of HNF-1α (DNHNF-1α) results in the activation of the bioenergetic
stress sensor AMP-activated protein kinase (AMPK), preceding the onset of apoptosis and the induction of pro-apoptotic Bcl-2
homology domain-3-only protein Bmf (Bcl-2-modifying factor) as a mediator of DNHNF-1α-induced apoptosis. Through the
knockout of bmf in a transgenic mouse model with DNHNF-1α suppression of HNF-1α function in pancreatic beta-cells, this study
aimed to examine the effect of loss-of-function of this BH3-only protein on the disease pathology and progression, and further
elucidate the role of Bmf in mediating DNHNF-1α-induced beta-cell loss. Morphological analysis revealed an attenuation in beta-cell
loss in bmf-deficient diabetic male mice and preserved insulin content. Surprisingly, bmf deficiency was found to exacerbate
hyperglycemia in both diabetic male and hyperglycemic female mice, and ultimately resulted in a decreased glucose-stimulated
insulin response, implicating a role for Bmf in glucose homeostasis regulation independent of an effect on beta-cell loss.
Collectively, our data demonstrate that Bmf contributes to the decline in beta-cells in a mouse model of HNF1A-MODY but is also
required for the maintenance of glucose homeostasis in vivo.

Cell Death Discovery (2015) 1, 15041; doi:10.1038/cddiscovery.2015.41; published online 5 October 2015

INTRODUCTION
Maturity-onset diabetes of the young (MODY) is a heterogeneous
group of monogenic, non-insulin-dependent diabetes mellitus,
characterized by autosomal dominant transmission and the
development of severe hyperglycemia generally before the age
of 25 years.1 Of these, hepatocyte nuclear factor 1α (HNF1α)
-MODY is the most common and most severe. Patients are
characterized by severe progressive hyperglycemia and beta-cell
dysfunction, with impaired glucose-stimulated insulin secretion
response by pancreatic beta-cells in contrast to insulin resistance
by target tissues displayed by most NIDDM patients.1,2

HNF-1α is a dimeric, homeodomain-containing transcription
factor involved in the control of expression of a wide variety of
tissue-specific genes in the kidney, liver, spleen, intestine and
pancreas, such as glucose transporter (Glut2) and insulin in the
pancreatic beta-cell.3–7 Mutations the HNF-1α protein can lead to
diminished amounts of functional HNF-1α through either hap-
loinsufficiency or a dominant-negative mechanism and onset of
the HNF1α-MODY phenotype.3,8,9 Several in vitro and in vivo
models of various forms of MODY have been established utilizing
these mutations to further elucidate the molecular mechanisms
and progressive beta-cell dysfunction attributed to excessive beta-
cell apoptosis observed in HNF1α-MODY.10–12

Apoptotic cell death is a hallmark of pancreatic beta-cell loss
observed in all forms of diabetes mellitus, leading to the
development of clinically overt disease.13,14 We and others have
implicated caspase-dependent apoptotic pathways, along with

activation of pro-apoptotic Bcl-2 protein family members such as
Bax, Bim, Bad and Puma as essential for the initiation of beta-cell
apoptosis both in vitro and in vivo.10,15–19 Previously, we
demonstrated induction of pro-apoptotic BH3-only protein Bmf
(Bcl-2-modifying factor) expression during energetic stress in
insulin-secreting cells and in the islets of dominant-negative
HNF-1α (DNHNF-1α)-expressing transgenic mice, identifying Bmf
as a primary mediator of DNHNF-1α-induced apoptosis.15 Bmf acts
as an indirect activator of apoptosis, containing a single BH3
domain that interacts with prosurvival Bcl-2 proteins Bcl-2, Bcl-xL
and Bcl-w, preventing sequestration of direct activators such as
Bid, Bim and Puma20,21 and has been shown to be induced as a
result of AMP-activated protein kinase (AMPK) activation in
response to bioenergetic stress to stimulate apoptosis,15,22 as
well as having roles in autophagy and in cell death induced by
high glucose levels in in vivo models of diabetes.23–25 In addition,
Bmf has been shown to be induced post-transcriptionally
through enhanced translation under conditions that cause
repression of the CAP-dependent translation machinery, such as
hyperglycemia.22,26

