Supplemental data for

Assessment of an anti-scale low-frequency electromagnetic field device on drinking water biofilms

*Gosselin F., Mathieu L., Block J.-C., Carteret C., Muhr H., Jorand F. P. A.** *Corresponding author: <u>frederic.jorand@univ-lorraine.fr</u>

7
8 Table S1: Some physical-chemical and bacteriological characteristics of Nancy's tap water during the two series of analyses.

		Series 1							Seri	es 2			
		Out «	As	say »	Out «	Cor	ntrol »	Out «	A	ssay »	Out «	Co	ntrol »
т (°С)	n = 3-15	20.7	±	1.1	21.2	±	0.8	21.3	±	1.3	21.0	±	1.2
рН	n = 3-15	7.8	±	0.2	7.9	±	0.2	7.9	±	0.1	7.8	±	0.1
Conductivity (µS cm⁻¹)	n = 3-14	360	±	19	363	±	18	404	±	57	407	±	64
CAT (°f)	n = 3-8	8.4	±	0.2	8.3	±	0.2	8.3	±	0.3	8.3	±	0.3
Mg (mg L⁻¹)	n = 8-9	5.1	±	0.7	5.1	±	0.6	6.3	±	2.2	6.4	±	2.2
Ca (mg L⁻¹)	n = 8-9	45.6	±	1.3	45.7	±	1.4	47.5	±	3.6	47.6	±	3.6
Cells (mL ⁻¹)	n = 20-22	3.7 10 ⁵	±	4.1 10 ⁵	4.9 10 ⁵	±	5.8 10 ⁵	1.0 10 ⁶	±	5.6 10 ⁵	1.1 10 ⁶	±	1.6 10 ⁶
CFU _{14d} (mL ⁻¹)	n = 20-22	4.1 10 ⁴	±	3.6 10 ⁴	5.1 10 ⁴	±	3.2 10 ⁴	5.2 10 ⁴	±	3.7 10 ⁴	3.7 10 ⁴	±	4.8 10 ⁴

Series 1Series 2InT (°C) $n = 6-30$ 19.5 \pm 1.720.1 \pm 1.7pH $n = 6-30$ 8.0 \pm 0.17.9 \pm 0.1Conductivity $n = 6-28$ 358 \pm 19399 \pm 51	
InT (°C) $n = 6-30$ 19.5 \pm 1.720.1 \pm 1.7pH $n = 6-30$ 8.0 \pm 0.17.9 \pm 0.1Conductivity $n = 6-28$ 358 \pm 19399 \pm 51	_
T (°C)n = 6-3019.5 \pm 1.720.1 \pm 1.7pHn = 6-308.0 \pm 0.17.9 \pm 0.1Conductivityn = 6-28358 \pm 19399 \pm 51	
pH n = 6-30 8.0 ± 0.1 7.9 ± 0.1 Conductivity n = 6-28 358 ± 19 399 ± 51	
Conductivity n = 6-28 358 ± 19 399 ± 51	
(μS cm ⁻¹)	
CAT (°f) n = 4-16 8.2 ± 0.2 8.2 ± 0.5	
Mg (mg L ⁻¹) n = 20-21 5.4 ± 0.8 5.7 ± 0.9	
Ca (mg L ⁻¹) n = 20-21 46.2 ± 2.3 47.0 ± 2.4	
Cells (mL ⁻¹) $n = 28-40$ 1.4 10⁵ ± 1.8 10 ⁵ 2.4 10⁵ ± 7.2 10 ⁵	;
CFU_{14d} (mL⁻¹) $n = 28-40$ 2 10⁴ ± 3 10 ⁴ 2 10⁴ ± 4 10 ⁴	
Series 1 Series 2	
Out « Carbonates »	
T (°C) n = 3-15 21.0 ± 1.0 21.5 ± 0.7	
pH n = 13-63 8.9 ± 0.4 8.9 ± 0.2	
Conductivity (μS cm ⁻¹) n = 3-14 364 ± 19 384 ± 55	
CAT (°f) n = 3-8 9.4 ± 0.5 9.4 ± 0.6	
Mg (mg L ⁻¹) $n = 7-11$ 5.5 ± 1.4 5.3 ± 0.9	
Ca (mg L ⁻¹) n = 7-11 50.4 ± 2.6 49.7 ± 5.3	
Cells (mL⁻¹) $ n = 11-18 $ 3.1 10⁵ ± 2.7 10 ⁵ 5.9 10⁵ ± 5.7 10 ⁵)5
CFU_{14d} (mL⁻¹) $ n = 11-18 $ 5.2 10 ⁴ ± 3.5 10 ⁴ $ $ 4.0 10 ⁴ ± 4.8 10)4

