
Royal College of Surgeons in Ireland

repository@rcsi.com

Astrocyte-neuron circuits in epilepsyAstrocyte-neuron circuits in epilepsy

AUTHOR(S)

Benton S Purnell, Mariana Alves, Detlev Boison

CITATION

Purnell, Benton S; Alves, Mariana; Boison, Detlev (2023): Astrocyte-neuron circuits in epilepsy. Royal College
of Surgeons in Ireland. Journal contribution. https://hdl.handle.net/10779/rcsi.22284793.v1

HANDLE

10779/rcsi.22284793.v1

LICENCE

CC BY-NC-ND 4.0

This work is made available under the above open licence by RCSI and has been printed from
https://repository.rcsi.com. For more information please contact repository@rcsi.com

URL

https://repository.rcsi.com/articles/journal_contribution/Astrocyte-neuron_circuits_in_epilepsy/22284793/1

mailto:repository@rcsi.com
https://hdl.handle.net/10779/rcsi.22284793.v1
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://repository.rcsi.com
mailto:repository@rcsi.com
https://repository.rcsi.com/articles/journal_contribution/Astrocyte-neuron_circuits_in_epilepsy/22284793/1


Neurobiology of Disease 179 (2023) 106058

Available online 1 March 2023
0969-9961/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Astrocyte-neuron circuits in epilepsy 
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A B S T R A C T   

The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated 
comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and 
are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as 
spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular 
approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a 
healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures 
(ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, as-
trocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the 
tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier 
integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. 
Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important 
implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in 
neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased 
capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astro-
cytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. 
Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the 
specific context of the comorbid occurrence of epilepsy and Alzheimer’s disease and the disruption in sleep-wake 
regulation associated with both conditions.   

1. Introduction 

Astrocytes are a type of star-shaped glia whose abundance in the 
human brain almost reaches that of neurons (von Bartheld et al., 2016). 
The significance of astrocytes has historically been underappreciated; 
however, it is now increasingly well understood that astrocytes can 
substantially augment neuronal activity at the millions of synapses with 
which they interact (Kimelberg and Nedergaard, 2010; Oberheim et al., 
2009). Recent studies have yielded more granular insights into the range 
of astrocyte diversity based on transcriptomic profiling, immunohisto-
chemistry, and functional read-outs (Chai et al., 2017; Khakh and 
Sofroniew, 2015; Oberheim et al., 2012). Like neurons, astrocytes are a 
heterogenous category of cells which vary in critical aspects between 
neural circuits, developmental time points, and conditions of health and 
disease (Bayraktar et al., 2014; Ben Haim and Rowitch, 2017). Among 

their various interrelated physiological functions, astrocytes play a key 
role in maintaining blood-brain barrier structure and permeability 
properties by directly interacting with endothelial cells and pericytes 
(Abbott et al., 2006). They mediate neurovascular coupling (Petzold and 
Murthy, 2011), and are involved in blood flow regulation and energy 
metabolism (Boison and Steinhauser, 2018; Koehler et al., 2009), thus 
providing metabolic support to neurons. They also influence the pH and 
concentrations of ions in the extracellular space (David et al., 2009; 
Deitmer et al., 2019). As part of the tripartite synapse, astrocytes 
regulate extracellular concentrations of neurotransmitters and release 
signaling molecules of their own in the form of gliotransmission (Halassa 
et al., 2007). Even the size of the extracellular space itself is largely 
dictated by the dilation and contraction of astrocytes (Haj-Yasein et al., 
2012; Yao et al., 2008). 

Epilepsy is a highly prevalent set of disorders characterized by 
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spontaneous periods of excessive synchronous neuronal activity in the 
form of seizures (Sander, 2003; Sander and Shorvon, 1996). Broadly, 
epilepsy is caused by an imbalance between inhibitory and excitatory 
signaling in favor of the later (McCormick and Contreras, 2001; Staley, 
2015). Despite the broadening array of clinically available anti-seizure 
medications, rates of drug resistant epilepsy have remained stable for 
decades (Kwan and Brodie, 2006). Improving our capacity to treat pa-
tients with epilepsy may necessitate the identification of different drug 
targets and novel approaches to pharmacotherapy. The development of 
most currently available drugs has focused on neurons. Perhaps, the 
development of astrocyte-based epilepsy therapies will reduce the rate 
of refractory epilepsy where neuron-focused approaches have failed. 

In normal healthy conditions, astrocytes are in a constant state of 
active participation in the function of neural circuits; however, various 
pathologies and insults to the central nervous system shift their function 
to an ‘activated state’ through the process of reactive astrogliosis 
(Halassa et al., 2007). Astrogliosis is a complex and dynamic cell 
response to a variety of pathological conditions which involves a spec-
trum of genetic, epigenetic, molecular, metabolic, morphological, and 
functional changes that are context-dependent and regulated by specific 
signaling events (Halassa et al., 2007; Sofroniew, 2009; Zamanian et al., 

2012). Reactive astrogliosis is a hallmark of the epileptic focus both in 
human epilepsy and animal models (Binder and Steinhauser, 2006; 
Binder and Steinhauser, 2021; Devinsky et al., 2013). The multiple 
mechanisms through which astrocytes are linked to epilepsy are sum-
marized in Fig. 1 and will be discussed in more detail in subsequent 
sections of this article. 

The significance of astrocytes and astrogliosis in epilepsy is the 
subject of intense empirical investigation. Our general knowledge in this 
area has expanded so rapidly that it is useful to step back and consider its 
implications in specific contexts. The purpose of this review is (1) to 
summarize and discuss the multifarious roles played by astrocytes in 
neural circuits of the epileptic brain in general and (2) to consider the 
explanatory power of astrocytic dysfunction in the interplay between 
epilepsy, related neurological disorders with a glial pathology, and their 
associated comorbidities. We will present the case for the hypothesis 
that astrocytes contribute to the frequent comorbid occurrence of epi-
lepsy and Alzheimer’s disease and the disruption in sleep-wake regula-
tion associated with both conditions. 

Fig. 1. Schematic diagram depicting the mecha-
nistic interplay in astrocytic function in epilepsy. 
Mechanistically linked alterations in astrocytic func-
tion have been color coded. Red highlights seizures 
and the increased neuronal excitability that pre-
cipitates them. Purple highlights purine related 
changes. Orange highlights the sequalae of astro-
gliosis beyond its implications for adenosine 
signaling. Green highlights alterations in gluta-
matergic gliotransmission. Blue highlights the conse-
quences of seizure-induced blood-brain barrier 
dysfunction. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
web version of this article.)   
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2. Gliotransmission and the tripartite synapse 

