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Animal models of post-traumatic stress disorder and novel
treatment targets
Dario Aspesi and Graziano Pinna

Understanding the neurobiological basis of post-traumatic
stress disorder (PTSD) is fundamental to accurately
diagnose this neuropathology and offer appropriate
treatment options to patients. The lack of pharmacological
effects, too often observed with the most currently used
drugs, the selective serotonin reuptake inhibitors (SSRIs),
makes even more urgent the discovery of new
pharmacological approaches. Reliable animal models of
PTSD are difficult to establish because of the present
limited understanding of the PTSD heterogeneity and of the
influence of various environmental factors that trigger the
disorder in humans. We summarize knowledge on the most
frequently investigated animal models of PTSD, focusing on
both their behavioral and neurobiological features. Most of
them can reproduce not only behavioral endophenotypes,
including anxiety-like behaviors or fear-related avoidance,
but also neurobiological alterations, such as glucocorticoid
receptor hypersensitivity or amygdala hyperactivity. Among
the various models analyzed, we focus on the social
isolation mouse model, which reproduces some deficits
observed in humans with PTSD, such as abnormal
neurosteroid biosynthesis, changes in GABAA receptor
subunit expression and lack of pharmacological response

to benzodiazepines. Neurosteroid biosynthesis and its
interaction with the endocannabinoid system are altered in
PTSD and are promising neuronal targets to discover novel
PTSD agents. In this regard, we discuss pharmacological
interventions and we highlight exciting new developments
in the fields of research for novel reliable PTSD biomarkers
that may enable precise diagnosis of the disorder and more
successful pharmacological treatments for PTSD
patients. Behavioural Pharmacology 30:130–150 Copyright
© 2019 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
Stress and environmental factors play a fundamental role

in developing maladaptation and behavioral abnormalities.

Indeed, stressful events negatively affect several neuro-

endocrine systems, which can cause deep repercussions on

both cognitive and emotional processing (McEwen et al.,
2015; Pagliaccio et al., 2015; Herman et al., 2016).

In the general population, more than two-thirds of individuals

experience a traumatic event at some point in their lifetime

(Javidi and Yadollahie, 2012), but the majority of them

develop the ability to adapt and develop resilience within the

following 3–6 months (Bryant, 2003). However, after a trau-

matic event, a consistent proportion of subjects may develop

severe psychiatric disorders, including generalized anxiety,

major depressive disorder and/or post-traumatic stress disorder

(PTSD). If not adequately treated, these conditions may

progress into a more complex neuropathology with significant

morbidity, prevalence, and comorbidity with other psychiatric

disorders (Baldwin et al., 2014; Roberts et al., 2015; Yehuda
et al., 2015a, 2015b).

PTSD increases chronic disease, accelerates aging, and is

associated with premature mortality (Koenen et al., 2017).

It is a multifaceted disorder with four characterizing

symptom clusters: intrusion, re-experiencing the traumatic

event, increased arousal, and the constant avoidance of stimuli

associated with the trauma (Brewin, 2001; Pai et al., 2017). Its
prevalence in the US population is 6.8% (Kessler et al., 2005).
Soldiers, abused children, and battered women are the most

susceptible individuals affected by PTSD (Goldstein et al.,
2016). The nature of the traumatic event is important to

predict the risk of developing PTSD. Repeated trauma (e.g.

abuse) compared with a single traumatic exposure (e.g. car

accident) increases the possibility of developing the disorder

(Bichescu et al., 2005). However, the duration or intensity of

the trauma cannot completely explain the rates of the disorder

among the general population (Smith et al., 2016). Several
factors can influence susceptibility to PTSD and sex plays an

important role. Indeed, the number of women who develop

PTSD is about double that of men (Shansky 2015; Yehuda

et al., 2015a, 2015b). Another important risk factor is a pre-

morbid personality with preexisting anxiety and/or depressive

disorders (Lassemo et al., 2017; Gagne et al., 2018). The high

comorbidity with other psychiatric disorders makes it difficult

to diagnose PTSD and to select an optimal treatment (Greene

et al., 2016). For example, in about 30–50% of individuals,
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PTSD is complicated by major depressive disorders (Shalev,

2001). This impressive comorbidity rate can be partially

explained by the presence of overlapping symptoms between

the two disorders. Other disorders observed in PTSD patients

are enhanced vulnerability to substance and/or alcohol abuse,

generalized anxiety, or even attempted suicide (Spinhoven

et al., 2014; Gradus et al., 2017; Lento et al., 2018). The
commonality of symptoms and behavioral phenotypesmake it

even more difficult to distinguish the different disorders or

subpopulation of patients and to provide adequate medical

assistance.

