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Abstract 1 

In recent years, monitoring the health condition of existing bridges has become a common 2 

requirement. By providing an information management system, Bridge Information Model (BrIM) 3 

can highly improve the efficiency of health inspection and the reliability of condition evaluation. 4 

However, the current modeling processes still largely rely on manual work, where the cost 5 

outweighs the benefits. The main barrier lies in the challenging step of semantic segmentation of 6 

point clouds. Efforts have been made to identify and segment the structural components of bridges 7 

in existing research. But these methods are either dependent on manual data preprocessing or need 8 

big training dataset, which, however, has rendered them unpractical in real-world applications. This 9 

paper presents a combined local descriptor and machine learning based method to automatically 10 

detect structural components of bridges from point clouds. Based on the geometrical features of 11 

bridges, we design a multi-scale local descriptor, which is then used to train a deep classification 12 

neural network. In the end, a result refinement algorithm is adopted to optimize the segmentation 13 

results. Experiments on real-world reinforced concrete (RC) slab and beam-slab bridges show an 14 

average precision of 97.26%, recall of 98.00%, and intersection over union (IoU) of 95.38%, which 15 

significantly outperforms PointNet. This method has provided a potential solution to semantic 16 

segmentation of infrastructures by small sample learning and will contribute to the fulfillment of 17 

the automatic BrIM generation of typical highway bridges from the point cloud in the future. 18 

Keywords: bridge information model, semantic segmentation, local descriptor, machine learning, 19 

point cloud20 
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1. Introduction  1 

In most countries, the prominent status of bridges has already evolved to the maintenance stage. 2 

According to the American Society of Civil Engineers (ASCE), more than 617,000 bridges are in 3 

service in the United States, while approximately 42% are at least 50 years old. It has been estimated 4 

that 125 billion dollars will be needed to maintain existing bridges [1].  5 

Time-consuming inspection and evaluation processes in bridge maintenance are part of the 6 

reasons behind the vast costs. Efforts have been made to automatically detect surface damages of 7 

bridges. Kim et al. [2] utilized Region with Convolutional Neural Networks (R-CNN) to identify 8 

cracks on the structure surface from the images captured by unmanned aerial vehicles (UAV). Wang 9 

et al. [3] developed a stitching algorithm to address the calculation of long cracks which could not 10 

be photographed in one picture. However, their work could only identify local damages. Global 11 

geometric context is still needed to integrate local inspection results to accomplish a comprehensive 12 

condition evaluation. At present, Bridge Management Systems (BMS) like AASHTOWare [4] are 13 

used to store and manage the structured condition information of bridges. However, BMS are 14 

primarily designed for system-wide decision-making instead of assessing the structural condition of 15 

a specific bridge component [5].  16 

As the alternative tool, Bridge Information Model (BrIM) can manage this information on both 17 

structure and component levels. BrIM is an extension of Building Information Model (BIM), which 18 

is defined as "a digital representation of physical and functional characteristics of a facility" by the 19 

U.S. National Building Information Model Standard Project Committee [6]. BrIM is not merely a 20 

3D geometric model but also capable of storing information on the component level for the life 21 

cycle management [7]. Tanaka et al. [8] developed an Industry Foundation Classes (IFC) based 22 

BrIM to manage acquired inspection data. DiBernardo [9] reviewed the current data management 23 

process of existing bridge assets and proposed a framework integrating BrIM and existing 24 

commercial bridge software applications to organize and analyze inspection data. In addition to 25 

managing inspection data, BrIM can also facilitate collaboration and interoperation of stakeholders 26 

through the life cycle management of bridges, including structural health monitoring, rehabilitation, 27 

behavior modeling, and prediction [7]. 28 

Motivated by the benefits, the adoption of BIM for newly-built transportation infrastructures 29 
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powerfully surged between 2012 and 2017 in Europe. However, only 52% of engineers and 30 

contractors had implemented BIM on at least half of their projects by 2017 [10]. Only a few newly-31 

built bridges have as-designed BrIM, while most existing bridges still rely on traditional information 32 

management tools such as datasheets. Thus, to digitalize the life cycle management of existing 33 

bridges, automatic generation of as-built BrIM is pressingly needed.  34 

In general, creating the as-built BIM for an existing structure involves four steps, i.e., 3D 35 

reconstruction, semantic modeling, geometrical modeling, and building information modeling [11]. 36 

In 3D reconstruction, reality capture devices are deployed to produce digital representations of 37 

existing structures, e.g., point cloud. It is followed by three respective modeling processes, aiming 38 

to generate BIM from the digital representation. For instance, in semantic modeling, the subsets of 39 

the 3D reconstruction are assigned with labels in a BIM taxonomy. Subsequently, in geometrical 40 

modeling, the parametric representation of the shape, the location, and the spatial relationship of 41 

each class instance will be established. Finally, in building information modeling, the semantic and 42 

geometrical parameters will be integrated and written to files according to the specified format of 43 

BIM (e.g., IFC), generating building information models. 44 

To date, widespread reality capture technologies are available to fulfill 3D reconstruction by 45 

generating point cloud representations. Park et al. [12] utilized terrestrial laser scanning (TLS) to 46 

acquire the point cloud model of a simply supported steel beam to monitor its displacements. 47 

Brandon et al. [13] implemented photogrammetry based on 2D images to create point clouds of 48 

bridges so that surface condition and geometric information can be visualized. Roca et al. [14] 49 

captured point cloud data of buildings through a lidar equipped on UAV, aiming to generate building 50 

envelope models and perform energy analysis. 51 

Despite the significant developments of data-acquisition methods, only a few as-built BrIM for 52 

existing bridges have been generated. Time-consuming, labor-intensive and expensive modeling 53 

processes from point cloud to BrIM is the main obstacle [15]. Many published studies automated 54 

the third step - geometrical modeling and the fourth step - information modeling. Fitting parametric 55 

geometry representations like planes and cylinders to point clusters is common to realize geometric 56 

modeling [16,17]. Also, for complex shapes which cannot be described by parametric 57 

representations, non-parametric representations like polygonal meshes were applied [18,19]. 58 

Furthermore, Lu and Brilakis [5] developed a slicing-based approach capable of directly generating 59 
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IFC entities from labeled point clusters of bridge components and yielding BrIM. Their method has 60 

managed to automate geometrical and information modeling in reinforced concrete (RC) bridges. 61 

In fact, automation of geometrical and information modeling techniques has evolved rapidly lately 62 

and numerous commercial software applications (e.g., ImageModeler, Leica CloudWorx, 63 

PolyWorks Modeler, etc.) have emerged to accomplish such tasks [20]. However, automating the 64 

second step, i.e., semantic modeling, remains a challenge. In the case of buildings, although progress 65 

has been made in detecting a few specific objects (e.g., pipes [21], structural steels [22], and walls, 66 

floors, ceilings, doorways, and windows [23]), no single method can complete the semantic 67 

modeling by identifying all required objects. In the case of bridges, the point clouds from different 68 

bridge types are usually distinct in geometries and often disturbed by outliers. This difficulty has 69 

been amplified by the insufficient training data caused by the high reality capture cost, rendering 70 

the difficulty of applying the end-to-end deep learning model. As a result, no research has yet been 71 

able to conduct accurate and robust detection of bridge components [15,24,25]. 72 