The current study was undertaken to elucidate the role of Bmf
in mediating the progressive HNF-1α mutation-induced beta-cell
death associated with HNF1α-MODY. Utilizing an established
transgenic mouse model of HNF1α-MODY with a specific beta-
cell-targeted DNHNF-1α mutation shown to result in glucose
intolerance and overt diabetes,11,12 bmf expression was knocked
out to examine the effect of loss-of-function of this BH3-only
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protein on disease pathology and progression, and further
elucidate the role of Bmf in mediating DNHNF-1α-induced
apoptosis.

RESULTS
Gene deficiency in bmf restores beta-cell mass and partially
preserves insulin content in male DNHNF-1α transgenic mice
In order to examine the role of Bmf in the progressive beta-cell
dysfunction attributed to excessive beta-cell apoptosis observed
in HNF1A-MODY, we introduced a bmf deficiency in a transgenic
mouse model suppressed HNF-1α function in the pancreatic

beta-cells11,12 to generate a transgenic bmf-deficient model of
HNF1α-MODY (Figure 1a).
To assess the effect of bmf deletion on the pancreas,

immunohistochemical analyses for insulin and glucagon expres-
sion were performed on pancreatic sections of bmf-expressing
(DNHNF-1αbmf+/+) and bmf-deficient (DNHNF-1αbmf− /− ) trans-
genic mice for analysis of islet structure. Representative images
show double staining for 10-week-old male (Figures 1b–e)
insulin- (red) and glucagon (green)-positive cells. In both sexes,
deletion of bmf did not appear to have any effect on wild-type
(WT) pancreatic sections that developed normally, displaying the
typical islet architecture27 in both bmf-expressing (Figure 1b) and
bmf-deficient (Figure 1d) WT groups. Upon examination of

Figure 1. bmf deficiency partially rescues beta-cells in male DNHNF-1α-induced diabetic islets. (a) Representative standard PCR analysis of
genomic DNA for DNHNF-1α and bmf genotyping illustrating predicted band size. M, 100-bp marker. (b–e) The effect of bmf knockout on
pancreatic islet organization was assessed in 10-week-old male mice. Representative images of bmf-expressing (b and c) and bmf-deficient
(d and e) islets stained with anti-insulin and anti-glucagon antibodies for the identification of alpha-cell (green) and beta-cell(red) localization
and organization within the pancreatic islet. n= 6 islets per pancreas from n = 3 per group. Scale bar, 50 μm.
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transgenic islets, disorganization of the islet is readily apparent,
with a heterogeneous population of alpha-cells and beta-cells
distributed throughout the islets in both DNHNF-1α groups
(Figures 1c and e). Glucagon-positive alpha-cells can be seen to
migrate into the center of the islet, with insulin-positive beta-cells
no longer localized to the core but also evident on the periphery.
Analysis of distribution of glucagon relative to insulin staining
(quantified using distance mapping in ImageJ) confirmed no
significant rescue in islet cell disruption in bmf-deficient transgenic
islets (data not shown).
Quantitative image analysis was used to assess the proportion

of insulin- and glucagon-positive cells per islet. Whereas there
were significantly fewer insulin-positive cells in male transgenic
DNHNF-1αbmf+/+ (22.9 ± 3.6%) compared with WT (37.8 ± 4.8%)
islets, deletion of bmf resulted in an increased number of insulin-
positive cells in transgenic DNHNF-1αbmf− /− islets (33.5 ± 6.5%),
comparable to that of WT controls (Figure 2a). Deletion of bmf had
no appreciable effect on the increased glucagon-positive cell
number in either colony (Figure 2b). These findings were reflected
in the observed ratio of alpha/beta-cells; significant alpha-cell
expansion and decreased beta-cell fraction in DNHNF-1αbmf+/+