Neurons and their synapses do not operate in isolation. Astrocytes, 
through their elaborate cellular processes, are tightly associated with 
neuronal synapses, and it is generally agreed that each astrocyte could 
associate with over 100,000 synapses (Bushong et al., 2002). Revela-
tions regarding the intricate interactions between synapses and astro-
cytic processes led to the concept of the “tripartite synapse” through 
which astrocytes have the unique capability to alter the contents of the 
synaptic space by reuptake of neurotransmitters and release of their own 
gliotransmitters and thereby to modulate and fine-tune the activity of 
neurons (Araque et al., 1999). Several gliotransmitters are of importance 
within the context of epilepsy and may offer opportunities for thera-
peutic intervention: (1) Astrocytes express all the necessary components 
for vesicular glutamate release and, indeed, Ca2+− dependent release of 
glutamate-laden vesicles has been documented in vitro and in vivo 
(Bezzi et al., 2004; Bohmbach et al., 2018; Nedergaard, 1994; Parpura 
et al., 1994). Through the activation of neuronal glutamate receptors, 
astrocytes can directly lower the threshold for ictal activity (Gomez- 
Gonzalo et al., 2010). Accordingly, intracortical injection of the che-
moconvulsant kainic acid increases astrocytic Ca2+ levels seconds prior 
to the onset of seizures (Heuser et al., 2018). Conversely, pharmaco-
logical, or genetic approaches to inhibition of astrocytic transmitter 
release were shown to interfere with the ictogenic and epileptogenic 
processes (Clasadonte et al., 2013; Riquelme et al., 2020). (2) In addi-
tion, astrocytes can control long-term potentiation through the release 
of the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine 
(Henneberger et al., 2010; Papouin et al., 2017). This astrocytic regu-
lation of synaptic plasticity has important implications for learning and 
memory in conditions of health and for network excitability in epilepsy. 
(3) ATP is an important astrocyte derived gliotransmitter (Pascual et al., 
2005), which can either directly activate pre- and postsynaptic P2 re-
ceptors, or – after its sequential dephosphorylation to adenosine – lead 
to the activation of adenosine receptors, among which the adenosine A1 
receptor (A1R) mediates the antiseizure effects of adenosine, which is an 
endogenous seizure terminator (Beamer et al., 2021; Dragunow, 1991; 
During and Spencer, 1992). In general, ATP and adenosine play 
opposing roles in epilepsy (Beamer et al., 2021). Extracellular adenosine 
exerts anticonvulsive and neuroprotective effects by acting on pre- and 
postsynaptic A1Rs, whereas the activation of P2 receptors by increased 
extracellular ATP promotes seizures and the development of epilepsy 
(Beamer et al., 2021). Accordingly, in epilepsy patients and animal 
models there is increased P2 receptor expression (Engel et al., 2016; 
Jimenez-Pacheco et al., 2013; Vianna et al., 2002). Based on its role as 
an endogenous anticonvulsant, local adenosine augmentation therapies 
have been developed in experimental models to selectively augment 
adenosine signaling in the vicinity of the seizure focus (Boison, 2012). 
Importantly, adenosine has additional, adenosine receptor independent, 
antiepileptogenic and disease modifying properties as will be discussed 
in more detail below. Inhibition of astrocytic ATP release through the 
FDA-approved Panx1 channel blockers probenecid or mefloquine sup-
pressed epileptiform activity in resected cortical tissue from epilepsy 
patients and decreased seizures in a mouse model of acquired epilepsy, 
highlighting the proconvulsant roles of ATP (Dossi et al., 2018). (4) 
Finally, astrocytes can also release GABA, which generates hyper-
polarizing currents and tonic inhibition (Yoon and Lee, 2014). At least 
two studies demonstrate that in rodent models of temporal lobe epilepsy 
reactive astrocytes overproduce and release GABA, which then activates 
tonic GABAAR-mediated currents in excitatory neurons and thereby in-
creases seizure thresholds (Muller et al., 2020; Pandit et al., 2020). This 
increase in astrocytic GABA signaling may be a compensatory mecha-
nism which counterbalances the reduction in GABAergic signaling due 
to loss of inhibitory interneurons (Muller et al., 2020; Pandit et al., 
2020). 

The examples enumerated above demonstrate first that aberrant 
gliotransmission plays an important role in the pathophysiology of 

epilepsy, and second that gliotransmission is a promising target for 
therapeutic intervention. In line with this conclusion, commonly used 
antiseizure medications including phenytoin, valproic acid, and gaba-
pentin suppress astrocytic Ca2+ signaling during seizures implying that 
part of the therapeutic benefits of those agents is mediated by the in-
hibition of gliotransmission (Tian et al., 2005). The therapeutic target-
ing of maladaptive gliotransmitter release might be a strategy to modify 
the etiology of epilepsy and to prevent its genesis and progression 
(Beamer et al., 2021; Riquelme et al., 2020; Vezzani, 2022; Williams- 
Karnesky et al., 2013). 

2.1. Blood-brain barrier dysfunction 

The blood-brain barrier is an actively maintained partition, the se-
lective permeability of which is critical to maintaining the healthy 
function of the central nervous system (Daneman and Prat, 2015). 
Generally, the blood-brain barrier passively permits the passage of small 
lipophilic molecules; however, it is also capable of actively transporting 
molecules to the brain that would not have passively diffused and 
metabolizing or pumping out molecules that would have passively 
diffused into the brain (Abbott, 2013; Loscher and Friedman, 2020). The 
blood-brain barrier is comprised of an inner layer of tightly joined 
endothelial cells which envelop capillaries in the brain. These endo-
thelial cells are in turn surrounded by pericytes and the end-feet pro-
jections of astrocytes (Daneman and Prat, 2015). 

It has long been appreciated that seizures increase the permeability 
of the blood-brain barrier (Bauer and Leonhardt, 1956; Lorenzo et al., 
1975). However, this increased permeability is not a general broadband 
effect and may be more pronounced for some molecules than others 
(Kang et al., 2013). Seizures can cause pathophysiological alterations in 
perivascular astrocytes (Friedman et al., 2009) likely due to the pene-
trance from the blood into the brain of substances which ordinarily 
would have been excluded. Perhaps the most thoroughly characterized 
substance to inappropriately enter the brain during seizures and 
adversely affect astrocytes is albumin. 

Albumin protein is abundantly found in the blood and the deleterious 
effects of its extravasation into the brain during seizures have been well 
documented. Albumin extravasation has been observed in epilepsy pa-
tients and animal models (Seiffert et al., 2004; van Vliet et al., 2007a). 
Blood-brain barrier dysfunction or the direct application of albumin to 
the brain causes astrogliosis, the development of an epileptic focus, and 
reductions in the clearance of extracellular glutamate and potassium 
(David et al., 2009; Seiffert et al., 2004). The uptake of albumin into 
astrocytes is mediated by transforming growth factor β (TGF-β) receptor 
activation (Ivens et al., 2007). Activation of the TGF-β signaling pathway 
has been implicated in epileptogenesis and blocking this pathway is 
therapeutically beneficial in animal models (Cacheaux et al., 2009; Ivens 
et al., 2007). Furthermore, albumin exposure increases the release of 
matrix metalloproteinase 9 via activation of the mitogen-activated 
protein kinase (MAPK) signaling pathway (Ralay Ranaivo et al., 
2012). Matrix metalloproteinase 9 has been implicated in epilepto-
genesis due to its role in seizure-induced cell death and dendritic spine 
morphology (Kim et al., 2009; Michaluk et al., 2011). 

Increased albumin uptake by astrocytes as a result of blood-brain 
barrier disfunction and the resulting signaling cascade can reduce K+

buffering capacity and increase neuronal excitability via a decrease in 
Kir4.1 channels, AQP4 aquaporin channels, glutamate transporters, and 
an impairment in astrocytic gap junction coupling (Braganza et al., 
2012; David et al., 2009; Ivens et al., 2007). The functional significance 
of many of these changes beyond what is directly pertinent to peri-
vascular astrocytes will be discussed in further detail in other 
subsections. 

In temporal lobe epilepsy patients, AQP4 expression is reduced in the 
perivascular end feet relative to healthy comparison tissue (Eid et al., 
2005). This disruption in AQP4 localization is the result of decreased 
dystrophin in the perivascular end feet, which normally anchor AQP4 

B.S. Purnell et al.                                                                                                                                                                                                                               



Neurobiology of Disease 179 (2023) 106058

4

channels (Eid et al., 2005). In a rat seizure model, reduced AQP4 
expression colocalizes with blood-brain barrier dysfunction (Bankstahl 
et al., 2018). As will be discussed in more detail in the subsections on 
water and K+ homeostasis, loss of aquaporin expression is significant, as 
water influx through these channels is thought to be necessary for 
concomitant K+ buffering (Holthoff and Witte, 1996; Strohschein et al., 
2011). In line with this understanding, a transgenic manipulation, which 
caused reduced AQP4 in the perivascular end feet of mice, impaired K+

clearance following neuronal activity and caused more severe seizures 
during a hyperthermic challenge (Amiry-Moghaddam et al., 2003). 

In addition to the potential role of astrocyte dysfunction in the 
excessive permeability of the blood-brain barrier during seizures, 
pathological changes in perivascular astrocytes may adversely affect 
penetrance of anti-seizure drugs into the brain by overexpressing 
multidrug transporters and multidrug resistance proteins (Aronica et al., 
2012b; Lazarowski et al., 2007; Tishler et al., 1995; van Vliet et al., 
2005). These changes have been documented in the resected tissue of 
human epilepsy patients (Tishler et al., 1995). Studies using inducible 
animal models indicate that the increase in these proteins is the result of 
the epileptiform activity (Hoffmann et al., 2006; Marchi et al., 2006) as 
opposed to being a risk factor that predisposes the brain to epilepsy. 
Studies using animal models have also indicated that these multidrug 
transporters and multidrug resistance proteins meaningfully alter the 
concentration of peripherally administered anti-seizure medications in 
the brain (van Vliet et al., 2007b; van Vliet et al., 2010). Additionally, 
inhibition of the MAPK signaling pathway in animal models decreases 
the expression of multidrug transporters and increases the penetrance of 
anticonvulsant drugs into the brain (Shao et al., 2016). 