In this paper, we propose a combined local descriptor and machine learning based method to 73 

realize automatic semantic segmentation of bridge point cloud. Based on the common geometric 74 

features of bridges, we design a multi-scale local geometry descriptor. Considering the point clouds 75 

are noisy and disturbed, machine learning is employed to increase robustness in classification. In 76 

the end, utilizing the distinguishable distribution pattern of wrongly labeled points, we refine the 77 

segmentation results.  78 

The novelty of this method lies in the fact that (1) we develop a multi-scale local descriptor 79 

customized for typical bridges which can accurately describe the unique geometries and topology 80 

relationships, a distinct improvement from the traditional descriptors often seen in computer science; 81 

and (2) we propose a combined local descriptor and machine learning based methodology to fully 82 

automatically extract structural elements in bridges on a point level, which can realize small sample 83 

learning and achieve high level of accuracy and robustness in the meantime. 84 

We report the state-of-the-art semantic modeling methods in Section 2 and present our 85 

approach in Section 3. In Section 4, we elucidate the design of our algorithm. In Section 5, we 86 

elaborate on the research methodology and reveal experimental results. The conclusions will be 87 

followed in Section 6.  88 

 89 
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2. State of the art of semantic modeling 90 

The semantic modeling approaches can be classified into algorithm-based, learning-based, and 91 

combined algorithm-and-learning-based methods. 92 

2.1 Algorithm-based methods 93 

Algorithm-based methods utilize point cloud processing algorithms and contextual information 94 

to detect components.  95 

One way of algorithm-based detection is to perform segmentation and classification in 96 

sequence, which is also known as the bottom-up approach, where typical segmentation algorithms 97 

in computer science are applied to divide the point cloud into clusters in the first place, and human 98 

expertise is then introduced to classify the subsets. During the bottom-up segmentation process, 99 

geometric features are extracted from primitive level to higher abstraction levels successively until 100 

segmentation is accomplished. Lu et al. [15] pointed out that typical higher-level geometric features 101 

included surface normals, meshes, patches, and nonuniform B-spline surfaces. Planar surfaces are 102 

the most common geometries in structural components [26]. Algorithms to detect planes in point 103 

cloud have been widely studied in computer science (e.g., Hough Transform [27-29], Random 104 

Sample Consensus (RANSAC) [30-32], and region growing [33-35]). Primitive shapes like 105 

cylinders and spheres can also be detected [31,36]. In the Architecture, Engineering & Construction 106 

(AEC) context, numerous works on point cloud segmentation have been carried out. Tarsha‐Kurdi 107 

et al. modified RANSAC algorithm by introducing a standard deviation threshold to detect roof 108 

planes from lidar data [37]. Zhang et al. extracted planar patches from point cloud by adopting 109 

spectral clustering in linear subspace and fitting planes to obtained points segments [38]. However, 110 

the methods above were incapable of detecting curved surfaces commonly seen in pipes and piers. 111 

Patil et al. [39] conducted an area-based adaptive Hough Transform to detect pipes in point cloud 112 

data. Combined with the algebraic circle fit algorithm, positions and radius of pipes were estimated. 113 

However, RANSAC and Hough Transform are too computationally expensive to detect complex 114 

as-built shapes in large datasets of the real world [15,40]. An alternative segmentation approach is 115 

region growing algorithms. Nurunnabi et al. [41] selected the point with the lowest curvature as seed 116 

points and set the point to plane orthogonal distance, the distance between candidate and seed points, 117 

and angles between two points as the criteria of region growing. Yet, noise and outliers could affect 118 
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the estimation of normal and curvature and result in over-segmentation. Walsh et al. [42] 119 

implemented a smoothness-constraint-based region growing algorithm to find smoothly connected 120 

areas in the point cloud. The seed point was extracted by segmenting planar surfaces first, followed 121 

by adding similar neighboring points to the segment until reaching the edge. Although this method 122 

yielded satisfying results in noisy point clouds, problems of occlusions remained unresolved. In 123 

computer science, hole-filling is a common approach to reconstruct occluded surfaces [43-45]. Since 124 

furniture and decorations commonly cause heavy occlusions in laser scans of buildings, the ray-125 

tracing algorithm was implemented to detect occlusions [23,46]. Rectangular openings were then 126 

identified by training a Support Vector Machine (SVM) with derived features. However, in contrast 127 

to the repeated pattern in buildings, occlusions in bridges are scattered and irregular due to 128 

vegetation and moving vehicles. For that reason, methods designed to address the occlusion 129 

problems in buildings are not applicable for bridge settings. After segmentation, contextual 130 

information is introduced by human experts to label obtained point clusters. Pu and Vosselman [47] 131 

utilized predefined knowledge about size, position, orientation, and topology to identify façade 132 

elements from planar surfaces extracted by region growing. Nevertheless, their method could not 133 

be applied to complex structures with curved exteriors or building interiors with serious disturbance.  134 

Another algorithm-based approach is to perform segmentation and classification 135 

simultaneously in a top-down manner, where knowledge of semantic classes is usually utilized as 136 

the criteria for segmentation. Priori knowledge of geometric features and design regulations can be 137 

one key reference to perform the top-down semantic segmentation. Sanchez and Zakhor [48] divided 138 

cloud points into ceiling points, floor points, wall points, and stair points according to their 139 

orientations. However, taking orientation as the only criteria is not robust since noise would affect 140 

orientation estimation. The other valuable knowledge source is the as-designed information of 141 

existing structures (e.g., drawings [49] and BIM [22,50,51]). Using design drawings as 142 

supplemented information, Liu et al. [49] extracted building elements and heating, ventilation, and 143 

air-conditioning (HVAC) systems from the point cloud to construct the as-built BIM. Nonetheless, 144 

deviations in the size and location of components between as-designed documents and the as-built 145 

status might lead to inaccuracy in the reverse modeling. Turkan et al. [51] registered the as-designed 146 

4D BIM and 3D laser scan data in the same coordinate system, succeeding in recognizing as-built 147 

objects and estimating construction progress. Although adopting as-designed information for 148 
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semantic modeling is a straightforward and reliable approach, frequent lack of as-designed 149 

documentation or large deviations between as-designed and as-is status could limit its application 150 

scope. 151 

In bridges, features of components highly differ from those in buildings. A limited number of 152 

works specifically applied for bridges have been conducted. Riveiro et al. [52] detected components 153 

of masonry bridges based on normal orientation histograms and morphological information. 154 

However, in real-world bridges with traffics and surrounding vegetation, unavoidable data quality 155 

problems like noise, low point density, and occlusions would sabotage the outcome. Later on, based 156 

on histograms of coordinates and distinct elevation of components, Lu et al. [15] employed a slicing 157 

algorithm to identify structural components in point clouds of existing RC bridges. But this method 158 

was only applicable to straight RC bridges supported by piers with the same height, whereas 159 

numerous RC bridges do not meet this standard. Yan and Hajjar [25] adopted a similar approach to 160 

extract structural elements of steel girder bridges. Likewise, Zhao et al. [53] separated 161 

superstructures and substructures of bridges according to density projection images. Then, a fine 162 

segmentation was performed based on histograms and continuity. However, existing top-down 163 

methods in semantic modeling of bridges require manually extracting bridges from the background 164 

point cloud in advance and have substantial restrictions on the geometries of bridges. 165 