islets were reflected in an increased alpha/beta-cell ratio
(1.9 ± 0.19) compared with WTbmf+/+(0.53 ± 0.09), and the rescue
in the number of insulin-positive beta-cells in DNHNF-1αbmf− /−

islets was reflected in a significantly decreased alpha/beta-cell
ratio (0.99 ± 0.13; Figure 2c). Similarly, we confirmed that no
significant change in the ratio of alpha/beta-cells was observed in
female islets in either group (Figure 2d), corresponding to the
synchronously decreased alpha- and beta-cell fractions seen in
female transgenic DNHNF-1αbmf− /− islets.
In order to examine whether the increased cell mass observed

was associated with increased pancreatic insulin content, we
measured total pancreatic insulin content in non-fasted WT and
DNHNF-1α mice aged 3 and 10 weeks. Pancreatic insulin content
in bmf-expressing DNHNF-1α transgenic 3-week males was
significantly lower (36% of WTbmf+/+control); however, insulin

content of DNHNF-1αbmf− /− transgenic mice was not significantly
reduced (72.44% of WTbmf− /− control, P= 0.3), correlating with an
increased beta-cell mass (Figure 3a). Subsequently, by 10 weeks
rescue by deletion of bmf was no longer apparent, with insulin
content significantly lower in both bmf-expressing (57.1%
WTbmf+/+control) and bmf-deficient (57.9% of WTbmf− /− control)
DNHNF-1v transgenic groups (Figure 3b).

Deletion of bmf worsens glycemic control in DNHNF-1α transgenic
mice
Non-fasted blood glucose levels were monitored over a 10-week
period. While no difference was observed in 3-week males
(Figure 4a), by 6 weeks a significantly increased blood
glucose level was apparent in both DNHNF-1α bmf-expressing
(16.9 ± 2.8 mmol/l) and bmf-deficient (17.9 ± 2.0 mmol/l) groups
compared with WT controls (8.5 ± 0.6 and 9.3 ± 1.2 mmol/l,
respectively); no distinguishable difference was observed between
bmf-deficient and bmf-expressing control groups (Figure 4b). By
10 weeks, deletion of bmf significantly worsened already high
blood glucose levels in DNHNF-1 bmf− /− mice (22.9 ± 2.3 mmol/l)
compared with DNHNF-1αbmf+/+ control group (16.5 ± 0.8 mmol/l)
despite the rescue in beta-cell mass (Figure 4c).
To examine whether decreased glycemic control was related to

beta-cell loss, non-fasted blood glucose levels in female mice were
also monitored. Interestingly, female DNHNF-1αbmf− /− mice also
displayed increased glucose levels (13.36 ± 1.5 mmol/l) compared
with DNHNF-1αbmf+/+ control group (9.23 ± 0.44 mmol/l) at
10 weeks versus WT controls (9.8 ± 0.5 and 8.2 ± 0.3 mmol/l,
respectively; Figure 4d).
Following these observations, in order to determine acute

effects of bmf deficiency having an impact on insulin secretion
and glucose tolerance, glucose tolerance tests were performed on
16-h fasted mice and changes in the blood glucose from basal
fasting levels were measured over a period of 120min. Both
male DNHNF-1αbmf+/+ and DNHNF-1αbmf− /− mice exhibited

Figure 2. bmf knockout rescues beta-cell mass in male DNHNF-1α transgenic mice. Quantitative image analysis was used to assess the number
of insulin-positive beta-cells (a) and glucagon-positive alpha-cells (b) in male 10-week-old immunostained pancreatic islets. (c and d), ratio of
alpha-/beta-cells in male and female 10-week-old immunostained pancreatic islets, respectively. Data are presented as % of alpha- and beta-
cells normalized to cell number. n= 6 islets per pancreas from n= 3 per group. *Po0.05 compared with litter-matched controls; #Po0.05
compared with matched bmf -expressing controls (ANOVA, post hoc Tukey’s test).
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characteristic glucose intolerance from 3 weeks, with a 1.5-fold
increased reactive serum glucose from 30min (28.2 ± 2.1 and
31.8 ± 0.6 mmol/l, respectively) compared with WT controls
(18.1 ± 1.9 and 21.4 ± 1.3 mmol/l; Figure 5a). This was illustrated
with area under the curve (AUC) assessment of glucose response
profiles, which were unaffected by deletion of bmf (Figures 5b and c).
The reactive serum glucose profile was significantly increased at
6 weeks in both DNHNF-1αbmf+/+ and DNHNF-1αbmf− /− groups,
maintained at 120min post administration (23.2 ± 2.3 and
22.1 ± 0.9 mmol/l, respectively) compared with WT controls
(9.9 ± 0.5 and 10.4 ± 0.6 mmol/l; Figures 5d, e, f). By 10 weeks,