To summarize, epilepsy and seizures impair blood-brain barrier 
function allowing harmful materials from the blood into the brain. 
Perivascular astrocytes are a crucial physical component of the blood- 
brain barrier, but in epilepsy their function is adversely affected by: 
(1) overexpression of multidrug transporters and multidrug resistance 
proteins; (2) decreased glutamate transporter expression and conse-
quent impaired glutamate buffering; (3) a reduction in perivascular 
AQP4 channels and consequent impairments in K+ buffering; (4) 
decreased inward rectifying potassium channel expression causing 
further impairment in K+ buffering; and (5) impaired astrocytic gap 
junction coupling causing yet further impairment of K+ buffering. 

2.2. Inflammation and oxidative stress 

Injuries and insults to the brain as varied as traumatic brain injury, 
stroke, status epilepticus, and viral infection can trigger a surprisingly 
uniform sequence of events contributing to the development of epilepsy 
(Klein et al., 2018). Those changes include neuroinflammation, oxida-
tive stress, microglial, and astrocytic activation, culminating in astro-
gliosis, a pathological hallmark of temporal lobe epilepsy (Pauletti et al., 
2019; Terrone et al., 2020; Vezzani, 2022). In this section we focus on 
mechanisms of astrocyte activation and bi-directional interactions be-
tween astrocytes, neuroinflammation, and oxidative stress. In human 
and experimental epilepsy, it has been shown that astrocytes can pro-
duce and release cytokines and chemokines in immunologically relevant 
concentrations (Aronica et al., 2012a; Devinsky et al., 2013; Vezzani 
et al., 2019). On the other hand, an inflammatory phenotype in astro-
cytes can be triggered by a variety of cytokines, chemokines, and danger 
signals, which can be released by reactive microglia or the microvas-
culature (Eyo et al., 2017; Liddelow et al., 2017; Ravizza et al., 2008). 
Acute epilepsy-triggering insults to the brain lead to the release of ATP 
(Fields, 2011), a major source of adenosine (Yegutkin et al., 2011), of 
complement factors (Benson et al., 2015; Gruber et al., 2022), prosta-
glandins (Rojas et al., 2019), and danger signals such as the chromatin 
associated protein high mobility group box 1 (Maroso et al., 2010; 
Zurolo et al., 2011), which all contribute to the activation of astrocytes 
and the induction of an inflammatory phenotype. In particular, 
increased A2AR activation through excessive injury-induced adenosine 

production promotes neuro-inflammatory processes and neuro-
degeneration (Rebola et al., 2011) along with microglial (Madeira et al., 
2018) and astroglial (Brambilla et al., 2003) activation. Those processes 
all contribute to epileptogenesis (Klein et al., 2018). Once activated, 
altered astrocyte function plays a key role in the reduction of seizure 
thresholds (Li et al., 2007a; Sano et al., 2021) and the development of 
epilepsy (Li et al., 2008a; Li et al., 2008b). 

Because neuroinflammation and oxidative stress are intricately 
linked, there is a strong rationale for the astrocyte-mediated redox-based 
control of hyperexcitability in epilepsy. Astrocytes produce the antiox-
idant glutathione, and the astrocyte-to-neuron glutathione shuttle re-
plenishes neuronal glutathione pools. This is a major antioxidant 
defence mechanism of the brain, which rescues mitochondrial function 
during seizures. In addition, increased neuronal activity promotes the 
activity of nuclear factor erythroid 2-related factor 2 (Nrf2) in astrocytes 
and thereby activates anti-inflammatory, antioxidant, and cytopro-
tective pathways (Habas et al., 2013). Therapeutic activation of the Nrf2 
pathway or replenishing the glutathione pool with N-acetylcysteine 
might be promising therapeutic approaches to alter the redox status in 
epilepsy and thereby increase neuroprotection, decrease seizures, and 
inhibit epileptogenesis and the development of cognitive comorbidities 
(Pearson-Smith and Patel, 2017; Terrone et al., 2017; Vezzani et al., 
2019). Furthermore, interference with the aforementioned inflamma-
tory cytokine high mobility group box 1 using monoclonal antibodies 
has shown therapeutic potential in several electrical and chemical ani-
mal models of epilepsy and in resected tissue from human patients (Zhao 
et al., 2017; Zhao et al., 2020). 

2.3. The astrocyte to neuron lactate shuttle 

Neuronal networks increase their demand for energy during epileptic 
activity. This energy deficiency is compensated by a stimulation of 
glycolysis in astrocytes, which triggers a rapid decrease in intracellular 
glucose concentrations and a simultaneous increase in the metabolic 
product pyruvate. Pyruvate is then transformed into lactate through the 
enzyme lactate dehydrogenase. Through this sequence of metabolic re-
actions lactate, formed in astrocytes, becomes a major energy source to 
sustain the energy demands of hyperactive neuronal networks. This 
energy transfer process is enabled by an astrocyte-to-neuron lactate 
shuttle (Pellerin and Magistretti, 1994). In line with the notion that 
seizure-induced lactate formation promotes epileptic seizures, lactate 
dehydrogenase inhibitors, such as the FDA-approved drug stiripentol, 
provide potent anticonvulsant effects (Sada et al., 2015). Stiripentol, by 
blocking lactate dehydrogenase, is uniquely suited to dampen glycolysis 
by reducing the availability of NAD+ and by promoting the oxidative 
mitochondrial metabolism of pyruvate as an incoming metabolite to 
support Krebs cycle activity. This hypothesis has been challenged by 
findings suggesting that both astrocytic glycolysis as well as the 
astrocyte-to-neuron lactate shuttle depend on AMP activated protein 
kinase (AMPK) in astrocytes (Muraleedharan et al., 2020), which acts as 
a major energy sensor. In line with those findings, AMPK knockout mice 
were characterized by a depletion of lactate and reduced seizure pro-
pensity; however, the cell-type selective disruption of AMPK in astro-
cytes promoted neurodegeneration (Muraleedharan et al., 2020). While 
these findings appear to be contradictory, they demonstrate the 
complexity of astrocyte metabolism in the regulation of lactate and brain 
energy homeostasis. 

2.4. Gap junction coupling 

In healthy conditions, astrocytes are connected by specialized pore 
forming transmembrane proteins that link their intracellular space 
called gap junctions (Fischer and Kettenmann, 1985; Lee et al., 1994). 
The cytosolic connections afforded by gap junctions provide an oppor-
tunity for the rapid passage of electrical currents, ions, and small mol-
ecules (Giaume et al., 1997; Wallraff et al., 2006). Gap junctions have 
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been implicated in astrocytic water homeostasis and, by proxy, extra-
cellular space volume dynamics (Pannasch et al., 2011). Astrocytic 
connections via gap junctions increase their capacity to provide meta-
bolic resources to neighboring neurons, which is ostensibly adaptive 
under normal conditions, but may prolong seizures (Giaume et al., 1997; 
Rouach et al., 2008). 

Transgenic downregulation of astrocyte coupling via gap junctions in 
mice marginally impairs K+ buffering, increases vulnerability to seizure 
activity, decreases glutamate clearance, and increases astrocytic 
swelling (Pannasch et al., 2011; Wallraff et al., 2006). Observations of 
the expression of gap junctions in resected human epileptic tissue have 
generated mixed results with some studies reporting no change (Eli-
sevich et al., 1997b), other studies reporting increases (Aronica et al., 
2001; Fonseca et al., 2002; Naus et al., 1991), and yet others reporting a 
mix of up and downregulation depending on the specific protein in 
question (Collignon et al., 2006). Similarly inconsistent observations 
have been made in animal models with decreased (Elisevich et al., 
1997a; Xu et al., 2009), increased (Condorelli et al., 2002; Takahashi 
et al., 2010), or unchanged gap junction expression (Khurgel and Ivy, 
1996) all having been observed depending on experimental parameters 
and the specific protein being examined. 