The selective serotonin reuptake inhibitors (SSRIs) are

the first-line intervention to treat PTSD. Paroxetine

and sertraline are currently the only Food and Drug

Administration-approved drugs to treat PTSD symptoms

(Friedman and Bernardy, 2017). Recent studies reveal a

considerable variability in their efficacy, often with the

resistant individuals, such as veterans (Bernardy and

Friedman, 2015; Starke and Stein, 2017), who need

augmentation or various combination of treatments (Stein

et al., 2009). As the response rate to SSRIs rarely exceeds

40–60%, research on discovering new treatments has

become a priority. However, while adequate therapeutic

approaches are needed, these firmly rely on reliable

animal models and established biomarkers associated

with PTSD. Regrettably, as of today, there are no biomarkers

that have been assessed for PTSD and animal models only

partially reproduce endophenotypes observed in the spectrum

of PTSD neurobiology.

In this review, we discuss the most commonly studied

animal models of PTSD. We critically address their ability

to mimic the behavioral and biological dysfunctions

observed in PTSD patients and focus on the pharmaco-

logical advantage of potential novel PTSD treatments. A

specific focus has been given to the neurosteroid and

endocannabinoid systems as promising fields to assess

specific PTSD biomarkers and develop novel treatment

options.

Animal models of post-traumatic stress
disorder
The experimental manipulations that lead to a valid construct

of PTSD-like psychopathology in animals are few and they

are the topic of debates (Goswami et al., 2013; Borghans and
Homberg, 2015; Flandreau and Toth, 2018). Currently, there

is no accepted animal model of PTSD, even if several pro-

tocols allow reproduction of some endophenotypes of the

disorder. The principal challenge is to create an adequate

rodent model of PTSD that closely reflects the complexity of

PTSD, which leads patients to exhibit a variety of mood and

cognitive symptoms (American Psychiatric Association, 2013).

Furthermore, understanding the neurobiology of PTSD also

means understanding the causes of individual susceptibility

and resilience. PTSD is associated with exposure to different

kinds of traumatic events and the diverse types of trauma

could result in several subtypes of PTSD patients (Stein et al.,

2016). Given the heterogeneity of PTSD and the high

comorbidity with other neuropsychiatric disorders, several

animal models could be useful to investigate different aspects

of the disorder (discussed in Locci and Pinna, 2019a).

However, no results obtained from each of the models can be

generalized to this neuropathology in its entirety but should

be considered useful for a clearer understanding of a certain

PTSD subpopulation. An alternative strategy to establish a

valid animal model is to recognize symptom clusters that are

actually shared between disorders and model these. PTSD

symptoms include intrusion, avoidance, negative alterations

in cognition and mood, and alterations in reactivity and

arousal (American Psychiatric Association, 2013). Neverthe-

less, the possibility to distinguish between symptom clusters

linked to PTSD or PTSD with comorbidities is not always so

feasible. While, for example, emotional numbing symptoms

may be associated with PTSD and comorbid alcohol abuse

disorder (Jakupcak et al., 2010), the symptom clusters of

PTSD and comorbid depression are more difficult to identify

(O’Donnell et al., 2004). However, the overlap with other

psychiatric disorder such as depression, anxiety disorder, and

suicidal ideation, shows the need to identify a unique array of

biomarkers associated with the disorder or with the comorbid

conditions (Pinna and Izumi, 2018). For example, patients

with PTSD show a specific correlation between decreased

neurosteroid levels and changes in GABAA receptor subunits,

resulting in decreased cortical and hippocampal benzodiaze-

pine binding sites and lack of benzodiazepine-induced

pharmacological effects. These alterations related to the

GABAA receptor subunit changes form a biosignature exclu-

sive for PTSD, which is different from that occurring in other

disorders (reviewed in Pinna and Izumi, 2018).

An adequate preclinical model should recapitulate the

specific signatures of the disorder and satisfy construct,

face, and predictive validity criteria (Torok et al., 2018).
Construct validity allows assessment of the validity of the

procedure. In the case of PTSD, the cause of the disorder

is the exposure to a traumatic event; thus, an animal

model should use a traumatic exposure to develop a

similar construct. Face validity refers to the evaluation of

the similarities between PTSD-like symptoms in animals

and the symptoms of patients, listed in the Diagnostic and
Statistical Manual of Mental Disorder version 5 (American

Psychiatric Association, 2013; Torok et al., 2018).