both transgenic groups displayed increased basal (14.6 ± 0.9 and
13.3 ± 0.9 mmol/l) and reactive serum glucose (26.1 ± 2.7 and
23.3 ± 3.9 mmol/l, 120min) compared with WT controls (10.0 ± 0.4
and 10.6 ± 0.7 mmol/l, 0 min; 11.6 ± 1.1 and 10.4 ± 1.3 mmol/l, 120
min; Figures 5g–i). Homeostatic model assessment of beta-cell
function (HOMA-β) showed that, despite restoring decreased beta-
cell mass, deletion of bmf had no significant effect on decreased
basic insulin secretion function (P = 1.0 between DNHNF-1αbmf+/+

and DNHNF-1αbmf− /− groups at 3, 6 and 10 weeks).
Female mice displayed a similarly impaired glucose response

profile; deletion of bmf worsened DNHNF-1α glycemic control at

Figure 3. bmf knockout partially preserves pancreatic insulin content with rescue of beta-cell mass. Total pancreatic insulin content was
measured in non-fasted male mice at (a) 3 and (b) 10 weeks of age by insulin ELISA. Data presented as mean± S.E.M. from n= 7 per group.
*Po0.05 compared with litter-matched controls (ANOVA, post hoc Tukey’s test).

Figure 4. bmf knockout increases non-fasting blood glucose levels. Non-fasted blood glucose levels were measured at 3- (a), 6- (b) and
10-week-old (c) male and female (d) mice. Transgenic DNHNF-1α mice deficient in bmf demonstrated increased blood glucose at 10 weeks
compared with matched bmf-expressing transgenic DNHNF-1α controls in both colonies. Data presented as mean± S.E.M. from n= 5–10 per
group. *Po0.05 compared with litter-matched controls; #Po0.05 compared with matched bmf-expressing controls (ANOVA, post hoc
Tukey’s test).
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3 weeks (17.7±2.7mmol/l, 120min) compared with DNHNF-1αbmf+/+

(10.7 ± 2.2 mmol/l, 120 min) and similarly showed no significant
effect on beta-cell function to 10 weeks.

Attenuation of bmf expression decreases glucose-stimulated
insulin secretion
Despite beta-cell preservation, the observed lack of corollary effect
on glucose homeostasis led us to examine whether deletion of
bmf in beta-cells leads to a specific insulin secretion defect. Basal
and secreted insulin at 15min was therefore also assessed in
response to glucose challenge. Although no difference in fasted
insulin levels was observed at 3 weeks, deletion of bmf did not
confer any improvement in DNHNF-1α-decreased insulin response
levels in DNHNF-1αbmf− /− or WTbmf− /− mice (P= 1.0 compared
with DNHNF-1αbmf+/+; Figures 6a and b). By 10 weeks, bmf
deficiency remained ineffectual in having an impact on decreased
insulin secretion observed in DNHNF-1αbmf+/+ (1.1 ± 0.02 μg/l) and
DNHNF-1αbmf− /− (1.1 ± 0.03 μg/l) and was also observed to
decrease glucose-stimulated insulin secretion in WTbmf− /−

(1.1 ± 0.04 μg/l) compared with WTbmf+/+control (1.3 ± 0.06 μg/l;

P= 0.01 for all groups compared with WTbmf+/+; Figure 6c).
Calculation of the HOMA index of degree of insulin resistance
(HOMA-IR) demonstrated decreased insulin sensitivity in trans-
genic DNHNF-1αbmf+/+ mice (13.2 ± 3.2) compared with WTbmf+/+

(7.3 ± 1.5), not rescued by deletion of bmf (DNHNF-1αbmf− /−

P= 1.0, WTbmf− /− P= 0.7).