The mixed results pertaining to gap junction expression in epilepsy 
patients and experimental models is likely a function of the disparate 
effects that these channels might have on tissue excitability. On the one 
hand, gap junction expression is thought to contribute to normal 
astrocytic K+ buffering and volume compensation (Pannasch et al., 
2011; Wallraff et al., 2006). Unchecked increases in extracellular K+ and 
decreases in the volume of the extracellular space consequent to gap 
junction downregulation would be expected to increase excitability. On 
the other hand, gap junctions may also increase astrocytic Ca2+

signaling and their capacity to provide metabolic support for local 
neurons (Fujii et al., 2017; Rouach et al., 2008). Decreased propagation 
of Ca2+ waves and reduced neuronal energetic support consequent to 
gap junction downregulation would be expected to decrease excitability. 
Additional experimentation is needed to further elucidate the adaptive 
and pathological roles of gap junctions in different epilepsy subtypes. 

2.5. Dysregulation of water homeostasis 

Aquaporins are membrane bound channels that allow the transport 
of water molecules across cell membranes in the direction of osmotic 
gradients (Verkman, 2009). AQP4 is the most abundantly expressed of 
the aquaporin channels in glial cells of the central nervous system 
(Mader and Brimberg, 2019; Papadopoulos and Verkman, 2013). 
Expression of AQP4 is most concentrated in glial cells adjacent to blood 
vessels along with the subarachnoid and ventricular spaces (Hubbard 
et al., 2015). Hydration status influences seizure susceptibility with 
rapid increases in water content being proconvulsant and dehydration 
being anticonvulsant (Andrew, 1991; Andrew et al., 1989). 

There is a net increase in AQP4 expression in the sclerotic hippo-
campi of human epilepsy patients (Eid et al., 2005; Lee et al., 2004). 
Decreases in AQP4 expression have been reported in other epilepsy 
subtypes (Kandratavicius et al., 2015; Lapato et al., 2020). Closer ex-
amination reveals that these disparate changes in net AQP4 expression 
belie a consistent focal decrease in AQP4 in perivascular end feet where 
they are normally enriched (Alvestad et al., 2013; Eid et al., 2005; 
Lapato et al., 2020). Model dependent increases and decreases in AQP4 
expression have been observed in animal models of seizures and epi-
lepsy (Hubbard et al., 2016; Lee et al., 2012; Szu et al., 2020a); however, 
as with human tissue, decreased AQP4 localization on astrocytic end feet 
is a consistent feature (Lee et al., 2012; Szu et al., 2020a). As was dis-
cussed in greater detail above, this decrease in astrocytic perivascular 
AQP4 may have consequences for local blood-brain barrier permeability 
(Bankstahl et al., 2018). The primary functional significance of altered 
aquaporin expression in the context of epilepsy and seizures is related to 
the effect of these channels on K+ buffering which will be discussed in 

detail in its own subsection (Holthoff and Witte, 1996; Strohschein et al., 
2011). 

The passage of water through AQP4 channels and the consequent 
contraction or expansion of astrocytes can alter the volume of the 
extracellular space (Haj-Yasein et al., 2012; Yao et al., 2008). Seizures 
themselves reduce the volume of the extracellular space (Lux et al., 
1986; Tonnesen et al., 2018). Changes in the volume of the extracellular 
space alter neuronal excitability with decreases in the extracellular 
space being proconvulsant (Chebabo et al., 1995; Kilb et al., 2006; 
Schwartzkroin et al., 1998). AQP4 itself is not necessary for activity 
dependent decreases in the volume of the extracellular space (Colbourn 
et al., 2021; Haj-Yasein et al., 2012; Toft-Bertelsen et al., 2021); how-
ever, activity dependent contraction of the extracellular space may be 
compounded by tonic alterations to the extracellular space due to 
altered AQP4 expression in astrocytes to aggravate and prolong seizure 
activity. 

Characterization of mice which lack AQP4 has generated interesting 
and somewhat disparate results. Mice lacking AQP4 channels display an 
increased seizure threshold in electrical stimulation (Binder et al., 2006) 
and chemoconvulsant (Binder et al., 2004) seizures models. These mice 
also exhibit an increase in evoked (Binder et al., 2006) and spontaneous 
(Szu et al., 2020b) seizure duration. Furthermore, aquaporin deficient 
mice subjected to PTZ exposure following traumatic brain injury display 
a decreased latency to seizures and an increase in seizure severity (Lu 
et al., 2021). 

Transient cerebral edema is observed following status epilepticus in 
humans (Liu et al., 2021; Sammaritano et al., 1985) and in animal 
models (Kim et al., 2010; Nelson and Olson, 1987). Edema following 
status epilepticus is exacerbated in mice with transgenic downregulation 
of AQP4 (Lee et al., 2012), a finding consistent with other observations 
in these mice which are indicative of a general impairment in the 
clearance of tissue water (Bloch et al., 2005; Papadopoulos et al., 2004). 

To summarize, astrocytes abundantly express AQP4 channels which 
are essential to their role in maintaining water homeostasis. In both 
human patients and epilepsy models, alterations in AQP4 of varying 
directionality are commonly observed; however, decreased localization 
of AQP4 on astrocytic end feet is quite consistent. Altered AQP4 
expression has functional implications in the resolution of cerebral 
edema following prolonged seizure activity, the volume of the extra-
cellular space, blood-brain barrier permeability, and K+ buffering. 

2.6. Dysregulation of ion homeostasis 

2.6.1. Potassium 
The Na+/K+-ATPase pumps Na+ ions out of neurons in exchange for 

K+ ions thereby progressively reversing the changes in ionic balance 
induced by neuronal activity; however, this process in neurons alone is 
not adequate for timely clearance of extracellular K+, particularly dur-
ing seizures (Heinemann et al., 1977; Hodgkin and Huxley, 1952). As-
trocytes regulate extracellular K+ levels by (1) direct K+ uptake from the 
extracellular space and (2) K+ spatial buffering within astrocytes linked 
by gap junctions (Amédée et al., 1998; Kofuji and Newman, 2004). As-
trocytes, like neurons, also express Na+/K+-ATPases; however, due to a 
difference in subunit composition (Cameron et al., 1994; McGrail et al., 
1991), the function of Na+/K+-ATPases in astrocytes is enhanced by 
increased extracellular K+ concentrations (Henn et al., 1972; Hertz and 
Chen, 2016). As a result, astrocytes have a superior capacity to rapidly 
take up and sequester extracellular K+ in comparison to adjacent neu-
rons (Henn et al., 1972; Walz and Hertz, 1983). Additionally, Na+/K+/ 
Cl− cotransporters pump Na+/K+/Cl− into the intracellular space of 
cells, including astrocytes (MacVicar et al., 2002; Walz, 1992). Lastly, 
inwardly rectifying K+ channels, specifically Kir4.1, allow the inward 
and outward passage of K+ ions with a preference towards inward flow 
(Doupnik et al., 1995; Kofuji and Newman, 2004). K+ ions taken up from 
the extracellular space can be transferred between astrocytes connected 
by gap junctions in a process called spatial buffering (Holthoff and 
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Witte, 2000; Kofuji and Newman, 2004). K+ that was taken up by as-
trocytes is slowly released back into the extracellular space through 
Kir4.1 channels (Bay and Butt, 2012). 

Impairments in K+ homeostasis have been observed in chemo-
convulsant (Gabriel et al., 1998) and traumatic brain injury (D’Am-
brosio et al., 1999) models of epilepsy as well as in tuberous sclerosis 
complex (Xu et al., 2009). Transgenic downregulation of gap junction 
expression impedes spatial K+ buffering and increases susceptibility to 
seizures in mice (Wallraff et al., 2006). Reduced Kir4.1 expression de-
creases the capacity of astrocytes to take up K+ and glutamate from the 
extracellular space in vitro and in vivo (Djukic et al., 2007; Kucher-
yavykh et al., 2007). Astrocyte specific deletion of Kir4.1 causes spon-
taneous seizures (Djukic et al., 2007). Blood-brain barrier disruption or 
direct application of albumin to the brain reduces Kir4.1 expression and 
impedes K+ buffering prior to the development of seizures (Ivens et al., 
2007). Electrophysiological investigations of excised tissue samples 
from human patients have revealed a downregulation in inwardly 
rectifying K+ currents in epileptic foci (Bordey and Sontheimer, 1998; 
Hinterkeuser et al., 2000; Kivi et al., 2000). Most, but not all, available 
evidence suggests that downregulation of Kir4.1 channels contributes to 
epilepsy. However, there are reports of increased Kir4.1 expression 
(Nagao et al., 2013) and a lack of any change in Kir dependent currents 
(Takahashi et al., 2010) in rodent models of epilepsy brought about by 
prior chemoconvulsant-induced status epilepticus. 