- Table S2: Value ranges of elemental biofilm analysis (minimal and maximal values on 4 5 coupons) in the
- 13 14 15 16 17 18 reactors R1 and R3 alternatively used as "*Assay*" or "*Control*", and reactor R2 for "*Carbonates*" assay. Analyses were carried out by ICP-OES (SARM, UMR 7358 CNRS-UL, Nancy, FR) on dispersed biofilm acidified at pH near 0 with ultra-pure HNO₃ 65 % (~ 2 % HNO₃, final concentration). Al, Mn and Ti were under the detection limit of quantitation (< LQ).

			<i>Assay</i> (μg cm²)				(Control	(µg cm	⁻²)			
		R1	(seri	ies #1)	R3	(ser	ies #2)	R3 ((seri	es #1)	R1	(serie	es #2)
c:	PVC	< LQ	-	0.7	< LQ	-	0.7	< LQ	-	0.5		< LC	۱
31	SS	< LQ	-	0.7		< L	Q	< LQ	-	0.4		< LC	۱ ۱
Ea	PVC	< LQ	-	1.1	3.7	-	8.6	< LQ	-	0.8	2.7	-	2.7
ге	SS	< LQ	-	1.2	4.7	-	6.4	< LQ	-	1.0	1.3	-	3.6
Ma	PVC		<l< th=""><th>Q</th><th>< LQ</th><th>-</th><th>0.6</th><th></th><th>< L(</th><th>ג</th><th></th><th>< LC</th><th>l</th></l<>	Q	< LQ	-	0.6		< L(ג		< LC	l
ivig	SS	< LQ	-	0.4	< LQ	-	0.7	< LQ	-	0.5	< LQ	-	0.7
2	PVC	3.8	-	19.4	8.5	-	16.8	3.8	-	17.5	6.6	-	17.0
Ca	SS	3.5	-	23.0	12.0	-	30.5	3.1	-	16.4	7.8	-	8.0
No	PVC	1.3	-	3.7	1.9	-	3.0	1.3	-	2.7	1.5	-	2.5
INd	SS	1.1	-	1.9	1.5	-	1.8	1.0	-	2.3	2.4	-	2.7
V	PVC	< LQ	-	6.5	1.8	-	3.6	< LQ	-	4.2	< LQ	-	2.2
ĸ	SS	< LQ	-	2.3	< LQ	-	1.2	< LQ	-	2.2	< LQ	-	3.6

			Carbonates						
		R2	R2 series #1 R2 series #2						
c	PVC	0.7	-	1.5	< LQ	-	31.8		
51	SS	0.8	-	3.3	1.5	-	33.4		
Ea	PVC	0.5	-	1.6	< LQ	-	5.7		
ге	SS	0.5	-	1.4	< LQ	-	9.4		
N/~	PVC	< LQ	-	0.8	0.7	-	42.5		
IVIG	SS	< LQ	-	0.7	2.0	-	64.5		
6	PVC	8.1	-	14.7	35.9	-	529.0		
Ca	SS	9.0	-	40.7	58.3	-	588.2		
Na	PVC	1.5	-	1.9	1.4	-	110.8		
INd	SS	1.3	-	1.8	1.3	-	134.7		
V	PVC	< LQ	-	2.5	< LQ	-	18.7		
Ń	SS	< LQ	-	2.4	< LQ	-	31.4		