2.2 Learning-based methods 166 

In this paper, learning-based methods refer to models that directly operate on raw 3D data and 167 

only depend on learning. No processing related to transcendental knowledge on geometries or 168 

design standards is required. In recent years, numerous works have been carried out in end-to-end 169 

learning-based semantic segmentation of point cloud, among which deep learning has achieved 170 

remarkable results. The deep learning methods have been demonstrated to be a very promising 171 

method due to their fully automated nature and generic applicability to all objects. In general, these 172 

deep learning models can be divided into three categories, i.e., 3D convolution on voxels [54], multi-173 

view projection onto images or planes followed by 2D convolution [55] and PointNet [56,57]. 174 

PointNet is the state-of-the-art model to deploy deep learning on points directly, which usually 175 

contains three parts, namely, a sharing multi-layer perceptron (MLP) to extract point features, a 176 

max-pooling layer to aggregate point features, and an MLP for object classification. Since PointNet 177 
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has addressed the problems associated with permutation invariance and sparsity of points, this 178 

method has been widely adopted as a popular approach to extract geometric features from point 179 

cloud for purposes like object detection [58]. PointNet++ [57] is a more sophisticated model based 180 

on the backbone of PointNet, where a hierarchical feature learning method is applied and some units 181 

proven to be redundant are removed. Specifically, PointNet is recursively applied on a nested 182 

partitioning of the point cloud, forming a hierarchical neural network. Through varying metric space 183 

distances progressively, local features with increasing contextual scales can be learned in 184 

PointNet++. Also, the transformer net (T-net) in PointNet, designed for learning an affine 185 

transformation matrix by its own mini network, is abandoned because of its indistinctive effect. The 186 

most significant improvement in PointNet++ is the capability of capturing local structures and 187 

global features in the point cloud simultaneously. Many other deep learning models have also been 188 

developed, such as PointCNN [59] and Dynamic Graph Convolutional Neural Network (DGCNN) 189 

[60]. However, most works in computer science have initially been designed for automatic drive 190 

scenarios or indoor objects. Implementing end-to-end deep learning models to detect outdoor 191 

structural components has not been well explored. Kim et al. [24] detected piers and decks of full-192 

scale RC bridges from the point cloud using PointNet. In order to preserve the spatial resolution of 193 

point clouds under limited video card memory, points were divided into small subspaces before 194 

training, so global features were lost. Also, because of insufficient training data, only piers and decks 195 

were detected in their work. Kim and Kim [61] compared the performance of PointCNN, DGCNN, 196 

and PointNet in semantic segmentation of bridge point clouds. They trained and tested the deep 197 

learning models on the same bridges by simply dividing each bridge into two halves. The high 198 

similarity between training and testing data could make the results controversial. In summary, 199 

implementing end-to-end deep learning methods to large-scale bridges is severely restricted by 200 

insufficient training data and high computational burden.  201 

2.3 Algorithm-and-learning-based methods 202 

To yield satisfying results with limited training data and computational power, algorithms can 203 

be employed to extract high-level manually defined features or to generate geometry primitives. 204 

After that, learning-based models (e.g., logistic regression, Naive Bayes, decision tree, support 205 

vector machines, random forest, and neural networks) can be trained to classify the components. 206 
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Xiong et al. [23] leveraged a region growing algorithm to connect points with similar surface 207 

normals, generating planar patches from the voxelized point data. Then, according to the Euclidean 208 

distance, they identified the four nearest neighbors of each patch, based on which the predefined 209 

contextual information of each patch was calculated. Meanwhile, the local feature of each patch was 210 

defined by a combination of its orientation, shape, size, point density, and height. Finally, a stacked 211 

learning model [62] was trained to classify the planar surfaces into walls, ceilings, floors, and 212 

clutters. Although this work was robust to occlusions in the indoor environment, it only output 213 

planar surface models and could not detect structural components encompassed by curved surfaces. 214 

Koppula et al. [63] took both image-based features (e.g., color, texture, and gradient of intensities) 215 

and point cloud features (e.g., shape, orientation, and geometrical context) from the data captured 216 

by the RGB-D sensor as the input to train various learning algorithms, aiming to detect floors, walls, 217 

and other non-structural objects. However, the precision of this method turned out to be low in their 218 

tests. In bridge settings, Zhang et al. [64,76]] started the semantic modeling by extracting surface 219 

primitives(e.g., cuboids, cylinders, and sheets) from the point cloud. A decision tree was then 220 

applied using the type, parametric model, orientation, and mutual geometric relations of the fitted 221 

surface primitives as decision variables, succeeding in detecting structural components such as 222 

columns, caps, deck, beams, etc. Yet, the scope of this work was limited to bridges composed of 223 

simply shaped elements. In engineering practices, deviations are inevitable between as-designed 224 

models and as-built structures due to construction errors. Using parametric primitives to describe 225 

the geometries of as-built components could compromise the fidelity of as-built models, which is 226 

contradictory to the original purpose of creating as-is BIM to reveal the real status of existing 227 

structures. In conclusion, even though the hybrid method yielded promising results with limited 228 

training data, no work has yet been capable of performing accurate point-wise classification on the 229 

point cloud of real-world RC bridges, which, however, is necessary if we need to describe non-230 

parametric components like curved decks and I-section beams in bridges with high fidelity. 231 

2.4 Identified knowledge gaps  232 

The bottom-up algorithm-based methods work well in synthetic data. However, they are highly 233 

sensitive to noise and occlusions in the real-world environment since they largely depend on 234 

accurate partitioning of surface primitives and patches during the segmentation stage. And in the 235 
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classification stage, manually defining rules to classify the obtained subsets is unrealistic, especially 236 

in complex structures. The top-down algorithm-based approaches rely on semantic information of 237 

objects, i.e., as-designed documents or engineering knowledge. However, lack of as-designed 238 

information or deviations between as-designed model and as-is structure have rendered providing 239 

accurate as-built information unpractical. And the utilization of engineering knowledge relies on 240 

clean point clouds, which often requires manual removal of background. Also, strict limitations on 241 

the geometries of bridges (e.g., piers with the same height and no curvature in decks) make this type 242 

of method unfeasible to many real bridge cases.  243 

End-to-end learning-based models have great potential to become versatile solutions, but their 244 

applications are still highly limited due to lacking in training data or computing power. Although 245 

combining algorithm-based and learning-based methods can alleviate such needs, the current work 246 

is only restricted to parametric geometrical primitives and yet applicable to real and complex 247 

surfaces. In summary, with limited training data and computing resources, automated semantic 248 

segmentation of real-world point cloud data of RC bridges with high fidelity has yet to be solved. 249 

 250 

3. Methodology 251 

 To overcome the challenge of insufficient training data and achieve versatile semantic 252 

segmentation, we propose an algorithm-and-learning-based approach utilizing local descriptors for 253 

geometric feature extraction and machine learning for point-wise classification. The objectives of 254 

this research include (1) designing a novel local descriptor capable of describing the geometric 255 

features of bridges, and (2) developing an optimized machine learning pipeline to automatically 256 

assign semantic labels to points. 257 

The topological relationship and geometric features of bridges are relatively distinguishable 258 

and straightforward compared to buildings. Aiming at conducting point-wise segmentation, local 259 

descriptors can be used to describe the geometric features at each point. In this approach, we utilize 260 

the distribution pattern of neighboring points' normals as the descriptor to represent the area's 261 

geometric features surrounding the point of interest. The angle between the normal vector and 262 

vertical direction has been chosen to represent the orientation of normals.  263 

Descriptors are prone to noise interference and are difficult to be used to classify objects 264 
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directly, so machine learning is considered to overcome such challenges in this method. Common 265 

machine learning models include Naive Bayes, logistic regression, nearest neighbors, decision trees, 266 

support vector machines, and artificial neural networks (ANN). Bridge point cloud data has the 267 

characteristics of large sample size, high dimensionality, unbalanced categories, and much noise. 268 