Predictive validity is the ability to make predictions of

human response on the basis of the model (e.g. the

response to the use of newly developed drugs; Siegmund

and Wotjak, 2006). Given that not all the individuals

exposed to traumatic events develop PTSD, it is

important to understand the risk factors that alter the

ability to develop resilience or the vulnerability to develop

the disorder in the population. Probably, a more appropriate

animal model to reflect the human condition should con-

sider applying chronic stress in combination with an acute

traumatic event to precipitate PTSD-like behavior (Torok

et al., 2018). Furthermore, even if sex affects the response to
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traumatic stressors, its effects were not thoroughly investi-

gated in most of the animal models summarized below

(Cohen and Yehuda, 2011). For example, only a few studies

among over 200 that have used the single prolonged stress

(SPS) model compared the behavioral response of the two

sexes (Keller et al., 2015). A recent study in rats subjected to

the SPS paradigm shows that females are not more resilient

to the consequences of traumatic events than males, but

they simply respond differently to the trauma (Pooley et al.,
2018). Biological measures, such as the higher baseline and

poststress corticosterone levels in females, confirmed dif-

ferences due to a sex bias that leads to diverse behavioral

outcomes in males and females (Seale et al., 2004). These

findings can help explain why, in humans, the two sexes

show a different behavioral response to trauma: more

externalizing symptoms are induced in men (aggression,

impulsivity, and hyperarousal), while internalized symptoms

are more prevalent in women (anhedonia, sadness, and

depression) (Murphy et al., 2018). The lack of sex-related

knowledge on the understanding of the neurobiological

mechanisms related to traumatic events makes it a priority to

include females in preclinical research. Figure 1 summarizes

the several rodent PTSD models described below.

The restraint stress model

An experimental manipulation to establish animal models

for PTSD includes restraint stress, during which rodents

are placed in a restraint device for a time varying from 15

to 120 min (Whitaker et al., 2014). Animals can also be

subjected to a chronic form of repeated restraint stress for

Fig. 1

Behavioral and neurobiological phenotypes of rodent models of post-traumatic stress disorder (PTSD). A summary of the core neurobiological
features that relate to the PTSD phenotype for each animal model. Plus (+) symbols indicate phenotypes reported for each PTSD rodent model, minus
(−) symbols indicate that the results on the specific phenotype are still unclear or the results vary across the laboratories. ‘Not reported’ indicates that
the phenotypes have not been yet investigated. In the last column are reported the main findings in females for each model. AMY, amygdala; CNS,
central nervous system; CORT, corticosterone; HPA, hypothalamic–pituitary–adrenal; PFC, prefrontal cortex; SSRIs, selective serotonin reuptake
inhibitors.
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1 h/day repeated for 3 and up to 40 days (Gameiro et al.,
2006). The different protocols of restraint across laboratories

(e.g. chronic or acute stress, repeated or single exposure)

make it difficult to compare findings. This procedure indu-

ces a strong activation of the hypothalamic–pituitary–adrenal

(HPA) axis, but the validity of mimicking PTSD-related

behavior or neurobiology is limited and still unclear

(Risbrough et al., 2016). As in PTSD patients (Yehuda et al.,
2015a, 2015b), a 20-min reminder of restraint after 1, 7, or

13 days from the first restraint stress, induces a hypoactiva-

tion of the HPA axis with decreased levels of corticosterone

and of adrenocorticotropic hormone (ACTH; Harvey et al.,
2006). This form of stress is more frequently used to induce

depression-like behavior and anhedonia (Chiba et al., 2012;
Xu et al., 2017). Interestingly, mice subjected to 24-h-

restraint stress do not show anxiety, but only depression-like

behavior, which can be improved by administering an

SSRI (Chu et al., 2016). The cannabinoid receptor type 1

(CB1) activation using the selective agonist arachidonyl-2′-
chloroethylamide had neuroprotective effects on restrained

mice probably due to a modulation of the anti-inflammatory

response (Zoppi et al., 2011). Using the restraint stress model

in conjunction with other stressful paradigms [e.g. forced

swimming test (FST)], the first (restraint) enhances the

sensitization to the second stressor (Liberzon et al., 1997).
This sensitization effect is intriguing because the restraint

stress enhances the HPA negative feedback, which is a core

feature of PTSD. Furthermore, this model causes opposite

patterns of dendritic remodeling, enhancing dendritic arbor-

ization of the basolateral amygdala (BLA) pyramidal-like and

stellate neurons and inducing dendritic atrophy in the hip-

pocampus CA3 pyramidal neurons (Vyas et al., 2002). The
connectivity abnormalities in these two brain regions mimic

the alteration reported in PTSD patients (Zhu et al., 2018)
and are responsible for the deficits in fear extinction, which

are specific hallmark behavioral traits of PTSD (Risbrough

et al., 2016).