Treatment	Parameters	Material	Experimental series	Considered reactors	p-value	n
	CFU	pvc	Sarias #1	R1* vs R3	0.7	6
		SS	Series #1	R1* vs R3	0.1	6
(pvc	Series #2	R3* vs R1	0.1	6
		SS	Series #2	R3* vs R1	0.02	6
		pvc	Series #1	R1* + R3* vs R1 + R3	0.5	12
		SS	Series $#1 + \text{series } #2$	R1* + R3* vs R1 + R3	0.1	12
		pvc	G : #1 : # 2	R1* + R1 vs R3* + R3	0.1	12
		SS	Series $#1 + \text{series } #2$	R1* + R1 vs R3* + R3	0.004	12
	Cells density	pvc	Series #1	R1* vs R3	0.2	6
	(SYBR)	SS	Series #1	R1* vs R3	0.1	6
o		pvc	Series #2	R3* vs R1	0.3	6
ntive		SS	Series #2	R3* vs R1	0.02	6
eve		pvc	Series #1 + series #2	R1* + R3* vs R1 + R3	0.9	12
Pr		SS	Series #1 + series #2	R1* + R3* vs R1 + R3	0.6	12
		pvc	Series #1 + series #2	R1* + R1 vs R3* + R3	0.1	12
		SS	Series #1 + series #2	R1* + R1 vs R3* + R3	0.008	12
	Damaged cells	pvc	Series #1	R1* vs R3	0.8	6
	(PI)	SS	Series #1	R1* vs R3	0.1	6
		pvc	Series #2	R3* vs R1	0.2	6
		SS	Series #2	R3* vs R1	0.015	6
		pvc	Series #1 + series #2	R1* + R3* vs R1 + R3	0.4	12
		SS	Series #1 + series #2	R1* + R3* vs R1 + R3	0.7	12
		pvc	Series #1 + series #2	R1* + R1 vs R3* + R3	0.2	12
		SS	Series #1 + series #2	R1* + R1 vs R3* + R3	0.07	12

26 (Table S3, continuation and end)

Treatment	Parameters	Material	Experimental series	Considered reactors	p-value	n
	CFU	pvc	Series #1	R1* vs R3	0.2	5
		SS	Series #1	R1* vs R3	0.5	5
		pvc	Series #2	R3* vs R1	0.7	4
		SS	Series #2	R3* vs R1	0.4	4
		pvc	Series #1 + series #2	R1* + R3* vs R1 + R3	0.5	9
		SS	Series #1 + series #2	R1* + R3* vs R1 + R3	0.6	9
		pvc	Series #1 + series #2	R1* + R1 vs R3* + R3	0.5	9
		SS	Series #1 + series #2	R1* + R1 vs R3* + R3	0.9	9
	Cells density	pvc	Series #1	R1* vs R3	1	5
	(SYBR)	SS	Series #1	R1* vs R3	0.3	5
•		pvc	Series #2	R3* vs R1	0.4	4
tive		SS	Series #2	R3* vs R1	0.1	4
Jura		pvc	Series #1 + series #2	R1* + R3* vs R1 + R3	1	9
0		SS	Series #1 + series #2	R1* + R3* vs R1 + R3	0.8	9
		pvc	Series #1 + series #2	R1* + R1 vs R3* + R3	0.9	9
		SS	Series #1 + series #2	R1* + R1 vs R3* + R3	0.7	9
	Damaged cells	pvc	Series #1	R1* vs R3	0.9	5
	(PI)	SS	Series #1	R1* vs R3	0.2	5
		pvc	Series #2	R3* vs R1	0.4	4
		SS	Series #2	R3* vs R1	0.1	4
		pvc	Series #1 + series #2	R1* + R3* vs R1 + R3	0.8	8
		SS	Series #1 + series #2	R1* + R3* vs R1 + R3	0.03	8
		pvc	Series #1 + series #2	R1* + R1 vs R3* + R3	0.7	8
		SS	Series #1 + series #2	R1* + R1 vs R3* + R3	0.8	8