Although Naive Bayes has stable performance and strong interpretability, our descriptor does not 269 

meet its requirement of independent sample attributes [65]. Logistic regression is efficient and 270 

straightforward, but it performs poorly when dealing with high-dimensional data [65]. Decision 271 

trees and the nearest neighbor algorithm have high flexibility and simple theory, but it is difficult to 272 

effectively classify data with unbalanced categories [66]. ANN has been successful in unstructured 273 

data processing such as computer vision and natural language processing. It has the advantages of 274 

high classification accuracy, strong ability to fit complex nonlinear relationships, and robustness to 275 

noise [67]. The advantages of neural networks have also made them widely used in point cloud 276 

processing. For example, the most famous point cloud deep learning model PointNet[56] uses 277 

multiple ANN for feature learning and classification. Therefore, this study chooses ANN to classify 278 

the local feature descriptors of the point cloud. 279 

Since the proposed approach requires no manual data preprocessing, disturbances (e.g., 280 

vegetations, handrails, and traffic cones) and noises from moving vehicles can affect the outcome 281 

of segmentation. Thus, segmented structural components should be further refined to eliminate such 282 

detrimental effects. Tailored for the scattered distribution pattern of incorrectly labeled points, the  283 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [68] is employed to filter 284 

the noise and scattered small clusters. DBSCAN is a query-based data clustering algorithm 285 

concerning point density. It groups together points that are closely packed and identify the isolated 286 

points as noise. DBSCAN has been chosen for two advantages, i.e., no needs to specify the number 287 

of clusters a priori and the ability to identify clusters of arbitrary shapes. 288 

The workflow of our method contains three steps (see Fig. 1), namely, computing designed 289 

descriptors, point-wise classification through neural networks, and results refinement. The first step 290 

defines a multi-scale descriptor (i.e., descriptors with the perceptual fields of different sizes) for 291 

each point, which can be utilized as the classification criteria. The second step is to classify these 292 

points with ANN. The third step includes identifying and correcting wrongly labeled points in 293 

structural elements. 294 
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Fig. 1. Workflow of semantic segmentation system. 295 

This paper mainly focuses on optimizing the semantic segmentation of RC slab and beam-slab 296 

bridges because those are the most common bridge types in highways, city expressways, and other 297 

overpasses. We will identify typical structural components, including slabs, girders, pier caps, and 298 

piers. Apart from structural components, all other objects (e.g., vegetation, vehicles, pedestrians, 299 

handrails, noise, and other irrelevant items) in the point cloud are classified as background. 300 

 301 

4. Algorithm design 302 

4.1 Step1 - computing designed descriptors 303 

To structure the defined features, we implement the encoding method of the Signature of 304 

Histograms of OrienTations (SHOT) [69], which is usually used for the registration of point clouds. 305 

Tailoring for the semantic segmentation task in bridge settings, we define the content of our 306 

descriptor in the following paragraph. 307 

!! is the ""#	target point in the point cloud, and !!$ is the $"# neighboring point of the target 308 

point !!. We choose the angle, %%& , between the normal at each neighboring point, &!$, within the 309 

target point's perceptual field, '% , and the vertical direction, (, to represent the direction of normal 310 

and describe the geometric feature (Fig. 2 (a)). For computational efficiency, cos %%&  is chosen to 311 
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reveal the value of %%& , since cos %%& = &!$. (. Considering site scans of bridges are usually noisy, 312 

histogram is selected as the feature encoder in this research because of its excellent performance in 313 

filtering noise effects [70]. Each histogram has 11 bins, and neighboring point counts are 314 

accumulated to these bins according to cos %%& . 315 

To reveal the spatial relationships of surfaces and components around the target point, we 316 

introduce the local reference system (LRF) and spherical grid to store the geometric features 317 

corresponding to neighboring points' locations. When setting the LRF, two factors are considered, 318 

namely, (1) the local reference system should be rotational invariant in the horizontal plane since 319 

horizontal orientations of bridges are not fixed; (2) the primary topological relationships between 320 

surfaces and components are vertically stacked or horizontally sided. Thus, the X-axis of LRF is 321 

along with the horizontal component of the normal at the target point, .% , and the Z-axis is parallel 322 

to the vertical direction. Naturally, the Y-axis is the cross product of the Z-axis and X-axis (Fig. 2 323 

(a)). In addition, to clearly distinguish different locations with limited computing resources, the 324 

sphere grids encompass 2 radius divisions (Fig. 2 (a)), 8 azimuth divisions (Fig. 2 (b)), and 2 325 

elevation divisions (Fig. 2 (c)), which results in 32 volumes in total. 326 

(a)                         (b)                        (c) 327 

Fig. 2. Illustrative diagrams of descriptors (a) perspective view of descriptor; (b) top view of 328 

descriptor; (c) front view of descriptor. 329 

When using histograms, the boundary effect could affect the result. We conduct a quadrilinear 330 

interpolation for each point count to eliminate the boundary effect. Specifically, we multiply a 331 

weight factor 1 − 1 along every dimension, including radius, azimuth, elevation, and histogram. 332 

. = ∏ (1 − 1&)
'
&()                                 (1) 333 
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In radius (Fig. 3 (a)), azimuth (Fig. 3 (b)) and elevation (Fig. 3 (c)) dimension, 1 is the angular 334 

or Euclidean distance between the neighboring point and the volume's center. In histogram 335 

dimension (Fig. 3 (d)), 1 is the difference between the neighboring point’s cosine value and the 336 

bin's central value. Note that 1 in every dimension has been normalized by the size of the volume 337 

or the bin.  338 

(a)                   (b)                    (c)                  (d) 339 

Fig. 3. Linear interpolation on (a) radius; (b) azimuth; (c) elevation; (d) histogram. 340 

The sub-descriptors will be normalized by L2 norm (i.e., the square root of the sum of the 341 

squared vector values) to address the non-uniform point density issue.  342 

Following the above-mentioned steps, two sub-descriptors of different perceptual fields will be 343 

calculated. The first sub-descriptor will describe the distribution of close neighbors' orientations 344 

(Fig. 4 (a)). In this way, points on the boundaries are easy to separate. However, lacking global 345 

information will make points in the interior of components hard to distinguish since they are most 346 

likely on similar planes. Thus, the second sub-descriptor will reserve geometric features and 347 

topological relationships in a larger perceptual field (Fig. 4 (b)).  348 

(a)                                         (b) 349 

Fig. 4. Multi-scale sub-descriptors (a) small scale sub-descriptor; (b) large scale sub-descriptor. 350 

4.2 Step2 - point-wise classification through the neural network 351 

ANN is composed of neurons aligned in the same layer and connected to neighboring layers. 352 