DISCUSSION
Progressive beta-cell dysfunction and cell death, with impaired
glucose-stimulated insulin secretion response and resulting
hyperglycemia, is the hallmark and primary cause of diabetes
and chronic related complications observed in HNF1α-MODY
patients. Previous findings from our laboratory linking potent pro-
apoptotic activity of Bmf to DNHNF-1α-induced apoptosis present
it as an attractive target for investigation into NIDDM-associated
stress-induced beta-cell death. Among pro-apoptotic BH3-only
proteins implicated in cell death, the role of Bmf, induced as a
result of AMPK activation in response to bioenergetic stress
in vitro15 and mitochondrial ROS-mediated high glucose-induced
upregulation in in vivo models of diabetes,25 still remains poorly

Figure 5. bmf deficiency does not attenuate increased serum glucose concentrations in male DNHNF-1α transgenic mice during
intraperitoneal glucose tolerance test. Change in the blood glucose from fasting levels was determined over a 2-h period after i.p. injection of
glucose in male 3- (a–c), 6- (d–f) and 10-week-old mice (g–i) fasted for 16 h. Blood glucose AUC (AUCGlucose) was used to evaluate the glucose
clearance rate. Homeostatic model was used to assess beta-cell function (HOMA-β) during intraperitoneal glucose tolerance test. Data are
presented as the mean change in blood glucose levels± S.E.M. n= 6-7 per group. *Po0.05 compared with litter-matched controls (ANOVA,
post hoc Tukey’s test).
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investigated. Of note, Bmf has also been shown to have a role in
endocrine tissue homeostasis of gastrointestinal epithelial cells.28

To investigate the consequences of bmf deletion on impaired
HNF-1α function, we introduced a bmf deficiency in an established
model of suppressed HNF-1α function in the beta-cells of mice.
Our data conclude that deletion of Bmf results in a rescue of the
progressive beta-cell death observed in HNF1α-MODY. However,
attenuation of bmf expression results in an observable insulin-
secretory defect, indicating that Bmf is required for insulin
secretion, counteracting any rescues in beta-cell decrease.
Maintenance of islet architecture is important to the normal and

pathological functioning of the islet; disruption to the preferential
homologous contact between beta-cells carries functional impli-
cations for paracrine function, critically having an impact on beta-
cell mass and insulin secretion.29,30 Interestingly, bmf deficiency
resulted in a restoration of beta-cell mass in diabetic transgenic
DNHNF-1α islets, which is reflected in a significantly decreased
alpha/beta-cell ratio compared with that observed in bmf-
expressing DNHNF-1α counterparts. Despite this partial recovery,
the effect observed on increased glucose levels or insulin
secretion response was negatory and the adjuvant heterologous
disorganization of islet structure remained unaffected by attenua-
tion of Bmf expression. Changes in the cellular location, resulting
in disruption to specific interactions and connections with the
extracellular matrix (ECM) and cell–cell junctions associated with
tissue architecture, can alter signaling pathways associated with
cell survival and result in anoikis through activation of BH3-only
proteins and initiation of apoptosis to maintain tissue integrity
and homeostasis.31 Previous studies have identified Bmf as a
central regulator of anoikis,20 and significant upregulation of bmf
has been observed upon anoikis induction through the disruption
of cell–cell and cell–ECM contacts in human intestinal epithelial

cells.21 Therefore, it is possible that Bmf may directly regulate
anoikis in response to loss of, or inappropriate, cell–cell or cell–
ECM interactions by acting as a sensor for actin cytoskeleton
integrity in addition to its role as a mediator of energetic stress-
induced apoptosis.
Previous studies aiming to elucidate the roles of BH3-only