Given the diminished capacity for K+ buffering observed in epilepsy 
and the ictogenic effects of experimental interference with K+ buffering, 
interventions to improve K+ buffering may be therapeutic. In line with 
this premise, optogenetic activation of astrocytes suppresses seizures in 
a Na+/K+-ATPase dependent manner following cortical kainic acid in-
jection and in a model of focal cortical dysplasia in rats (Zhao et al., 
2022). Similarly, bolstering K+ buffering suppresses seizures in the well 
characterized ‘Shaker’ Drosophila line (Li et al., 2021; Lones and DiA-
ntonio, 2023). 

2.6.2. Calcium 
Voltage-gated calcium channels (VGCCs) mediate entry of Ca2+ into 

excitable cells (Hofmann et al., 1999) and thereby control the release of 
neurotransmitters. Not surprisingly, mutations in neuronal VGCCs have 
been associated with epilepsy (Brill et al., 2004). In astrocytes, calcium 
transport is mediated by the sodium/calcium exchanger (NCX) (Parpura 
et al., 2016; Rose et al., 2020). The directionality of the passage of ions 
through the NCX is dependant on ion concentrations and the membrane 
potential of the astrocyte (Khananshvili, 2014). Generally, NCX function 
is thought to facilitate seizures given the observation that pharmaco-
logical inhibition of NCX function (Saito et al., 2009) and down-
regulation of NCX expression both have anticonvulsant effects 
(Akinfiresoye et al., 2023; Newton et al., 2021; Saito et al., 2009). Ex-
periments utilizing pharmacological inhibition specific to the reverse 
function of the NCX (in which Ca2+ enters the cell) indicate that it is this 
aspect of NCX function which confers its proconvulsant properties 
(Akinfiresoye et al., 2023; Martinez and N’Gouemo, 2010). 

Alterations in astrocytic Ca2+ signaling have been implicated both in 
the initiation of seizures as well as the progression of epileptogenesis. 
Ca2+ imaging experiments indicate that increases in astrocytic Ca2+

precede seizure activity in the cortex and in CA1 of the hippocampus in 
mice and in the developing nervous systems of zebrafish larvae (Diaz 
Verdugo et al., 2019; Heuser et al., 2018; Tian et al., 2005). It has been 
demonstrated using photolytic Ca2+ uncaging within astrocytes in ro-
dent hippocampal slices that intracellular astrocytic Ca2+ signaling 
elicits slow inward depolarizing currents in adjacent neurons (Fellin 
et al., 2004). Subsequent experimentation using a similar astrocytic 
Ca2+ uncaging approach suggests that these neuronal slow depolarizing 
shifts are mediated by Ca2+ dependant glutamate release (Tian et al., 
2005). 

In addition to periictal astrocytic calcium signaling contributing to 
excitatory gliotransmission, more chronic changes in astrocyte signaling 

may contribute to epileptogenesis. Chemoconvulsant-induced status 
epilepticus increases the astrocytic Ca2+ transients elicited by the acti-
vation of local neurons (Szokol et al., 2015). Similarly, the astrocytes of 
mice subjected to chemoconvulsant-induced status epilepticus have 
increased ambient Ca2+ signaling for days after the initial insult (Ding 
et al., 2007). These increases in astrocytic Ca2+ are correlated with 
neuronal cell death and this cell death can be counteracted by phar-
macological interference with astrocytic glutamate signaling (Ding 
et al., 2007). Generally, hypertrophic activation of astrocytes increases 
their Ca2+ signaling and, correspondingly, astrocyte atrophy is associ-
ated with weaker Ca2+ signaling (Plata et al., 2018; Shigetomi et al., 
2019). 

2.6.3. Iron 
Increased iron deposition in the brain is observed in experimental 

models and in epilepsy patients (Gorter et al., 2005; Zimmer et al., 
2021). The increased accumulation of iron in the brain associated with 
seizures and epilepsy is hypothesized to be the result of iron rich pro-
teins in the blood crossing into the brain following seizure-induced 
blood-brain barrier dysfunction (van Vliet et al., 2020; Zimmer et al., 
2021). Iron deposition in the brain may contribute to epileptogenesis as 
the introduction of exogenous iron into the brain triggers spontaneous 
recurrent seizures (Sharma et al., 2007; Willmore et al., 1978). Neurons, 
microglia, and astrocytes are all capable of taking up iron from the 
extracellular space (Rouault, 2013; Zimmer et al., 2021). Human 
astrocyte cell cultures that are exposed to iron increase expression of 
antioxidant and iron handling genes; however, chronic exposure results 
in pro-inflammatory changes (Zimmer et al., 2021). Iron accumulation 
in cells increases reactive oxygen species within the cell and can result in 
cell death in the form of ferroptosis (Li et al., 2020). Tissue resected from 
patients with temporal lobe epilepsy or taken post-mortem from patients 
who died of status epilepticus display increased astrocytic iron seques-
tration and a shift in iron uptake from microglia to astrocytes (Zimmer 
et al., 2021). 

2.7. Dysregulation of glutamate and glutamine metabolism 

Glutamate, a ubiquitous biological molecule, has important roles in 
the central nervous system in the synthesis of proteins, as a source of 
energy, and as a neurotransmitter (Mahmoud et al., 2019). In its most 
discussed role, glutamate is the most common excitatory neurotrans-
mitter (Meldrum, 2000). However, accumulation in the extracellular 
space of glutamate released from excitatory neurons can be highly 
neurotoxic (Lau and Tymianski, 2010). Although multiple cell types are 
involved in extracellular glutamate removal, astrocytes are the most 
efficient in this process, removing almost 90% of all glutamate released 
(Mahmoud et al., 2019). Astrocytes maintain glutamate homeostasis by 
the release or the uptake of glutamate from the synaptic cleft thereby 
fine-tuning neuronal function and preventing glutamate excitotoxicity 
(Mahmoud et al., 2019). Therefore, it is important to comprehend how 
glutamate is regulated during physiological and pathological conditions 
to establish new strategies to maintain its homeostasis and to prevent the 
development of diseases that are associated with an increase of excit-
atory neurotransmission, such as epilepsy. 

During physiological conditions, astrocytes take up glutamate in the 
synaptic cleft through excitatory amino acid transporters. Glutamine 
synthetase then converts this neuronal glutamate into glutamine (Anlauf 
and Derouiche, 2013). Glutamine is released from astrocytes into the 
extracellular space and is used as a precursor for the synthesis of neu-
rotransmitters, such as glutamate or GABA that will be released again 
during exocytosis events. The remaining glutamate is then metabolized 
into α-ketoglutarate, which is used as a substrate for ATP production 
(McKenna, 2013). On the other hand, when glutamate is taken up by 
astrocytes, it increases intracellular calcium contributing to astrocytic 
glutamate release. This glutamate will act on different glutamatergic 
receptors, contributing to balanced neuron-neuron and neuron-glia 
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interactions (Schousboe et al., 2014). 
During pathological conditions, astrocytes enter an activated state 