Neuron is the primary function unit of ANN, which usually contains a linear function and a nonlinear 353 
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function (activation function). The linear function is the summation of the weighted inputs and bias, 354 

mathematically denoted as in Eq. (2): 355 

5& = 	Σ7&*8* + :&	                                       (2) 356 

For the ;,-  neuron in the current layer, 5&  is the result of the linear function, 7&*  is the weight 357 

of the <,-  input, 8*  is the value of the <,-  input, :&  is the bias. The sum is then passed through 358 

activation function to produce the output. We choose the Rectified Linear Unit (ReLU) as the 359 

activation function in this research, same as PointNet [56], since ReLU converges faster and avoids 360 

gradient vanishing [71]. It has the following form (3): 361 

=& = >(5&) = max(0, 5&)                                    (3) 362 

=&  is the output of this neuron, > is the activation function (ReLU). The outputs of neurons 363 

will be passed through connections and become the input of neurons in the next layer. The form of 364 

the .,-  neuron in the next layer is illustrated in Eq. (4), where =.  is the output of the neuron, 7.&  365 

is the weight of the ;,-  input, :.  is the bias: 366 

=. = >(Σ7.&>D	Σ7&*8* + :&E + :.)                                (4) 367 

For the output layer, we choose Softmax as the nonlinear function. Through Softmax, we can 368 

realize that the values of final outputs are between 0 and 1and the sum of final outputs is 1. When 369 

we set the number of neurons in the output layer equal to the number of categories, we can acquire 370 

each label's probability. It is shown in Eq. (5): 371 

5F>GHI8(G&) = 	
/!"
0/!"                                      (5) 372 

Here, G&  is the result of the linear function of the ;,-  neuron in the output layer.  373 

The structure of the neural network in this research is presented in Fig. 5. The numbers of 374 

hidden layers and their neurons are decided based on two factors, i.e., the Universal Approximation 375 

Theorem [72] states that a neural network with one hidden layer containing a sufficient but finite 376 

number of neurons can approximate any continuous function to a reasonable accuracy; the required 377 

computational resources for training the neural network increase with the number of hidden layers 378 

and neurons. Thus, we set the structure of hidden layers as Fig. 5, which has 6 hidden layers 379 

containing a decreasing number of neurons from 1024 to 32. In addition, the number of inputs is the 380 

dimension of the descriptor, and the number of outputs corresponds to the number of categories. 381 
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Furthermore, to avoid over-fitting, every liner function in hidden layers is followed by batch 382 

normalization (BN). Since the neural network is quite deep, 50% dropout [73] is conducted in the 383 

last hidden layer to prevent over-fitting, taking care of the problems associated with noise and high 384 

correlation in the feature space. Such dropout technique is conducted by randomly dropping neurons 385 

as well as their connections during training. 386 

Fig. 5. Structure of the neural network. 387 

After the neural network is constructed, we train the neural network with labeled data. We use 388 

gradient descent as the optimization method since it converges fast in large datasets [74]. In general, 389 

it iteratively optimizes weights and biases through the partial derivatives of loss function. A common 390 

training technique, namely, the backpropagation algorithm[75] is implemented in this research. The 391 

loss function in this paper is the Cross Entropy Loss, which is usually used to describe the loss of 392 

classification result. The formulations are defined in Eq. (6) and Eq. (7): 393 

J(8, K) = 	Σ.()
1 )

0#$%& 2'#
J.                                  (6) 394 

!! = −$"#!%&'!(!                                       (7) 395 

Here, 8 is the input, K is the target, L is the weight, M is the batch size. Weights are usually 396 

set to deal with unbalanced training datasets.  397 

4.3 Step3 – results refinement 398 

As shown in Fig. 6 (a), the incorrectly described points are scattered and sparse. To amend the 399 

wrongly labeled points, we start with a point clustering using DBSCAN and then filter the noise and 400 

scattered small clusters. 401 

The process of DBSCAN is illustrated in Fig. 7. DBSCAN begins with a query on an arbitrary 402 

point. If the point's N-neighborhood contains less than H;.OGP points (N(eps) and H;.OGP are the 403 
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predefined radius and the minimal number of neighboring points, respectively), it will be identified 404 

as noise. Query on this point will be terminated and passed to another arbitrary unvisited point. In 405 

contrast, if the queried point has sufficient neighbors, it will be decided as core point and start a 406 

cluster. Points in its N -neighborhood will be considered part of the cluster and queried. If a 407 

neighboring point is also identified as core point, the clustering process will be extended to it, and 408 

a new query cycle will start. On the contrary, it will be identified as border point, and this thread 409 

will end. This cluster will continue to grow until all newly added points are border points. Then, 410 

another unvisited point will be selected, and the above process will be conducted again. The 411 

clustering process will finish when all points have been visited.  412 

Through DBSCAN, every point is either assigned to a cluster or identified as noise (Fig. 6 (b)). 413 

Since incorrectly described points are scattered, we can resume that noise points and clusters with 414 

points less than a threshold were wrongly labeled and should be labeled as background (Fig. 6 (c)).  415 

Fig. 6. Results refinement (a) piers from neural network; (b) piers after DBSCAN; (c) piers after filtering. 416 

Fig. 7. Process of DBSCAN. 417 

 418 
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5. Validation 419 

5.1 Data preparation 420 

We validated our algorithm on two datasets. The first dataset is the open-source data provided 421 

by Lu et al. [15]. The raw point cloud data can be downloaded on the openly accessible website 422 

(https://zenodo.org/record/1240534). The dataset contains ten highway bridges around Cambridge 423 

shire, UK. Since three bridges in the dataset each belongs to a different bridge type and thus cannot 424 

be used for training and testing at the same time, they are excluded in this experiment. Thus, a total 425 

number of 7 bridges are included in the first dataset. We collected the second dataset using Leica 426 

P40 Terrestrial Laser Scanner (ranging error 3mm at 50m, angular accuracy 8”), including four 427 

highway bridges located in Shanghai, China. The point density was set to 3.1mm over 10m. Note 428 

that all point cloud data have been horizontally leveled. And due to memory limitation, we have 429 

conducted a voxel down-sampling with a size of 4cm. 430 

Since the structural components of different bridges have various geometric shapes, the 431 

similarity between training data and validation data must be considered in data splitting. Thus, the 432 

splitting of dataset 1 and dataset 2 is presented in Fig. 8 and Fig. 9. 433 

Fig. 8. Splitting of dataset 1. 434 

 435 

 436 

 437 
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Fig. 9. Splitting of dataset 2. 438 

5.2 Implementation 439 

The semantic segmentation system was implemented in C++ and Python based on the proposed 440 

framework. The computing environment is Intel Core i9-9900k processor clocked at 3.60 GHz, 16 441 

GB of RAM, and a NVIDIA GeForce GTX 1080ti. Parameters in the experiment are presented in 442 

Table 1. 443 

Table 1 444 
Parameter settings in the experiment. 445 

Output layer dimension Weights Batch size ! "#$%&' Minimal points number 

5 （1,10,40,100,40） 262144 0.4m 10 10000 

The output layer dimension is equal to the number of semantic categories, i.e., 5. The number 446 

of points in each category in the dataset is highly unbalanced. The ratio of points in the background, 447 

slabs, girders, pier caps, and piers is approximately 40:10:2:1:2. Considering that recognition of 448 

structural components is more important, the weights of their labels in training are set to (1, 10, 40, 449 

100, 40). Since the data sequence has been shuffled before training, only the training speed and 450 

video memory should be considered when setting the batch size. When using DBSCAN to optimize 451 

the results, N and H;.OGP depend on the point density. The minimum number of points in a point 452 

cluster depends on both the point density and the size of target components. The point clusters failing 453 

to meet the threshold will be classified as background.  454 

5.3 Results 455 

To quantitatively evaluate the performance of our algorithm, we use three criteria, i.e., 456 