proteins as key modulators of beta-cell apoptosis have implicated
members such as Bim and Puma in beta-cell apoptosis but also
demonstrated an extensive degree of reciprocal functional
redundancy. Studies in mouse models of Pdx1 haploinsufficiency
found increased expression of Bim and Puma, and suppression of
these genes showed improved glucose tolerance, enhanced beta-
cell mass and reduced apoptotic cell death both in in vivo and
in vitro.32 Similarly, significantly higher levels of Bim and Puma
mRNAs have been observed in islets of human donors with type 2
diabetes, and mice deficient in Bim and Puma were significantly
protected from high glucose-induced islet cell death.18,19 Loss of
other BH3-only proteins Bid or Noxa had no impact on glucose-
induced apoptosis.18,33 It is therefore possible that other BH3-only
proteins also contribute to beta-cell apoptosis in the DNHNF1α
mouse model, in particular at late disease stages.
Examination of homeostatic non-fasted blood glucose found

that deletion of bmf significantly aggravates DNHNF‐1α-induced
hyperglycemia. This dysregulation was accompanied by declining
pancreatic insulin content; however, it should be noted that the
significant increases in blood glucose in bmf-deficient transgenic
mice were not reflected in further reduced insulin content. In fact,
at 3 weeks total pancreatic insulin content was initially preserved
by deletion of bmf; however, this was no longer apparent by
10 weeks, most likely because of a compensatory mechanism
whereby other BH3-only proteins substitute for Bmf deficiency as
discussed above. Subsequent studies examining glucose tolerance

Figure 6. Deletion of bmf expression decreases serum glucose-stimulated insulin secretion. The change in serum insulin from fasting levels
was determined at 0 and 15min after i.p.GTT in male 3- (a and b) and 10-week-old mice (c and d) fasted for 16 h. Homeostasis model was used
to assess insulin resistance (HOMA-IR) during intraperitoneal glucose tolerance test. Data are presented as the mean change in insulin
levels± S.E.M. n= 6-7 per group. *Po0.05 compared with litter-matched controls; #Po0.05 compared with matched bmf -expressing controls
(ANOVA, post hoc Tukey’s test).
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demonstrated severe glucose intolerance in DNHNF‐1α transgenic
mice, and bmf deficiency was not observed to have any restorative
effect. Similarly, gene deficiency had no effect on the adherent
glucose-stimulated insulin secretion response; despite the devel-
opment of increased basal glucose levels and severe hyperglyce-
mia during glucose challenge, bmf deficiency remained ineffectual
in having an impact on decreased insulin secretion, even lowering
the response of bmf-deficient WT mice.
The transcriptional upregulation of Bmf in response to energetic

stress and high glucose levels in vitro and in vivo suggest a role for
Bmf in the maintenance of glucose homeostasis mechanisms.
Impaired glucose response profiles, combined with the failure of
bmf deletion to confer any improvement in decreased insulin
response levels in either DNHNF-1α or WT mice despite initially
increased total pancreatic insulin content, implicate a 'day-time'
role for Bmf in functional beta-cell insulin secretion unrelated to
cell death. These overlapping functions of Bmf, in both glycemic
control and beta-cell apoptosis, combine upon bmf deletion to
present the preserved beta-cell mass with attendant hypergly-
cemic glucose-intolerant profiles that we observed. Other studies
have demonstrated similar outcomes through manipulation of
mediators of beta-cell apoptosis. Overexpression of anti-apoptotic
Bcl-2 family protein Bcl-xl, despite preventing beta-cell apoptosis,
resulted in consequentially impaired glucose-induced insulin
secretion and hyperglycemia because of defective mitochondrial
nutrient metabolism and insulin secretion signaling.34 Similarly,
loss-of-function of Bcl-2 and Bcl-xL in single and double Bax–Bak
knockout beta-cells was demonstrated to significantly augment
glucose-induced insulin secretion and glucose-dependent meta-
bolic signals, suggesting a dampening of beta-cell response to
glucose by prosurvival Bcl-2 proteins and a role for core apoptotic
proteins in beta-cell physiology.35 The mechanism responsible for
the effects of Bmf on beta-cell function may be mediated though
a defect in mitochondrial metabolism, which has a crucial role in
the stimulus-secretion coupling of glucose-induced insulin secre-
tion in pancreatic beta-cells. Given the subcellular localization of
Bcl-xL to the mitochondrial membrane36 and effects on mitochon-
drial function,37–40 the loss of Bmf and its interaction with Bcl-xL,
and indeed Bcl-2 and Bcl-w, may be related to disturbances in
mitochondrial signaling-mediating glucose-induced insulin
secretion.
Collectively, our data point to a role for Bmf in having an impact