through molecular and morphological alterations that affect their basal 
functions, including glutamate homeostasis. Loss of astroglial glutamate 
uptake or excessive glutamate release increases the concentration of 
glutamate in the synapse resulting in excitotoxicity and neuronal hy-
perexcitability. Administration of glutamate or glutamate analogues 
into the hippocampus in animal models triggers seizures, but simulta-
neous injection of glutamate antagonists blocks these seizures (McNa-
mara, 1994; Olney et al., 1972; Pitkanen and Lukasiuk, 2009). 
Additionally, in patients with mesial temporal lobe epilepsy, extracel-
lular glutamate concentrations are increased during a seizure and 
remain elevated for several hours after the seizure has ended (During 
and Spencer, 1993). The accumulation of glutamate can be accentuated 
by a reduction in the volume of the extracellular space. The swelling of 
reactive astrocytes can alter the extracellular space volume through the 
disturbances in the expression of aquaporin-4 water channels or volume- 
regulated anion channels. Reduction in the volume of extracellular 
space has been associated with increased hyperexcitability in several 
forms of epilepsy (During and Spencer, 1993; Tonnesen et al., 2018). 
Excessive glutamate in the synaptic cleft can also act on NMDA re-
ceptors, increasing slow inward currents and neuronal hyperexcitability, 
or on metabotropic glutamate receptors (mGluRs), which indirectly 
leads to the activation of NMDARs and neuronal hyperexcitability. 
Studies performed in both experimental models of epilepsy and in 
resected tissue from patients with temporal lobe epilepsy indicate that 
mGluR1 expression is increased in the hippocampus (Blumcke et al., 
2000). mGluR1 activation has been also shown to potentiate NMDAR 
currents through a mechanism involving increased intracellular calcium 
signaling (Heidinger et al., 2002). Correspondingly, inhibition of 
mGluR1 decreases PTZ-kindled seizures (Watanabe et al., 2011). Similar 
observations have been made regarding mGluR5 and mGluR3 (Aronica 
et al., 2000; Ding et al., 2007). mGluR5, which is expressed in astrocytes, 
is increased in expression in animal models of epilepsy (Ding et al., 
2007; Kelly et al., 2018; Umpierre et al., 2019). Unfortunately, activa-
tion of mGluR5 potentiates NMDAR activity by increasing calcium 
levels, which consequently drives neuronal hyperexcitability (Ding 
et al., 2007). In contrast, mGluR2/3 is down regulated in a pilocarpine 
mouse model (Garrido-Sanabria et al., 2008; Pacheco Otalora et al., 
2006; Tang et al., 2004), suggesting a neuroprotective role of these re-
ceptors when activated in epilepsy models (Kelly et al., 2018; Watanabe 
et al., 2011). 

In summary, astrocytes are crucial to synaptic transmission due to 
their ability to modulate neuronal firing and maintain a balance be-
tween glutamate uptake, metabolism, and release. When their function 
is disrupted, astrocytes can become active contributors to excessive 
glutamatergic signaling and may potentiate seizures, excitotoxic cell 
damage, and epilepsy development. 

2.8. Dysregulation of adenosine metabolism 

Astrocytes play a key role in regulating concentrations of the brain’s 
own anticonvulsant and seizure terminator, adenosine (Dragunow, 
1991; During and Spencer, 1992; Lado and Moshe, 2008). Adenosine is 
an evolutionary ancient regulator of energy homeostasis (Boison and 
Yegutkin, 2019; Yegutkin and Boison, 2022). Through expression of the 
adenosine metabolizing enzyme adenosine kinase, astrocytes form a 
metabolic sink for the efficient clearance of adenosine (Studer et al., 
2006). In line with this role, the genetic disruption of adenosine kinase 
in embryonic stem cells has been used to engineer implantable glia for 
the therapeutic delivery of adenosine (Fedele et al., 2004). The inhibi-
tory effect of adenosine in the brain depends predominantly on the 
activation of Gi protein coupled adenosine A1 receptors, which can be 
blocked by the non-selective adenosine receptor antagonists caffeine 
and theophylline, which therefore can aggravate seizures (Boison, 
2011). Maladaptive overexpression of adenosine kinase leads to 

enhanced metabolic clearance of adenosine through astrocytes and is 
considered a pathological hallmark of temporal lobe epilepsy (Aronica 
et al., 2013). Specifically, this overexpression of adenosine kinase is 
mediated by reactive astrogliosis, and the resulting adenosine deficiency 
can both trigger seizures (Li et al., 2008b) and contribute to the 
epileptogenic process (Williams-Karnesky et al., 2013). Therapeutic 
augmentation of adenosine is effective in the suppression of seizures and 
also in interference with the epileptogenic process itself (see below for 
details) (Williams-Karnesky et al., 2013). Therefore, augmented aden-
osine metabolism in astrocytes affects the pathophysiology of epilepsy 
broadly and provides unexplored opportunities for metabolism-based 
therapies (Boison and Rho, 2020; Rho and Boison, 2022). 

2.9. Dysregulation of DNA methylation 

The role of epigenetic factors in epilepsy and specifically the role of 
maladaptive DNA methylation changes has received increased attention 
recently (Kobow and Blumcke, 2018; Murugan et al., 2021; Younus and 
Reddy, 2017). According to the methylation hypothesis of epilepto-
genesis, first proposed in 2011, maladaptive changes in DNA methyl-
ation drive the processes that contribute to the development and 
progression of epilepsy (Kobow and Blumcke, 2011; Kobow et al., 
2013a). In support of this hypothesis, an increasing number of publi-
cations document that epigenetic processes, specifically increased DNA 
methyltransferase activity and maladaptive DNA methylation, are 
closely linked to epileptogenesis (Kobow et al., 2009; Kobow et al., 
2013b; Martins-Ferreira et al., 2022; Miller-Delaney et al., 2015; Miller- 
Delaney et al., 2012; Mohandas et al., 2019; Williams-Karnesky et al., 
2013). Clinical support for the methylation hypothesis of epilepto-
genesis has been derived from the analysis of surgically resected tissue 
from patients with temporal lobe epilepsy and hippocampal sclerosis. 
Tissue from these patients, revealed progressive changes in DNA 
methylation that were tightly associated with the upregulation of genes 
supporting neuroinflammation (Martins-Ferreira et al., 2022). 

Biochemically, all S-adenosylmethionine (SAM) dependent trans-
methylation reactions, including DNA methylation, lead to the produc-
tion of adenosine through S-adenosylhomocysteine hydrolase (SAHH) 
and depend on efficient metabolic adenosine clearance through adeno-
sine kinase (Boison et al., 2002; Williams-Karnesky et al., 2013). Thus, 
the genetic disruption or pharmacological inhibition of adenosine kinase 
leads to an increase in adenosine, which shifts the thermodynamic 
equilibrium of the SAHH reaction towards the formation of S-adeno-
sylhomocysteine (SAH), which is a potent inhibitor of DNA methyl-
transferases. Conversely, pathological overexpression of adenosine 
kinase as part of the epileptogenic process drives increased DNA 
methylation and thereby promotes epileptogenesis (Williams-Karnesky 
et al., 2013). Strikingly, a selective splice variant of adenosine kinase, 
ADK-L, has been identified in the cell nucleus (Cui et al., 2009). ADK-L is 
needed for the cell cycle to permit the methylation of newly formed DNA 
during the S-phase of the cell cycle. Consequently, in the adult brain, 
ADK-L is only expressed in cells with proliferative capacity, such as 
neurons of the olfactory bulb and dentate gyrus, as well as in astrocytes 
(Gebril et al., 2021; Studer et al., 2006). Because maladaptive increases 
in adenosine kinase are part of the epileptogenic cascade (Gouder et al., 
2004; Li et al., 2008b), increases in ADK-L drive maladaptive DNA 
methylation as a contributing factor for epilepsy development (Wil-
liams-Karnesky et al., 2013). Consequently, adenosine kinase inhibitors, 
which act on ADK-L have potent antiepileptogenic properties and are the 
subject of intense drug discovery efforts (Sandau et al., 2019; Toti et al., 
2016). 