Training data Testing data

Bridge2-1

Bridge2-2 Bridge2-4

Bridge2-3
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Precision (OQ), Recall ('), and Intersection over Union (IoU). 457 

OQ = 	
34

34564                                       (8) 458 

' =	
34

34561                                       (9) 459 

RFS =		
34

34564561	                                   (10) 460 

 Where TO(True Positive) is the number of correctly labeled points, UO(False Positive) is the 461 

number of wrongly labeled points, UM(False Negative) is the number of miss-labeled points.  462 

Fig. 10. IoU of semantic segmentation of descriptors with different scales. 463 

Under different descriptor radii, the IoU of bridge semantic segmentation is shown in Fig. 10. 464 

Compared to SHOT and Fast Point Feature Histograms (FPFH), our descriptors have better 465 

performance in the semantic segmentation of bridges. This proves that our descriptor has succeeded 466 

in accurately describing the geometric features of bridges. Especially when the descriptor radius is 467 

small, the IoU of our descriptor is substantially larger than the other two. This indicates our 468 

descriptor has superior local geometric feature abstracting capability. 469 

As the descriptor radius increases, IoU shows an ascending and then descending trend. The 470 

reason for the increase in IoU is that as the radius of the descriptor increases, topological 471 

relationships on a larger scale are revealed in the descriptor, making the segmentation results more 472 

accurate. The reason for the decrease of IoU is that after the descriptor radius exceeds the maximum 473 

thickness of the component, continuing to increase the descriptor size has no more positive influence 474 

on the expression of geometric features but will make the descriptors less distinguishable. Besides, 475 

the interference from the environmental point cloud will also increase, worsening the semantic 476 

segmentation results.  477 
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When the descriptor radius is 0.3 meters, IoU reaches the local maximum. At this point, the 478 

descriptor provides a balance between accuracy and robustness. Due to the lack of topological 479 

relationship, the interior points of the component cannot be accurately classified though (Fig. 11 480 

(a)). When the descriptor radius is less than 0.3 meters, noise, measurement errors, and density 481 

changes will affect the calculation of the descriptor; when the descriptor radius is slightly greater 482 

than 0.3 meters, the descriptor will be interfered with by adjacent component points and unable to 483 

describe the local geometry accurately. When the radius reaches 1.6 meters, IoU starts to reach the 484 

maximum value, which indicates that the descriptor can include the global geometric shape of the 485 

individual components and the topological relationship between different components. The interior 486 

points can be correctly labeled. Nevertheless, the segmentation of the boundary (Fig. 11 (b)) is not 487 

as accurate as of that of the small-scale descriptor (Fig. 11 (a)). When the radius increases to 3.5m, 488 

the points on the boundaries begin to be massively misclassified because of the increasing 489 

interference effect of the environmental point cloud. (Fig. 11 (c)). 490 

Therefore, to fully represent the geometric features and improve the segmentation accuracy, 491 

this study combines the descriptors with radii of 0.3 m and 1.6 m into multi-scale descriptors. We 492 

can see that both the boundary and interior points of components can be accurately classified (Fig. 493 

11 (d)). And the IoU increases from 94.31% to 96.69%. 494 

(a)                (b)                  (c)                  (d) 495 
Fig. 11. Segmentation results of descriptor radius (a) 0.3m; (b) 1.6m; (c) 3.5m; (d) 0.3m and 1.6m. 496 

Fig. 12. Semantic segmentation results from the neural network of dataset 1. 497 

 498 

 499 
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Fig. 13. Semantic segmentation results from the neural network of dataset 2. 500 

Fig. 14. Semantic segmentation results after refinement of dataset 1. 501 

Fig. 15. Semantic segmentation results after refinement of dataset 2. 502 

The semantic segmentation results from the neural network of dataset 1 and dataset 2 are shown 503 

in Fig. 12 and Fig. 13, respectively. And the results after refinement by DBSCAN are shown in Fig. 504 

14 and Fig. 15. From Fig. 12 and Fig. 13, we can see that the neural network has already performed 505 

an accurate classification for most points, while a few wrongly labeled points are distributed in a 506 

scattered and sparse pattern. Even though they seem to be dense from the present angle of view in 507 

some bridges (e.g., Bridge1-6), they are actually quite sparse that they are almost invisible in the 508 

overall point cloud. This can also be verified by the statistics in the quantitative analysis below. 509 

Comparing the above figures before and after the refinement, we can find that the wrongly labeled 510 

points have been effectively removed by Step 3.  511 

It should be noted that Bridge1-1 and Bridge1-4, Bridge1-2 and Bridge1-5, Bridge1-3 and 512 

Bridge1-6, Bridge 2-1 and Bridge2-3, Bridge2-2 and Bridge2-4 are similar in geometries in pairs 513 

Bridge1-4 Bridge1-5 Bridge1-6 Bridge1-7

Background Slab Pier

Bridge2-3 Bridge2-4

Background Slab PierPier capGirder
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respectively, one for training and the other for testing. As shown in the refined results (Fig. 14 and 514 

Fig. 15), even when only one bridge of the same type is used for training, vegetation, railings, ground 515 

road surfaces, scanning noise, and other interference objects are accurately identified as background, 516 

and bridge components can be precisely detected and segmented. Therefore, the algorithm has 517 

achieved satisfying results by small sample learning. It is interesting to note that Bridge1-7 has no 518 

bridge of the same type in the training set, but only the same type of components, and it is still 519 

accurately identified. Therefore, this method learns geometric features on component level, and the 520 

training results can be extended to bridges with different combinations of trained components. This 521 

has demonstrated that the present method has good versatility. Another strength of this method is 522 

that it can accurately classify the points on the boundaries of different components. Compared with 523 

the deep learning method that is difficult to identify the boundary points on an individual basis, this 524 

method can significantly improve the level of accuracy in geometrical modeling. It thus can greatly 525 

improve the usability of the semantic point cloud model. 526 

Table 2 527 
Quantitative analysis of semantic segmentation results from the neural network of dataset 1. 528 

 

 

Precision Recall IoU 

Slab Pier Avg. Slab Pier Avg. Slab Pier Avg. 

Bridge1-4 97.09% 97.98% 97.24% 99.55% 98.73% 99.41% 96.67% 96.76% 96.69% 

Bridge1-5 93.36% 90.12% 92.66% 94.48% 98.52% 95.31% 88.54% 88.92% 88.62% 

Bridge1-6 92.05% 97.22% 92.86% 98.42% 98.97% 98.51% 90.71% 96.25% 91.58% 

Bridge1-7 98.12% 95.48% 97.74% 97.87% 99.80% 98.13% 96.06% 95.30% 95.96% 

Avg. 95.16% 95.20% 95.13% 97.58% 99.01% 97.84% 93.00% 94.31% 93.21% 

Table 3 529 
Quantitative analysis of semantic segmentation results after refinement of dataset 1. 530 

 

 

Precision Recall IoU 

Slab Pier Avg. Slab Pier Avg. Slab Pier Avg. 