The unpredictable variable stress

A common model to mimic depression-like behavior, the

unpredictable variable stress (UVS; Fig. 1), appears

adequate to reproduce some forms of PTSD behavioral

phenotypes and, in this model, behavioral dysfunctions

can also be improved by SSRIs or ketamine treatment

(Garcia et al., 2009; Yin et al., 2016). The experimental

procedure consists in the exposure to various stressors

over a period of 1–8 weeks and this is thought to reflect

the unpredictable stress often experienced by members

of the armed service (Wakizono et al., 2007; Goswami

et al., 2013; Shepard et al., 2016). Although it induces

some degree of PTSD phenotypes, this model has low

reproducibility and fails to induce the avoidance of

trauma-specific cues which is a fundamental behavioral

deficit related to PTSD, probably because of the use of

several stressors. At a neurobiological level, this experimental

procedure induces increased negative feedback of the HPA

axis after stress (Yehuda et al., 2015a, 2015b), mimicking the

alterations observed in PTSD patients, and produces volume

deficits of the hippocampus (Isgor et al., 2004). The chronic

stress induced by this model down-regulates CB1 expression

and decreases the endocannabinoid, 2-arachidonoylglycerol

(2-AG) in the hippocampus (Hill et al., 2005). Furthermore, it

has been reported that UVS enhanced levels of proin-

flammatory cytokines [interleukin (IL)-1β, IL-6, and tumor

necrosis factor (TNF-α)], which are important biomarker

candidates for PTSD and are strongly related to its symp-

toms (von Känel et al., 2007; Tao et al., 2016). However, after

suspension of stress, the basal plasma glucocorticoid levels of

animals subjected to UVS are increased, while, generally,

PTSD patients show low to unchanged peripheral basal

glucocorticoid levels (Algamal et al., 2018). The elevated

basal plasma glucocorticoid levels are features of other dis-

orders, such as depression and generalized anxiety disorder

(Pariante and Miller, 2001; Fischer and Cleare, 2017).

Nevertheless, given the high comorbidity of PTSD with

depression or generalized anxiety disorder, this model may

be more appropriate to mimic deficits that encompass sub-

populations of PTSD patients with high comorbidity with

these disorders.

The inescapable shock model

One of the most common PTSD animal models, the ines-

capable shock (to the feet or tail), is based on an unpredictable

and unexpected single stress exposure (Fig. 1). The electric

foot or tailshock model, based on the administration of one or

more electric shocks for few seconds (0.5–10 s), is widely used

as a rodent fear paradigm to investigate stress responses and

fear learning (Pryce et al., 2011). The inescapable shockmodel

is often used in combination with additional stressors, such as

restraint (Nagata et al., 2009) or corticosterone injection (Hui

et al., 2004). The use of various protocols complicates the

comparison of the results of these studies. For example, the

HPA axis adaptation to footshock is different if the intensities

of the shock vary (Rabasa et al., 2011). Furthermore, cell

proliferation in the hippocampus failed to be affected by a

single footshock exposure, while a chronic procedure changes

the brain plasticity, suppressing hippocampal cell proliferation

(Dagytė et al., 2009). Thus, the characteristics of the procedure
or the administration of additional stressors influence the

results, leading to alterations that are not seen with other

procedures, such as the adaptation to stress (Bali and Jaggi,

2015). Even with a single exposure, electric footshock triggers

PTSD-like phenotypes, including hyperarousal, avoidance,

and hippocampal-dependent memory deficits (Golub et al.,
2009; Philbert et al., 2012; Toth andNeumann, 2013). Animals

also show abnormalities of fear learning with deficits in fear

extinction (Desmedt et al., 2015). The use of SSRIs, including
paroxetine, reduces some behavioral deficits, such as gen-

eralized avoidance and prevents their reactivation (Pryce et al.,
2011; Bentefour et al., 2016). The administration of the CB1

agonist, WIN 55 212-22 (WIN) prevents fear extinction

impairments following situational reminders, by preventing

altered CB1 expression in the hippocampus and prefrontal

cortex (Korem and Akirav, 2014). Furthermore, this paradigm
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induces a reduction of hippocampal volume and enhances

neuronal activity in the prefrontal cortex (Milad and Quirk,

2002; Golub et al., 2011).Mice subjected to foot shocks show a

greater level of cytokines both in plasma and in the brain

(Cheng et al., 2015, 2018).

Both the footshock and tailshock models have very lim-

ited data on females. The footshock model produces

avoidance of trauma-related cues, but not general

avoidance, and alterations of corticosterone level in the

plasma in females (Diehl et al., 2007). Moreover, only

females exhibit enhanced negative feedback of the HPA

axis response to stress, which is not observed in males

(Louvart et al., 2006). This finding shows that males

subjected to the footshock procedure fail to mimic a core

physiological alteration of PTSD, that is, the low cortisol

levels associated with the increased negative feedback.