29	
30	Table S4. Statistical analysis (Wilcoxon-Mann-Whitney test) of the data sets from series #1 and #2 comparing the reactor R2
31	(exposed to limewater) with reactors R1 or R3 when they are connected or not to the electromagnetic field (EMF). Reactors exposed
32	to EMF are indicated by an "*". The two sets of data are considered to be significantly different when <i>p</i> -value is < to 0.05. CFU =
33	colony forming unit (cultivability); SYBR = fluorochrome used to assess the total cell number; PI = fluorochrome used to assess the
34	cell integrity

Treatment	Parameters	Material	Experimental series	Considered reactors	p-value	n
	CFU	pvc	Time start straight	D2* D2	0.7	6
		SS	Lime water + series #1	K2* VS K3	0.4	6
		pvc	Line starter 1 and 12	D2* D1	0.05	7
		SS	Lime water + series $\#2$	K2* VS K1	0.01	7
		pvc	Time meter Leaning #1	ies #2 $R2* vs R1$ 0.057ies #1 $R2* vs R1*$ 0.16ies #1 $R2* vs R1*$ 0.0046ies #2 $R2* vs R3*$ 0.77ies #1 $R2* vs R3$ 0.47ies #1 $R2* vs R3$ 0.96ies #2 $R2* vs R1$ 0.47ies #1 $R2* vs R1$ 0.47ies #1 $R2* vs R1$ 0.47ies #1 $R2* vs R1*$ 0.86ies #1 $R2* vs R3*$ 0.17		
		SS	Lime water + series #1	K2* VS K1*	0.004	6
		pvc	Linne meter Learning #2	D0* D2*	0.7	7
reventive		SS	Lime water + series $\#2$	K2* VS K3*	0.4	7
	Cells density pvc		T: / / / //1	D 1 *a D2	0.1	6
	(SYBR)	SS	Lime water + series #1	K2* VS K5	0.9	6
		pvc	Linne meter Learning #2	D2* D1	1	7
		SS	Linie water + series #2	K2 ⁺ VS K1	0.4	7
		pvc	Lime water + series #1	R2* vs R1*	0.8	6
Pr		SS	Linie water + series #1	K2 * V8 K1 *	0.2	6
		pvc	Lime water \pm caries $\#$	D 1 * D2*	0.1	7
		SS	Linie water + series #2	K2 * V8 K3 *	0.5	7
	Damaged cells	pvc	Lime water Learning #1	D 1 * D2	0.05	6
	(PI)	SS	Linie water + series #1	K2* VS K3	0.3	6
		pvc	Linne meter Learning #2	D2* D1	0.9	7
		SS	Lime water + series $\#2$	$K2^{+}$ VS K1	0.3	7
		pvc	Lime water Learning #1	D) * D1*	0.4	6
		SS	Linie water + series #1	K2 ' VS K1 '	0.2	6
		pvc	Lime water Learning #2	D 1 * D2*	0.2	7
		SS	Line water \pm series $\#2$	K2' VS K3'	0.3	7

35 (to be continued)