Bridge1-4 97.32% 99.16% 97.62% 99.55% 98.73% 99.41% 96.89% 97.90% 97.06% 

Bridge1-5 95.36% 98.72% 96.05% 94.45% 98.25% 95.29% 90.30% 97.28% 91.69% 

Bridge1-6 93.86% 98.28% 94.56% 98.42% 98.97% 98.51% 92.47% 97.28% 93.22% 

Bridge1-7 98.82% 98.17% 98.73% 97.87% 99.79% 98.13% 96.74% 97.98% 96.91% 

Avg. 96.34% 98.58% 96.74% 97.57% 98.94% 97.84% 94.10% 97.61% 94.72% 

The quantitative evaluation of segmentation results from the neural network is shown in Table 531 

2 and Table A.1(Appendix A). And the results after refinement are shown in Table 3 and Table 532 

A.2(Appendix A). Comparing the results, Pr and IoU of semantic segmentation are slightly 533 

improved through Step 3, while R remains basically unchanged. The reason is that the refinement 534 
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algorithm only reduces FP by re-labeling identified noise and small clusters from the structural 535 

element to background. As illustrated in Eqs. (8)(9)(10), decreasing FP only has a positive effect on 536 

improving Pr and IoU. Finally, the mean precision, recall, and IoU of all testing bridges in dataset 537 

1 and dataset 2 are calculated as 97.26%, 98.00%, and 95.38%, respectively, indicating that the 538 

proposed method can realize high-precision automatic semantic segmentation for RC slab and 539 

beam-slab bridges.  540 

Our approach also has advantages on applicability as compared with other existing methods in 541 

Table 4. Although the algorithm-based method proposed by Lu et al.[15] was quite accurate, it 542 

needed manual extraction of main structures from environmental point cloud before applying the 543 

segmentation algorithm. It also could not deal with bridges with piers of varying heights, which, 544 

however, are common in RC bridges. The learning-based method proposed by Kim et al. [24] also 545 

realized automatic semantic segmentation. However, even their training datasets (4 training bridges 546 

and 3 testing bridges) were larger than ours, they only coarsely segmented the bridges into slabs and 547 

piers. Zhang’s [76] approach successfully recognized common components in RC bridges, but it 548 

only output simple geometric primitives. From the above comparison, it can be seen that our 549 

approach has fulfilled both the accuracy and feasibility requirement. 550 

Table 4 551 
Comparison of state-of-the-art methods for bridge semantic modeling. 552 

References Methodology Fully 

Automatic 

Recognition Capability Point-wise 

Slab Girder Pier cap Pier Background 

[15] Algorithm-

based 

No Yes Yes Yes Yes No Yes 

[24] Learning-based Yes Yes No No Yes Yes Yes 

[76] Algorithm-and-

learning-based 

No Yes Yes Yes Yes No No 

Ours Algorithm-and-

learning-based 

Yes Yes Yes Yes Yes Yes Yes 

To compare the performance of the proposed method with end-to-end learning-based models, 553 

we implement PointNet on dataset 1. The parameters are set according to the work of Kim et al. 554 

[24]. The results are presented in Fig. 16 and Table 5. We can see that PointNet performs notably 555 

poorly. For instance, the boundaries between objects are not clearly segmented, which has the chain 556 

effect in the subsequent geometric modeling process. The quantitative analysis in Table 3 and Table 557 

5 confirms that our method can accomplish more accurate semantic segmentation with small 558 
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learning sample compared to deep learning model. It can also be seen that Bridge1-7 is substantially 559 

poorly segmented by PointNet, which confirms the claim that our approach is more versatile to 560 

bridges with varying combinations of components. Furthermore, unlike the local descriptor, 561 

PointNet will fail to recognize the same object if it rotates. Data augmentation is required to solve 562 

this problem, which will consume considerable computing resources. Besides, for large-scale scenes, 563 

we need to divide the point cloud into partitions before training the PointNet. Since the maximum 564 

number of points in each partition is limited by video memory, the spatial resolution of the point 565 

cloud will be compromised to reserve the global context. The proposed combined local descriptor 566 

and machine learning approach only concerns local regions and thus has the evident advantage when 567 

high precision semantic models are demanded. 568 

Fig. 16. Semantic segmentation results of dataset 1 by PointNet. 569 

Table 5 570 
Quantitative analysis of semantic segmentation results of dataset 1 by PointNet. 571 

5.4 Discussion 572 

Since the proposed combined local descriptor and machine learning based method employs 573 

surface normals of points to represent geometric features, the level of precision on estimating the 574 

surface normals can heavily affect the performance of this method. This brings about a strict request 575 

to the quality of point cloud data, including spatial resolution, precision, and the level of 576 

completeness. The impact of these three factors will be quantitatively analyzed in the following 577 

paragraphs. 578 

 

 

Precision Recall IoU 

Slab Pier Avg. Slab Pier Avg. Slab Pier Avg. 

Bridge1-4 84.73% 58.23% 80.89% 41.42% 23.49% 38.37% 38.55% 20.10% 35.18% 

Bridge1-5 96.86% 53.57% 86.50% 59.24% 40.09% 55.32% 58.12% 29.75% 50.92% 

Bridge1-6 96.72% 90.29% 95.54% 87.66% 93.77% 88.67% 85.14% 85.18% 85.14% 

Bridge1-7 74.42% 76.17% 74.47% 14.62% 2.68% 12.97% 13.92% 2.66% 12.42% 

Avg. 88.18% 69.57% 84.35% 50.74% 40.01% 48.83% 48.93% 34.42% 45.92% 

Bridge1-4 Bridge1-5 Bridge1-6 Bridge1-7

Background Slab Pier
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From Table 3, we can see that the segmentation accuracy of Bridge 1-5 is poor. The primary 579 

reason is that the normal vector and descriptor estimation of points in the interior of slabs are 580 

inaccurate due to low point density. To examine the spatial resolution required for normal vector 581 

and descriptor calculations, we use different voxel down-sampling distances to simulate point 582 

clouds with different densities. The segmentation results are shown in Fig. 17. When the minimum 583 

distance between the points reaches 4 cm, the IoU reaches the maximum value. If the spatial 584 

resolution is inadequate, the calculation of the normal vector and the descriptor tends to be 585 

inaccurate. Therefore, a spatial resolution of 4 cm is chosen to meet the requirements of descriptor-586 

based algorithms in this approach. It is worth noting that although our approach is rather robust 587 

despite the point density variation in point cloud data, it may present problems in the event of very 588 

sparse points. This is related to the scale we set for the determination of a point’s neighborhood. 589 

When the spatial density decreases dramatically at some points, the number of points enclosed might 590 

not be adequate to conduct eigenvalue decomposition and estimate the surface normal. The low 591 

point density in certain local regions, however, frequently happens in the point cloud of bridges 592 

since long scanning distances or large angles of reflection are often demanded to capture some 593 

unreachable locations (e.g., girders and road surfaces on the bridge). In the future, we will attempt 594 

to develop interpolating or up-sampling algorithms to rectify the partial spatial resolution deficiency 595 

problem. 596 

Fig. 17. IoU of semantic segmentation with different spatial resolutions. 597 

So far, our method has only been validated on high-precision laser scanning point clouds, on 598 

which the estimation of normal vectors is satisfactory. However, point clouds obtained by 599 

photogrammetry, depth cameras, and lidars are not that accurate. To investigate the impact of point 600 

accuracy on the segmentation results, we add Gaussian Noise to the coordinates of points to simulate 601 
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scanning errors. The theoretical basis is that scanning errors usually follow the Gaussian distribution 602 

with zero mean. Thus, we can adjust the value of standard deviation V	to generate point clouds with 603 

different levels of scanning errors. The IoU of semantic segmentation with different standard 604 