The predator-stress model

The predator-stress model comprises the exposure of the

rodents to a potential predator or to a predator scent

(Wilson et al., 2014a, 2014b). Animals exposed to this

stressor show enhanced negative feedback of the HPA

axis, increased activity of the amygdala and altered levels of

neurotransmitters, such as serotonin and norepinephrine, in

both hippocampus and prefrontal cortex (Wilson et al., 2014a,
2014b; Zoladz et al., 2015; Dengler et al., 2018). Moreover,

the CB1 receptor mRNA expression is downregulated in the

frontal cortex and in the amygdaloid complex, promoting the

anxiogenic effects (Campos et al., 2013). This procedure also
produces an increase in proinflammatory cytokines IL-1β,
IL-6, and TNF-α, and a decrease in the anti-inflammatory

cytokine IL-10 in the hippocampus and frontal cortex of the

rodent brain (Wilson et al., 2013; Deslauriers et al., 2017). At
a behavioral level, the exposure to predator-related stress

evokes hyperarousal, avoidance, exaggerated fear responses,

and reduces fear extinction (Cohen et al., 2010; Zoladz et al.,
2015; Seetharaman et al., 2016). The predator-stress model

increases anxiety-like behavior measured by several beha-

vioral tests, including the elevated plus maze, the light-dark

box, and the social interaction (Adamec et al., 2005). The
response to stress appears to be graded, with more pro-

nounced effects due to the direct exposure to a predator, and

intermediate effects after exposure to predator scent or to the

testing room context. This effect on anxiety is also found in

individuals affected by PTSD, who exhibit graded responses

to stress severity (Adamec et al., 2004). This model is also

sensitive to the SSRI, sertraline, and to the selective ser-

otonin reuptake enhancer, tianeptine, which reduce anxiety-

related behaviors and cue avoidance (Zoladz et al., 2013;
Wilson et al., 2014a, 2014b).

This model is associated with weakness linked to poor

reproducibility across laboratories, mostly as a result of

the various paradigms used, including the severity of the

protocol chosen (e.g. physical contact with predator vs. scent

exposure only) or the species and the strain of rodent selected.

Moreover, some protocols require a secondary exposure to the

stressors to increase their efficacy, which, again, makes it more

difficult to compare findings (Zoladz et al., 2015; Kim et al.,
2017).

The predator exposure model is very limited in studies in

females. The only few studies that compared the effects

on sex differences showed divergent results on males and

females. Females are more susceptible to the predator-

stress paradigm than males, but only for the magnitude of

the response to it, not for the prevalence of the behavioral

alterations. Females show compromised memory perfor-

mance in the Morris water-maze, avoidance and

enhanced level of basal corticosterone (Mazor et al., 2009;
summarized in Fig. 1).

The single prolonged stress model

Liberzon et al. (1997) developed another widely used

PTSD rodent model: the SPS (Fig. 1). This model con-

sists of the exposure of the rodents to three stressors in

succession: restraint-immobilization stress (2 h), forced swim-

ming (20min), and exposure to diethyl ether until loss of

consciousness. This protocol is claimed to mimic the physio-

logical and endocrine stress challenges of PTSD (Takahashi

et al., 2006). The administration of cortisol suppresses ACTH

levels and enhances the HPA negative feedback (Liberzon

et al., 1999), which was attributed to an increased glucocorti-

coid receptor (GR) expression in the prefrontal cortex and

hippocampus (George et al., 2015). However, this effect on the

HPA axis is evident only 7 days after the stress exposure,

while it is not present 1 day poststress (Liberzon et al., 1999).
Cue-conditioned fear and extinction are unaffected by SPS

after a fear conditioning test, but this model shows impair-

ments in the retention of extinction (George et al., 2015).
Furthermore, other investigators found that the SPS proce-

dure induces behavioral abnormalities that mimic PTSD

symptoms, including hyperarousal and enhanced contextual

freezing (Imanaka et al., 2006; Yamamoto et al., 2009). In the

hippocampus, SPS enhanced the levels of TNF-α and IL-1β
(Lee et al., 2016). SPS also induces morphological changes in

rodent brain, including apoptotic volume loss in the hippo-

campus, and in the dorsal raphe nucleus (Liu et al., 2012a,
2012b; Han et al., 2013), which may be comparable with

the decreased volume of these regions in PTSD patients

(Gilbertson et al., 2002; Liu et al., 2012a, 2012b).

The administration of WIN improves the impaired fear

extinction of rats subjected to SPS (Ganon-Elazar and

Akirav, 2012). The exposure to the stressors increases the

cue-induced fear, which is attenuated by paroxetine

(Perrine et al., 2016). However, the results on SSRI

effects are conflicting, because even the same SSRI, that

is, paroxetine, improves behavioral deficits in some SPS

models (Perrine et al., 2016), but fails in others

(Takahashi et al., 2006). These discrepant results may be

due to the differences in the design of the SPS, in the

route of drug administration or in the behavioral test used

in the studies (cue vs. contextual fear). However, SSRIs

are ineffective in a portion of PTSD patients (Stein et al.,
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2002) and they may be more successful in treating an

individual with PTSD and comorbid anxiety or depres-

sion (Flandreau and Toth, 2018). This intriguing finding

is supported by a recent discovery of Lin et al. (2016),
who showed that the SSRI escitalopram reduced avoid-

ance and depressive-like symptoms, but fails to improve

fear extinction deficits. Importantly, animals exposed to

SPS also show a different vulnerability, with more resis-

tant or vulnerable rodents that differ in their reactivity to

the trauma-related cues (Le Dorze and Gisquet-Verrier,

2016). The presence of these two subpopulations

strengthens the validity of the SPS as an animal model of

PTSD because it more closely reflects the human con-

dition, with only a portion of the population developing

the neuropathology as a maladaptive response to the

trauma (Breslau, 2009).