on pancreatic beta-cell survival, but also contributing to pancrea-
tic beta-cell function independent of cell death signaling.

METHODS
Gene-targeted mice
Beta-cell-specific suppression of HNF-1α function was achieved using the
rat insulin promoter (RIP) II to directly drive targeted overexpression of a
dominant-negative mutant of HNF-1α (DNHNF-1α) in transgenic mice, a
generous gift from Professor C.Wollheim (Centre Médical Universitaire,
Geneva, Switzerland).3,11 Targeted bmf−/− mutant mice originally gener-
ated from C57BL/6-derived Bruce4 ES cells backcrossed onto a C57Bl/6 J
background were provided by Professor Andreas Strasser (WEHI,
Melbourne, Australia).23 To generate mice deficient for Bmf, bmf−/− mice
were crossed with RIP-DNHNF-1α mice to produce mice heterozygous for
both alleles (RIP-DNHNF-1α+/− bmf+/− ) and were intercrossed to generate
Bmf-deficient RIP-DNHNF-1α+/− bmf−/− mice. As controls, WT and
heterozygous RIP-DNHNF-1α mice expressing endogenous bmf were used.
All mouse strains were backcrossed for 410 generations on an inbred
C57BL/6 background. Animal experiments were carried out under license
from the Department of Health and Children (Ireland) and in accordance
with the Principles of Laboratory Animal Care and local Research Ethics
Committee.

Genotype analysis
Wild-type, transgenic and knockout alleles for DNHNF-1α and bmf were
confirmed using PCR analysis of genomic DNA extracted from tail snips

using High Pure PCR Template Preparation Kit (Roche, Basel, Switzerland).
Genotyping was performed using the following specific primers: 5′-GGA
GTTCAGACTTCGCCGAGAG-3′, 5′-GGCTGGTCACAAAGTTTGACACTG-3′ (WT
allele-specific); 5′-GGAGTTCAGACTTCGCCGAGAG-3′, 5′-GCAAGAGGCAAG
CCCTTCACTTGG-3′ (mutant allele-specific) for bmf and 5′-CTGCTAACCATGT
TCATGCCT-3′ (sense), 5′-TGAATTGCTGAGCCACCTCTC-3′ (mutant allele-
specific reverse) for DNHNF-1α.

Confocal microscopy and immunohistochemistry
Morphometric analysis was carried out on age- and sex-matched animals
aged 10 weeks. Mice were killed by cervical dislocation and the pancreas
was dissected out, snap-frozen and stored at − 80 °C. Pancreatic cryostat
sections (12 μm) were processed for double-immunofluorescence staining
for detection of insulin and glucagon. Briefly, sections were incubated 2 h
with diluted polyclonal guinea pig anti-insulin (1 : 100, Dako Diagnostics,
Glostrup, Denmark) or monoclonal rabbit anti-glucagon (1 : 100, Cell
Signalling Technology, Danvers, MA, USA) antibodies at RT. Sections were
subsequently incubated at RT for 1 h with an Alexa 568-conjugated anti-
guinea pig or Alexa 488-conjugated anti-rabbit secondary antibody (1
: 500, Invitrogen, Waltham, MA, USA) and mounted in VECTASHIELD
Mounting Media with DAPI (4′,6-diamidino-2-phenylindole; Vector Labs,
CA, USA). Images were acquired on a Zeiss-LSM510 confocal microscope
(Carl Zeiss, Jena, Germany) as previously described,41 and analysis was
carried out using the ImageJ software (version 1.48, NIH, http://imagej.nih.
gov/ij/). For analysis of pancreatic sections, z-stack images of each islet
imaged were generated, and number of insulin- or glucagon-positive cells
per islet and alpha/beta-cell ratio were determined using integrated
z-projection. Percentage of insulin-positive or glucagon-positive cells
within each islet was quantified by number of cells stained positive for
the protein of interest normalized to cell number, and from this the ratio of
alpha/beta-cells was calculated. Otsu was used to segment immunostained
and background areas from another, and areas above threshold were then
used for quantification. The cell number was determined by number of
nuclei per islet.