deviations is presented in Fig. 18. We can see that scanning errors have a negative influence on 605 

semantic segmentation. However, when the standard deviation is less than 4cm, the benefits of a 606 

higher scanning accuracy are not substantial. Therefore, a level of scanning error around 4cm will 607 

be adequate for this method, and it is not unreachable for other data acquisition means. But the 608 

usability of our method on point clouds acquired through other devices still needs further 609 

experimental investigation. 610 

Fig. 18. IoU of semantic segmentation with different scanning accuracies. 611 

In the results of dataset 2 (Table A.2), the segmentation result of pier caps is less satisfactory 612 

than that of other elements. This is due to two factors, namely, (1) the similarity of pier caps’ 613 

geometries in the training and testing data is rather low; (2) the pier caps in the training data are 614 

heavily occluded by vegetation. To address the similarity issue, using more training data will be one 615 

of the solving options. For the occlusion problem, we have conducted quantitative analysis on the 616 

relationship between the level of completeness and the segmentation results (Fig. 19). The 617 

occlusions are simulated by randomly dropping point groups with GFGIJ	.WH:XQ	F>	YF;.GP/500 618 

points from original training data. It can be concluded that the segmentation of slabs, girders, and 619 

piers is only slightly affected by occlusions. However, lack of completeness will heavily impact the 620 

identification of pier caps. It is because pier caps are usually located in the intersection areas of all 621 

structural components, which have complex geometries and topological relationships. Consequently, 622 

occlusions will significantly disturb the performance of descriptors in pier caps. To conclude, during 623 

laser scanning, the level of completeness should be considered to outweighing spatial resolution and 624 
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scanning accuracy.  625 

Fig. 19. IoU of semantic segmentation with different levels of completeness. 626 

From the above analysis, it can be seen that our method is efficient in detecting the key 627 

components in RC slab and beam-slab bridges. Also, the method can be used in other structures 628 

such as buildings and tunnels whose structural components can be equally represented by the similar 629 

descriptors. Although there is more room to improve in the future, the present method has provided 630 

a very promising means to automate semantic segmentation with limited training data. Such future 631 

work includes enriching the descriptors for structures of more complex geometric shapes and 632 

structural components.   633 

 634 

6. Conclusions 635 

This paper proposes a combined local descriptor and machine learning based method to detect 636 

primary structural components in bridges. After comparing various descriptors' performance in 637 

different scales, we choose a customized multi-scale local descriptor for each point in the point 638 

cloud. ANN is then applied to classify points according to the calculated descriptors, and results are 639 

further refined by DBSCAN. The validation results prove that our method has a high degree of 640 

segmentation accuracy on RC slab and beam-slab bridges. Since it requires no manual data 641 

preprocessing, it offers an approach to facilitate the automatic semantic segmentation of RC bridges. 642 

The novel contributions of this research are as follows: 643 

1. The present method can automatically distinguish environmental point clouds such as vegetation, 644 

ground road surfaces, and scanning noise. Thus, the semantic segmentation requires no manual data 645 
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preprocessing and operates in a fully automated manner. 646 

2. This method designs a multi-scale local descriptor customized for standard geometric features in 647 

typical structural settings. Therefore, the performance of our descriptor in recognition of structural 648 

components substantially overweighs other traditional descriptors created for generic objects in 649 

computer science.  650 

3. The proposed method depends on identifying the geometric features of various objects by machine-651 

learning the distribution patterns of normal vectors on a high abstraction level. Thus, in contrast to 652 

algorithm-based approaches, it requires no specific assumption on geometries and accomplishes 653 

higher versatility. 654 

4. The proposed combined local descriptor and machine learning based method for semantic 655 

segmentation only requires small learning sample. Experiments in this study have demonstrated that 656 

this method can improve the mean IoU from 45.92% to 94.72% as compared to PointNet. This has 657 

well addressed the problem of gaining a large amount of training data encountered in practice.  658 

5. From the computational cost perspective, this method can reduce computational cost since 659 

descriptors are only attached to local regions. So large-scale bridges with high-density point clouds 660 

can also be easily dealt with.  661 

However, this method still has some obvious limitations as follows: 662 

1. The performance of descriptors heavily depends on the calculation of normal vectors at each point. 663 

It has been suggested that a minimum spatial resolution of 4cm and a maximum scanning error of 664 

4cm should be met in order to achieve satisfactory semantic segmentation. No experimental evidence 665 

has confirmed that the present method may be directly applicable to the less accurate reality capture 666 

solutions (e.g., photogrammetry, depth camera, and lidar), which requires future exploration. 667 

2. Although the method is not sensitive to the variation of spatial resolution in point clouds, very 668 

dramatic drop in point density may cause problems in calculating descriptors correctly. Density 669 

smoothening techniques (e.g., up-sampling or local densification) can be considered to solve this 670 

issue.  671 

3. The level of completeness of the point cloud has a large impact on the recognition of some 672 

components such as pier caps. Due measures (e.g., changing scanning angles or distances) should 673 

be taken when scanning the locations where occlusion may occur.    674 

4. It is noted that the local descriptor is designed and proven to work well in RC slab and beam-slab 675 
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bridges. For other types of bridges with complex geometry (e.g., truss bridges) or other infrastructure, 676 

the proposed methodology may as well have the potential but needs further experimental verification.  677 

In conclusion, the proposed method has realized automatic semantic segmentation of typical 678 

bridges, which has fulfilled one key step in carrying out automatic BrIM. Future works will 679 

concentrate on (1) collecting point clouds with different devices to investigate the applicability of 680 

our method; (2) validating the proposed method on other types of infrastructure; and (3) developing 681 

IFC entity fitting algorithms to realize automatic BrIM.  682 
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Appendix A 

Table A.1 
Quantitative analysis of semantic segmentation results from the neural network of dataset 2. 

 

 

Precision Recall IoU 

Slab Girder Pier cap Pier Avg. Slab Girder Pier cap Pier Avg. Slab Girder Pier cap Pier Avg. 

Bridge2-3 97.77% None 91.44% 95.90% 96.84% 99.66% None 84.40% 99.35% 97.67% 97.45% None 78.22% 95.30% 94.65% 

Bridge2-4 98.68% 98.70% 95.33% 95.68% 98.22% 99.60% 99.05% 92.77% 99.36% 98.99% 98.29% 97.78% 88.73% 95.09% 97.25% 

Avg. 98.23% 98.70% 93.39% 95.79% 97.53% 99.63% 99.05% 88.59% 99.36% 98.33% 97.87% 97.78% 83.48% 95.20% 95.95% 

 

Table A.2 
Quantitative analysis of semantic segmentation results after refinement of dataset 2. 

 

 

Precision Recall IoU 

Slab Girder Pier cap Pier Avg. Slab Girder Pier cap Pier Avg. Slab Girder Pier cap Pier Avg. 

Bridge2-3 98.30% None 97.97% 96.58% 98.09% 99.66% None 84.40% 99.35% 97.67% 97.97% None 82.95% 95.97% 95.85% 

Bridge2-4 98.78% 98.99% 97.37% 95.98% 98.51% 99.60% 99.05% 92.77% 99.36% 98.99% 98.39% 98.06% 90.50% 95.40% 97.54% 

Avg. 98.54% 98.99% 97.67% 96.28% 98.30% 99.63% 99.05% 88.59% 99.36% 98.33% 98.18% 98.06% 86.73% 95.69% 96.70% 
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