The social defeat stress model

The social defeat stress (SDS) model is typically per-

formed in male rodents using a resident-intruder protocol

(Fig. 1). The resident-intruder interaction includes aggressive

behavior and social stress to the intruder (Bjorkqvist, 2001;

Hammels et al., 2015). SDS induces an increase in social

avoidance and produces some relevant behavioral outcomes

linked to PTSD, such as hyperarousal, anhedonia, and

impairment in the reward system (Warren et al., 2013;

Der-Avakian et al., 2014). Repeated SDS leads to alterations of

plasticity in the amygdala and hippocampus (Patel et al., 2018).
Moreover, the activation of the HPA axis induced by the

experimental paradigm is linked to the enhanced levels of

proinflammatory cytokines in both plasma and brain regions,

such as the prefrontal cortex, the paraventricular nucleus of

the hypothalamus and the amygdala (Reader et al., 2015). The
SDS model induces prolonged activation of the HPA axis,

with increased plasma concentrations of ACTH and corticos-

terone, and enhanced CRH mRNA expression in the para-

ventricular nucleus (Keeney et al., 2006). This HPA axis

abnormality is relevant to the pathological alterations observed

in other disorders, such as in clinical depression, but questions

arise regarding the face validity of the model for PTSD. The

administration of the CB1 antagonist, rimonabant before the

social stress sessions increased the freezing response of mice

during cued fear recall tests, suggesting a fundamental role of

the release of endocannabinoids during stress exposure

(Dubreucq et al., 2012). One important limitation of the

repeated exposure to a predictable stressor is that it fails to

induce a deficit in fear extinction, which is a core feature of

PTSD (Page et al., 2016).

Moreover, the inclusion of females in this paradigm is very

problematic because of their less aggressive interactions with

intruders in the home cage (Hollis and Kabbaj, 2014). In an

attempt to solve this problem, older, lactating females have

been used as residents to elicit aggressive behavior. As a result,

pronounced anxiety-related behavioral effects appeared only

2 weeks after the stressor exposure (Jacobson-Pick et al., 2013).
Although several aggressive behavioral traits displayed by the

two sexes are similar, the neural mechanisms underlying them

may be different (Terranova et al., 2017). Indeed, the

aggression shown by lactating female residents toward intru-

ders may not be of the same type as shown by resident males.

Maternal aggression includes both offensive and defensive

attack patterns, while resident males attack in defense of an

individual’s own integrity and territory, with only defensive

aggression (Lonstein and Gammie, 2002). Moreover, the

limitation due to the estrus cycle conditions and the inevitable

presence of pups makes the procedure more demanding and

complicates the feasibility of exposing females to the resident-

intruder protocol (Palanza et al., 2001).

The 129S1/SvlmJ strain model

Over the past decade, Holmes and colleagues observed the

poor fear extinction profile of 129S1/SvlmJ mice in compar-

ison to C57/B6 mice (Camp et al., 2009). This mouse strain

shows an impaired fear extinction, providing a valuable

approach to modeling a ‘genetic’ preclinical model for several

psychiatric disorders, including PTSD (Hefner et al., 2008).
Such a model provides an opportunity to investigate mole-

cular and genetic mechanisms underlying fear extinction,

focusing on the possible genetic contribution to individual

vulnerability and predisposition to PTSD. The 129S1/SvlmJ

mouse shows perturbations in autonomic and neuroendocrine

parameters, with higher corticosterone levels and lower GR

mRNA expression, besides behavioral abnormalities (Camp

et al., 2012). In the open field test and in the elevated plus

maze, these animals show increased anxiety-like behaviors

and reduced exploratory locomotor activity as compared with

C57/B6 (Millstein and Holmes, 2007). Moreover, this mouse

strain exhibits a tendency to overgeneralize fear of ambiguous

environmental cues, and difficulties in inhibiting fear when

safety signals are presented (Camp et al., 2012). The beha-

vioral abnormalities have been linked to HPA axis perturba-

tions with a significant loss of GR-mediated negative

feedback regulation. Furthermore, the characteristic impaired

fear extinction has been associated with a perturbation in

the activation of the prefrontal cortex–amygdala circuit, a

significant trait of PTSD (Whittle et al., 2010). This model

also provides a suitable tool to study the effect of drugs to

facilitate fear extinction (Holmes and Quirk, 2010). The SSRI

antidepressant fluoxetine rescued the fear phenotype and

decreased the contextual fear overgeneralization of the 129S1/

SvlmJ mice (Camp et al., 2012). This model can be useful to

investigate the genetic predisposition to develop PTSD or

other anxiety-related disorders, highlighting the possible role

of the interaction between genes and environment.