Pancreatic insulin content
Pancreatic insulin content was determined from 3- and 10-week age- and
sex-matched animals. Snap-frozen pancreata were weighed and insulin
was extracted with cold acid-ethanol. Briefly, pancreata were incubated
O/N in acid-EtOH (1.5% HCl in 70% ethanol) at − 20 °C, and then
homogenized and incubated O/N at − 20 °C. Samples were centrifuged
15min 2000 r.p.m. at 4 °C and supernatant removed and neutralized with
1 : 1 volume TRIS (1M pH7.5). Insulin content in acid-ethanol supernatant
was determined with Ultrasensitive Mouse Insulin ELISA (Mercodia AB,
Uppsala, Sweden).

Non-fasting glycemic blood measurements
Homeostatic blood glucose levels were measured in age- and sex-matched
animals at 3-, 6- and 10-week time points using Bayer CONTOUR Blood
Glucose Meter (Bayer Diabetes Care, Dublin, Ireland). A small drop of blood
(~0.6 µl) from the tail vein was collected and blood glucose value recorded
(mmol/l). All procedures were carried out in a blinded manner.

Intraperitoneal glucose tolerance tests
Age- and sex-matched mice aged 3, 6 and 10 weeks were fasted overnight
for ~ 16 h, weighed and subsequently injected intraperitoneally with
glucose (2 g/kg body weight). For glucose tolerance tests, blood glucose
levels were measured at 0, 30, 60, 90 and 120min post injection from tail
vein blood as described above. For insulin release studies, blood was
collected at 0 and 15min post injection. Serum insulin levels were
measured with Ultrasensitive Mouse Insulin ELISA (Mercodia AB). All
procedures were carried out in a blinded manner.

Insulin release studies
For insulin release studies, measurement of serum insulin concentration
during Intraperitoneal glucose tolerance test (ipGTT) was performed by
blood collection at 0 and 15min post injection using a Microvette 200
Z-Gel (Sarstedt, Hildesheim, Germany), followed by centrifugation for
serum separation and analysis. Samples were stored at − 80 °C before
measurement for insulin levels. Serum insulin levels were measured with
Ultrasensitive Mouse Insulin ELISA (Mercodia AB).
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Statistical analysis
Statistics were carried out using the SPSS-IBM software (IBM, Armonk, NY,
USA). Data are typically presented as mean± S.E.M., and one-way ANOVA
followed by Tukey’s post hoc or nonparametric analyses (Kruskal–Wallis,
Mann–Whitney U-test) were employed where appropriate to determine
statistical significance. For ipGTT, the AUC was used to evaluate the blood
glucose response profiles using the trapezoidal rule.42 Evaluation of beta-
cell function (%) and degree of insulin resistance (IR) were calculated using
the HOMA as follows: HOMA-β= (20 x fasting serum insulin (μU/l)/fasting
blood glucose (mmol/l)− 3.5)% and HOMA-IR= (fasting serum insulin (μU/l)
xfasting blood glucose (mmol/l)/22.5), respectively.43

ABBREVIATIONS
BH3, Bcl-2-homology domain-3; Bmf, Bcl-2-modifying factor; DNHNF1α,
dominant-negative mutant of rat HNF1α; HNF1α, hepatocyte nuclear factor
1α; INS-1, rat insulinoma cells; ipGTT, intraperitoneal glucose tolerance test;
NIDDM, non-insulin-dependent diabetes mellitus; RIP, rat insulin promoter;
WT, wild type.
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