2.10. Metabolic therapies for epilepsy and its prevention 

As outlined above, astrocytes play a crucial role in maintaining the 
intricate balance of brain metabolism. Consequently, maladaptive 
changes in biochemical pathways and metabolism are intricately linked 
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to both ictogenesis and epileptogenesis. Therefore, astrocytes are logical 
targets for metabolic therapies. The most widely employed metabolic 
therapy is the ketogenic diet, which has been in clinical use for a century 
(Wheless, 2008). This diet is high in fats and low in carbohydrates and 
forces the brain to use fat-derived ketone bodies instead of glucose as the 
major energy source. Metabolic therapies have not only been shown to 
be highly effective in suppressing seizures in a wide spectrum of phar-
macoresistant epilepsies (deCampo and Kossoff, 2019), but also to exert 
lasting disease modifying, and possibly antiepileptogenic properties in 
various clinical and experimental applications (Boison and Rho, 2020). 
The diet works through multiple mechanisms based on a combination of 
glucose restriction and elevation in ketone bodies (Simeone et al., 2018). 
Consequently, in rodent models the direct disruption of glycolysis with 
the glycolytic inhibitor 2-deoxy-D-glucose (2DG) has been explored as a 
therapeutic alternative to the stringent restrictions of the ketogenic diet 
(Ockuly et al., 2012). In those studies, 2DG provided both acute and 
chronic antiepileptic effects likely through a presynaptic mechanism 
(Pan et al., 2019). Likewise, in a traumatic brain injury model in mice, 
2DG reduced the development of epileptiform activity in vitro and in 
vivo supporting the disease modifying potential of metabolic therapies 

(Koenig et al., 2019). These studies suggest that glucose restriction 
rather than ketone production is at the core of the therapeutic benefits of 
metabolic therapies. In line with this notion, medium-chain fatty acids, 
such as decanoic acid, can work through a ketone-independent mecha-
nism and directly inhibit AMPA receptors and promote mitochondrial 
biogenesis (Augustin et al., 2018). Thus, medium-chain fatty acids can 
play a direct role in blocking seizure onset and raising seizure thresholds 
independent of ketones. 

A further ketone-independent mechanism of metabolic therapies is 
an increase in adenosine in conjunction with downregulation of aden-
osine kinase. This is a likely explanation for the disease modifying 
properties of metabolic therapies (Lusardi et al., 2015; Masino et al., 
2011). As outlined above, increased adenosine kinase expression drives 
the epileptogenic process through increased DNA methylation. There-
fore, therapeutic adenosine augmentation is a rational approach for 
epilepsy prevention. We have shown that adenosine, delivered via cell- 
based brain implants, suppressed epileptogenesis in both kindling and 
post status epilepticus models of acquired epilepsy (Li et al., 2009; Li 
et al., 2008b; Li et al., 2007b). In line with those findings, the transient 
local delivery of adenosine to the hippocampus of rats through silk- 

Table 1 
Summary of mechanisms by which astrocytes are associated with epilepsy and their potential therapeutic implications.  

Mechanism Primary consequences Potential therapeutic implications 

Increased blood brain 
barrier permeability  

• ↓blood-brain barrier integrity during seizures  
• ↓ AQP4 expression  
• ↓ clearance of glutamate and K+

• ↓ penetrance of anticonvulsant drugs  
• ↑ astrogliosis  
• ↑ cell death  
• ↑ penetrance of iron and albumin from blood  

• counteract increased blood - brain barrier permeability.  
• reduce multidrug transporter expression.  
• maintain AQP4 expression, particularly in perivascular end feet.  
• intervention in TGF-β or MAPK signaling pathways may be therapeutically 

beneficial. 

Alteration in gap junction 
expression  

• Variable ↓ or ↑ in gap junction expression  
• ↓ gap junction expression ⇒ ↓ K+ buffering & ↓ adaptive volume 

regulation  
• ↑ gap junction expression ⇒ ↑ astrocytic Ca2+ signaling & ↑ 

metabolic support for local neurons.  

• unclear whether benefits of increased gap junction expression in areas of K+

buffering and volume regulation outweigh potential harm due to increased 
Ca2+ signaling and metabolic support for seizure activity.  

• more preclinical experimentation is needed to understand the conditions in 
which alterations in gap junction expression are beneficial. 

Dysregulation of water 
homeostasis  

• Variable ↓ or ↑ in net AQP4 expression  
• Consistent ↓ in AQP4 expression in perivascular end feet  
• ↓ blood-brain barrier function  
• ↓ volume regulation  
• ↓ K+ buffering  
• ↓ reversal of cerebral edema following seizures  

• facilitation of normal water homeostasis.  
• improvement in K+ buffering.  
• prevention of the loss of localization of AQP4 channels in perivascular end 

feet may be therapeutically beneficial. 

Impaired K+ buffering  • ↓ K+ buffering can result from:   

(1) ↓ gap junction expression  
(2) ↓ Kir4.1 channel expression  
(3) ↓ capacity for volume regulation  
(4) ↓ glutamate reuptake   

• ↓ K+ buffering ⇒ ↑ vulnerability to seizures 

Interventions which:   

• interfere with pathways causally upstream of pathological alterations in K+

buffering (e.g., albumin extravasation, gap junction or aquaporin 
dysregulation, activation of the TGF-β or MAPK signaling pathways) or,  

• act directly to bolster K+ buffering (e.g., enhancing the function or 
expression of the Kir4.1 channel or the Na+/K+-ATPase), 

may be therapeutic. 
Dysregulation of glutamate 

and glutamine 
metabolism  

• ↓ extracellular volume ⇒ ↑ extracellular glutamate 
concentrations  

• ↑ mGluR expression  
• ↑ release and ↓ reuptake of astrocytic glutamate associated with:   

(1) ↑ astrocytic Ca2+ signaling  
(2) ↑ vulnerability to seizures  
(3) ↑ excitotoxicity  
(4) ↓ glutamate reuptake 

Interventions which:   

• increase astrocytic glutamate uptake,  
• decrease astrocytic glutamate release,  
• prevent overexpression of mGluR receptors during epileptogenesis,  
• increase the production of GABA from glutamate via glutamic acid 

decarboxylase, or  
• preserve the volume of the extracellular space, 
may be therapeutic. 

Dysregulation of adenosine 
metabolism  

• ↑ extracellular adenosine acutely during and after seizures  
• A2A receptor activation ⇒ astrogliosis ⇒ ↑ adenosine kinase 

expression ⇒ ↑ metabolic adenosine clearance ⇒ chronic ↓ 
extracellular adenosine  

• ↑ vulnerability to seizures 

Interventions which   

• reduce astrogliosis,  
• prevent astrogliosis and adenosine kinase overexpression,  
• decrease clearance of adenosine, such as adenosine kinase inhibitors,  
• increase release of adenosine, or  
• increase adenosine receptor expression, 
may be therapeutic. 

Dysregulation of DNA 
methylation  

• increased DNA methyltransferase activity  
• increased metabolic clearance of 

S-adenosylhomocysteine (SAH), which is a potent inhibitor of 
DNA methyltransferases.  

• upregulation of genes involved in neuroinflammation  

• adenosine kinase inhibitors have potent antiepileptogenic properties 
though epigenetic mechanisms and are promising candidates for epilepsy 
prevention therapies.  
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based implants prevented epilepsy progression (Williams-Karnesky 
et al., 2013). Furthermore, a transient systemic dose of a small-molecule 
adenosine kinase inhibitor suppressed the epileptogenic process in mice 
after intrahippocampal kainic acid administration (Sandau et al., 2019). 
Importantly, a transient boost of adenosine during the latent period of 
epileptogenesis is sufficient to provide lasting suppression of epilepsy 
development and its progression (Sandau et al., 2019; Williams-Karne-
sky et al., 2013). 

In conclusion, metabolic strategies that target astrocyte-dependent 
adenosine metabolism have the unique potential to disrupt the epilep-
togenic process through an epigenetic mechanism (Williams-Karnesky 
et al., 2013). Transient metabolic treatment approaches exert powerful 
disease modifying effects and may be able overcome challenges associ-
ated with conventional anti-seizure medications, such as pharmacore-
sistance, side effects, and a lack of lasting efficacy. 

3. Conclusions and case studies in potential explanatory power 

In the body of this review, we have outlined advances in our un-
derstanding of astrocyte function in epilepsy (Table 1). We will now turn 
our attention on how this knowledge can be usefully integrated. De-
tailing the explanatory power of what is known regarding astrocyte 
function in epilepsy in an exhaustive manner would necessitate a book- 
length format. Instead, here we will focus on one specific example: the 
role of astrocytes in the relationship between Alzheimer’s disease, epi-
lepsy, and the sleep-wake dysregulation observed in both conditions 
(Fig. 2). We hope that this example will be illustrative of the practical 
applicability of the information described in the body of this review. We 
will describe (1) the well characterized comorbid occurrence of epilepsy 
and Alzheimer’s disease; (2) the similar sleep disturbances observed in 

persons with epilepsy and Alzheimer’s disease; (3) the similar dysre-
gulation in astrocytic and adenosinergic function seen in persons with 
epilepsy and Alzheimer’s. We will then present the premise for the hy-
potheses that disrupted adenosine clearance due to astrogliosis con-
tributes to (4) the etiology of sleep disruptions in Alzheimer’s disease 
and epilepsy and (5) to the increased risk of seizures in patients with 
Alzheimer’s disease. 