The social isolation model

By exposing rodents to a protracted and, probably, severe

stressor, social isolation (SI) offers a putative animal

model to investigate the development of vulnerability to

PTSD. In rodents, SI can be considered a distressing event

that induces behavioral deficits, even though the length of

isolation varies among several laboratories. In our laboratory,

this manipulation comprises the isolation of the animals in
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individual cages for 3–4 weeks, which results in a time-

dependent increase of anxiety-like and aggressive behavior

(Pinna et al., 2003; Rau et al., 2005; Pibiri et al., 2008; dis-
cussed in Locci and Pinna, 2019a). Consistently, in humans,

perceived SI or loneliness is associated with increased

mortality and morbidity with physical, neurological, and

psychological dysfunctions, including Alzheimer’s disease,

major depression, anxiety spectrum disorders, and suicid-

ality (Cacioppo and Cacioppo, 2016). Several lines of evi-

dence showed that social bonds and social supports

contribute to regulation of emotions under conditions of

traumatic stress, emphasizing the role of the emotional

component as a risk factor for PTSD (Nemeroff et al., 2006;
Charuvastra and Cloitre, 2008; Mehnert et al., 2010). The

inability of an individual to manage emotional memories

appropriately is seen as the leading cause of the develop-

ment of symptoms of avoidance, re-experiencing, and

hypervigilance (Cahill et al., 2003; Rothbaum and Davis,

2003; Pitman et al., 2006; Rauch et al., 2006). The individual

housing of rodents is a chronic stressful condition that

increases the vulnerability to behavioral deficits following

stressful acute events, such as the electric shocks adminis-

tered as part of the fear conditioning test. This highlights

how social factors in rodents may alter coping abilities to

overcome stress or, alternatively, the predisposition to

develop PTSD (Charuvastra and Cloitre 2008; Pinna, 2010).

However, some reports also contradict the appropriateness

of SI in mice as a stressful environmental condition to

induce behavioral dysfunction, including aggressive beha-

vior (Brain, 1975).

In our laboratory, using a Pavlovian fear conditioning test,

during which conditioned (i.e. acoustic tone) and uncondi-

tioned (i.e. footshock) stimuli are administered to the mice

in a novel context, the animals show an enhanced freezing

time 24 h after the training session (Pibiri et al., 2008; Pinna
et al., 2008). In socially isolated mice, the response to the

fear conditioning, as for aggressive behavior, increases

during the 4 weeks of SI reaching a plateau after 4 weeks

(Pibiri et al., 2008). Interestingly, during the contextual fear

extinction, socially isolated mice failed to attain the low

levels of group-housed control animals, suggesting an

incomplete fear extinction due to the SI procedure (Pibiri

et al., 2008). Thus, SI in rodents may mimic the chronic

stress seen in patients before the exposure to a precipitating

traumatic event, which leads to developing PTSD. This is

further substantiated by the enhanced emotional reactivity

induced by the protracted SI in rodents with an increased

anxiety-like behavior, which is reminiscent of the beha-

vioral traits observed in PTSD subjects after the re-

exposure to events that remind the trauma (Grillon and

Morgan, 1999; Rauch et al., 2006). Socially isolated rodents

exhibit an HPA hyporesponsiveness, with lower levels of

corticosterone and reduced release of CRH into the hypo-

physeal portal system (Sanchez et al., 1998; Chida et al.,
2005; Malkesman et al., 2006). The hypofunction of the

HPA axis is particularly evident after the exposure of

socially isolated animals to an acute stressor, suggesting a

reduced sensitization of the axis to stressful stimuli

(Sanchez et al., 1998).

As in the PTSD models reviewed above, the SI model is

mainly used to study PTSD-like behavior in male mice.

The study of female mice exposed to SI is very limited

and is mostly used to study depression-like behaviors.

Furthermore, it is more commonly investigated in prairie

voles and rats, rather than in mice (Weiss et al., 2004;
Grippo et al., 2007).

Nevertheless, this model is of particular interest because, as in

PTSD patients, the emotional alterations observed in the

socially isolated rodent model can be associated with the

down-regulation of GABAergic neurotransmission (Guidotti

et al., 2001; Matsumoto et al., 2007). In the cortex and hip-

pocampus, this prolonged stressor induces an alteration in the

subunit expression of GABAA receptors, with a decrease in α1,
α2, and γ2 subunits expression and an increase in α4, α5, and δ
subunits (Pinna et al., 2006; Serra et al., 2008). The α4 and δ
subunits are primarily expressed in the extrasynaptic GABAA

receptors, which show an increased sensitivity for neuroactive

steroids (Locci and Pinna, 2017). However, the GABAA

receptor conformation including α4, α6, in combination with δ
is benzodiazepine-insensitive. Thus, stress-induced remodel-

ing of GABAA receptor subunit composition results in a lack of

efficacy of pharmacological actions of benzodiazepines. The

benzodiazepine inefficacy due to decreased benzodiazepine

binding sites (Pinna et al., 2006) is in strong agreement with

the dysfunctions observed in the cortex, hippocampus, and

thalamus of PTSD patients (Geuze et al., 2008). The principal
PTSD-like phenotypes recapitulated by SI are described in

Fig. 1.