36	(Table S4, continuation and end)
00	(Tuble B1, continuation and ena

Treatment	Parameters	Material	Experimental series	Considered reactors	p-value	n
	CFU	pvc	Linna watar carica #1	R2* vs R3	0.5	5
		SS	Line water + series #1		0.9	5
		pvc	Lime water \pm series #2	D7* vo D1	0.9	5
		SS	Linie water + series #2	K2 * V8 K1	0.1	5
		pvc	Lime water \pm carios #1	D 7* va D 1*	0.2	4
		SS	Line water + series #1	K2 * V8 K1 *	0.2	5
		pvc	Line contar Learning #2	D2* D2*	1	5
		SS	Lime water + series $\#2$	K2* VS K3*	0.1	5
	Cells density	pvc	Time dent series //1	D2* D2	0.1	5
(SYBR)	(SYBR) SS	K2* VS K3	0.6	5		
	pvc	Lime water + series #2	D2* D1	0.7	5	
		SS	Lime water + series #2	K2* VS K1	0.015	5
	pvc	D2* D1*	0.06	5		
Cu		SS	Lime water + series #1	K2* VS K1*	0.1	5
		pvc			0.7	5
		SS	Lime water + series $\#2$	K2* VS K3*	0.2	5
	Damaged cells	pvc	T: / / //1	D0* D2	0.03	4
	(PI)	SS	Lime water + series #1	R2* vs R3	0.2	4
		pvc		D0* D1	0.6	5
		SS	Lime water + series #2	R2* vs R1	0.015	5
		pvc	.		0.03	4
		SS	Lime water + series #1	K2* vs K1*	0.2	4
		pvc	Linne motor Leonie //2	D0* D2*	0.4	5
		SS	Lime water + series $\#2$	K2* VS K3*	0.2	5

59 Figure S1. Measurements of the frequencies and intensities of the electromagnetic field 60 generated by the Aqua-4D® tubes: a) screenshot of the oscilloscope indicating the electromagnetic signal background noise of the network when the device is switched is off 61 62 (Control), b) and c) corresponding frequencies of the water in and out for the Control, 63 respectively (the frequency of 50 Hz is due to the electrical network background), d) 64 screenshot of the oscilloscope indicating the electromagnetic signal of the network when the 65 device is switched on (Assay), and e) corresponding frequencies of the water out for the Assay 66 (two frequencies between 1 - 10 kHz).

- Reactor R1 (tap water)	Series 1 (R1 = assay)			Series 2 (R1 = Control	l)
EMF	OFF	ON		OF	FF
Coupon sampling (curative assay) + add					
coupons (preventive assay)					
Coupon sampling (preventive assay)*					
- Reactor R2 (tap water + limewater)					
+ Limewater (pH 9, Ca(OH) ₂ solution)			Oversaturated w	vater with respect to CaCO ₃	
EMF	OFF		ON	OFF	
Coupon sampling (curative assay) + add					
coupons (preventive assay)					
Coupon sampling (preventive assay)*					
- Reactor R3 (tap water)	Series 1 (R3 = control)			Series 2 (R3 = assay))
EMF		OFF			
Coupon sampling (curative assay) + add					
coupons (preventive assay)					
Coupon sampling (preventive assay)*					

* Coupons from preventive assay were sampled at the same time but exhibited different "ages" since they were installed at different time

Figure S2. Summary of the operation sequence for sampling, addition of new coupons, and sketch of EMF on/off.

- 112 Figure S3. Images by scanning electron microscopy of
- 113 the PVC coupons from Reactor R2 (supplemented with
- 114 limewater): a) preventive treatment + EMF; b) curative
- 115 treatment + EMF, c) control before exposition to EMF
- 116 (2 month-old biofilm). A = aragonite, C = calcite.

Time (tays)
Figure S4: Number of total cells (square), membrane-damaged cells (circle), and cultivable
cells (CFU) (triangle) along the time in biofilms on PVC (a) and SS (b) coupons of Reactor
R1 (open symbols) and Reactor R3* (closed symbols). Reactor R1 was fed with tap water not
treated to EMF (*Control*), Reactor R3* was fed with the same tap water constantly exposed to
EMF (*Assay*). The experiment started with blank coupons (« preventive treatment »).

128 129

Figure S5: Change of total cell number (square), cultivable cells (CFU) (triangle), and membrane-damaged cells (circle) along the time in biofilms on PVC and SS coupons (n=1) for Reactor R2 when it was fed with a tap water supplemented in CaCO₃ and constantly exposed to EMF. The experiment started with blank coupons (preventive treatment).