om960994v_si_001.pdf (147.37 kB)
Aromaticity in Group 14 Metalloles: Structural, Energetic, and Magnetic Criteria
journal contribution
posted on 1997-04-15, 00:00 authored by Bernd Goldfuss, Paul von Ragué SchleyerVarious structural (C−C bond length equalization,
D), energetic (isodesmic stabilization
energies, ISE), and magnetic (diamagnetic susceptibility exaltations,
Λ and nucleus-independent chemical shifts, NICS) criteria are employed (using B3LYP,
CSGT, and GIAO
ab initio methods) to assess the aromaticity and
antiaromaticity of a variety of group 14 (E
= C, Si, Ge, Sn, Pb) metalloles:
C4H4EH2
(C2v),
C4H4EH-
(Cs and
C2v; C,
D5h),
C4H4EH+
(singlet, C2v),
C4H4EHLi
(Cs; C,
C5v), and
C4H4ELi2
(C2v). In addition,
structural trends are
established for C4H4ELi-
(Cs) and for
C4H4E2-
(C2v) as well as for the
singlet and triplet
C4H4E
(C2v) sets. The
increased pyramidality at E down group 14 results in
strongly
decreased aromaticity of metallolyl anions
C4H4EH-
(Cs). In contrast, all planar
C4H4EH-
(C2v) geometries are
significantly more aromatic. Although all
C4H4EH+
(C2v)
structures
are planar, the antiaromaticity in singlet
C5H5+ is much higher than that of
the heavier
congeners (E = Si to Pb). The four-π-electron singlets
C4H4E exhibit nearly as localized
geometries as the C4H4EH+
ions, but the C4H4E triplets are more
delocalized. As in the
free anions, pyramidally coordinated E's lead in
C4H4EHLi
(Cs) to reduced aromaticity,
but
stabilizing Li−H interactions are apparent in these structures.
The metallole dianions and
their Li+ complexes (e.g.
C4H4ELi2,
C2v) are the most
aromatic among the species studied.
The aromaticity in these dianionic metalloles is remarkably
constant in going from E = C
to E = Pb.
History
Usage metrics
Categories
Keywords
Magnetic CriteriaC 4 H 4 E tripletsPbsinglet C 5 H 5group 14 resultsB 3LYP CSGTisodesmic stabilization energiesC 4 H 4 EHLiC 4 H 4 ELi 2aromaticityISEmetallolyl anions C 4 H 4 EHC 4 H 4 ELiC 4 H 4 EHdianionic metallolesgroup 14metallole dianionsdiamagnetic susceptibility exaltationstriplet C 4 H 4 EC 2 vNICSGIAO ab initio methods