3.1. Comorbid occurrence of epilepsy and Alzheimer’s disease 

Persons with Alzheimer’s disease are at an increased risk of devel-
oping epilepsy (Pandis and Scarmeas, 2012) and may proceed to develop 
convulsive seizures (Vossel et al., 2016); however, prospective EEG 
studies in patients with Alzheimer’s, but without an epilepsy diagnosis, 
have observed that approximately 40% of individuals with Alzheimer’s 
have undiagnosed subclinical epileptiform activity (Vossel et al., 2016). 
These observations have led to the conjecture that epilepsy, particularly 
that characterized by nonconvulsive seizures, might be much more 
common in persons with Alzheimer’s than had been previously under-
stood and that the behavioral manifestations of Alzheimer’s disease 
might be masking these seizures (Pandis and Scarmeas, 2012; Vossel 
et al., 2016). 

3.2. Sleep disturbances in epilepsy and Alzheimer’s disease patients 

Self-reported sleep problems are common in patients with epilepsy, 
the most frequent complain being sleep maintenance insomnia charac-
terized by frequent awakenings during the night (Hoeppner et al., 1984; 
Quigg et al., 2016). These subjective observations are corroborated by 
polysomnography data which indicates that epilepsy patients have an 
increase in wakefulness after sleep onset (Sudbrack-Oliveira et al., 
2019). Despite these issues with maintaining nocturnal sleep, persons 
with epilepsy commonly experience excessive daytime sleepiness 
(Malow et al., 1997; Sudbrack-Oliveira et al., 2019). 

Sleep problems are common in persons with Alzheimer’s disease and 
are similar to those observed in individuals with epilepsy. Sleep main-
tenance insomnia, characterized by frequent awakenings during the 
night, is frequently associated with Alzheimer’s disease (McCurry et al., 
1999). These subjective observations are corroborated by poly-
somnography data which indicates that persons with Alzheimer’s have 
an increase in wakefulness after sleep onset (Bonanni et al., 2005). Also 
like persons with epilepsy, individuals with Alzheimer’s experience 
excessive daytime sleepiness (Bonanni et al., 2005). 

3.3. Astrocytic and adenosinergic dysfunction in epilepsy and Alzheimer’s 

What insights can be gained into the etiology of sleep disturbances in 
epilepsy and Alzheimer’s disease by looking through the star-shaped 
lens of augmented astrocytic function? Astrogliosis is a commonly 
observed feature of Alzheimer’s disease and epilepsy in both human 
patients (Devinsky et al., 2013; Osborn et al., 2016) and animal models 
(Khurgel and Ivy, 1996; Olabarria et al., 2010). Astrocytes express 
adenosine kinase, the primary enzyme for adenosine metabolism, and 
are responsible for the regulation of extracellular adenosine concentra-
tions (Etherington et al., 2009; Lloyd and Fredholm, 1995). The hy-
pertrophy of astrocytes seen in astrogliosis causes overexpression of 
adenosine kinase and decreases extracellular adenosine concentrations 
(Aronica et al., 2013; Fedele et al., 2005). In Alzheimer’s disease there 
are disparate focal alterations in astrocyte morphology and adenosine 
concentrations (Alonso-Andres et al., 2018; Verkhratsky et al., 2019). 
Adenosine levels are decreased in the frontal cortex, but increased in the 
temporal and parietal cortices in patients with Alzheimer’s disease 
(Alonso-Andres et al., 2018; Rodriguez et al., 2009; Verkhratsky et al., 
2019). On a much smaller scale, astrocytes in the vicinity of Aβ plaques 
undergo robust hypertrophy whereas astrocytes that are more distal to 
Aβ plaques become atrophied (Rodriguez et al., 2009; Verkhratsky et al., 

Fig. 2. The role of astrocytes in Alzheimer’s disease, epilepsy, and asso-
ciated sleep-wake dysregulation. 
Schematic diagram of the hypothesized mechanism by which astrocytes 
contribute to epilepsy, Alzheimer’s disease, and the associated disruption in 
sleep-wake regulation via disruption in adenosine signaling. Progressive or 
acute brain injury has been outlined with a red box to indicate that it is the 
causal point of origin. Red dotted arrows with question marks indicate known 
associations of unclear mechanistic cause. 
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2019). It is conceivable that the balance between hypertrophied and 
atrophied astrocytes is responsible for the regional differences in aden-
osine concentrations seen in patients with Alzheimer’s disease. 

Hypothesis 1. Disrupted adenosine clearance due to astrogliosis contrib-
utes to the etiology of sleep disruption in Alzheimer’s disease and epilepsy. 

Adenosine signaling is essential to normal sleep-wake regulation and 
is widely considered to be a principal contributor to homeostatic sleep 
pressure in the two-process model of sleep-wake regulation (Borbely 
et al., 2016; Landolt, 2008). Extracellular adenosine levels increase with 
prolonged wakefulness (Porkka-Heiskanen et al., 1997) and increased 
extracellular adenosine promotes sleep (Portas et al., 1997). The sleep 
promoting effect of adenosine is most pronounced in the basal forebrain 
where it inhibits wake-promoting upwardly projecting cholinergic 
neurons (Arrigoni et al., 2006; Bjorness and Greene, 2009). Notably, the 
basal forebrain is just ventral to the frontal cortex, where adenosine 
levels are decreased in Alzheimer’s patients (Alonso-Andres et al., 
2018). Reduction in astrocytic, but not neuronal, adenosine kinase in-
creases homeostatic sleep drive (Bjorness et al., 2016). Fittingly, trans-
genic upregulation of adenosine kinase, which increases the metabolic 
clearance of adenosine, causes a decrease in sleep (Palchykova et al., 
2010). Considering the effect of adenosine on sleep and the largely 
astrocytic regulation of adenosine signaling it has been hypothesized 
that homeostatic sleep pressure should be conceptualized as an emer-
gent property of a neuronal-glial circuit (Bjorness et al., 2016). We hy-
pothesize that disrupted adenosine clearance due to astrogliosis 
contributes to the etiology of sleep disruptions in Alzheimer’s disease 
and chronic epilepsy. 

Hypothesis 2. Disruption in adenosinergic signaling due to astrogliosis 
contribute to the increased risk of seizures in persons with Alzheimer’s 
disease. 

The increased risk of epilepsy in patients with Alzheimer’s disease 
may be the result of astroglial pathology (Boison, 2010). Adenosine is an 
endogenous anticonvulsant which is critical to the prevention and 
cessation of seizures (Beamer et al., 2021; Dragunow, 1991; During and 
Spencer, 1992). Adenosine kinase overexpression, without any other 
insult or injury, causes adenosine deficits and spontaneous seizures (Li 
et al., 2008b). We hypothesize that disruptions in adenosinergic 
signaling due to astrogliosis contribute to the increased risk of seizures 
in patients with Alzheimer’s disease. Furthermore, we posit that the 
focal disparities in adenosine kinase expression between hypertrophied 
astrocytes that are close to amyloid plaques and atrophied astrocytes 
that are further away cause variations in adenosine concentrations 
which prevent epileptiform activity from generalizing and becoming 
convulsive. 

In conclusion, astrocytes play an indispensable role in regulating 
neuronal activity in health and disease. As our understanding of astro-
cytic function improves, the potential implications of astrocyte 
dysfunction become clearer. In this review we summarize the derange-
ment of astrocyte function observed in epilepsy and present astrocyte 
focused hypotheses on the interplay between epilepsy, Alzheimer’s 
disease, and sleep-wake dysregulation. We proffer these hypotheses as 
examples of useful insights based on our rapidly advancing under-
standing of astrocytes in epilepsy. 
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