In socially isolated mice, the down-regulation of GABAergic

neurotransmission is likely the result of decreased levels of

allopregnanolone (Allo) in selective neuronal populations of

the prefrontal cortex, hippocampus and BLA (Pinna et al.,
2008; 2009; Agis-Balboa et al., 2007). Allo is an endogenous

neurosteroid and a potent, positive, allosteric modulator of the

GABA action at GABAA receptors (Belelli and Lambert,

2005; Belelli et al., 2018). Specifically, socially isolated mice

show a decreased expression of Allo in the pyramidal gluta-

matergic neurons of frontal cortex layer V/VI and hippo-

campus, and in the pyramidal-like neurons of the BLA.

These pyramidal neurons regulate the inhibitory function of

intercalated inhibitory spiny GABAergic interneurons (ITC)

of the central amygdaloid nucleus (CeA; Agis-Balboa et al.,
2007). It is intriguing that PTSD patients show characteristic

exaggerated amygdala hyperactivity because of deficits in the

function of the prefrontal cortex and hippocampus (Akirav

and Maroun, 2007). The glutamatergic neurons from the

prefrontal cortex and hippocampus synapse on the amygdala

GABAergic neurons, providing an inhibitory input to the

amygdala. The GABAergic neurotransmission of the amyg-

dala plays a fundamental role in the control of the emotional

response to stress and can influence fear extinction learning.
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During normal conditions, fear suppression is achieved by the

activation of the prefrontal cortex and hippocampus that

directly inhibit the hyperactivity of the amygdala. However,

the exposure to a stressful experience can impair this cortical

inhibitory activity on the amygdala, resulting in its inap-

propriate hyperactivity, and exaggerated fear response, as

observed in PTSD patients (Liberzon and Sripada. 2008).

The amygdala complex contains islands of GABAergic

interneurons that inhibit the output of the central nucleus, the

main output station of the amygdala that mediates condi-

tioned fear responses (Fig. 2; Likhtik et al., 2008). Lesions of
ITC neurons impaired fear extinction, while their activation

facilitated it (Jungling et al., 2008; Likhtik et al., 2008).

Moreover, stimulation of the infralimbic cortex increases the

immediate-early gene expression in ITC neurons (Berretta

et al., 2005), which reduces the excitability of CeA neurons

Fig. 2

Regulation of GABAergic signaling by allopregnanolone (Allo) and effects on post-traumatic stress disorder (PTSD)-like behavior. Fear suppression is
regulated by the prefrontal cortex and hippocampus, which project directly to the amygdaloid nuclei to inhibit their hyperactivity during stressful events
(Herry et al., 2008). However, in susceptible individuals, the exposure to a stressful experience may impair this cortical inhibitory activity on the
amygdala, resulting in its inappropriate hyperactivity and to exaggerated fear responses, as observed in PTSD patients (Akirav and Maroun, 2007).
Indeed, in PTSD, the amygdala hyperactivity participates in the abnormal emotional processing that induces behavioral alterations after the exposure
to a traumatic event. Patients with PTSD express a lower release of GABA (Vaiva et al., 2004), decreased plasma and cerebrospinal fluid Allo
concentrations (Rasmusson et al., 2006, 2019), and changes in GABAA receptors subunit expressions, which is the cause of lower cortical and
hippocampal benzodiazepine recognition sites and decreased benzodiazepine-induced pharmacological effects (Geuze et al., 2008). These
alterations are important neurobiological underpinnings that may explain the appearance of PTSD symptoms in subjects who fail to develop resilience
following exposure to traumatic events (Pinna, 2018; Pinna and Izumi, 2018). Animal studies, using socially isolated mice, a putative rodent stress
model of PTSD-like behavioral deficits, have revealed that cortical and hippocampal projections to the basolateral amygdala (BLA) express decreased
Allo biosynthesis, which is associated with behavioral deficits, including exaggerated fear responses and impaired fear extinction (depicted in the left
panel) (Agis-Balboa et al., 2007; Pinna et al., 2009). In socially isolated mice, the decreased expression of Allo in the pyramidal glutamatergic neurons
of frontal cortex, hippocampus, and in the pyramidal-like neurons of the BLA may represent the molecular mechanisms underlying an increased
excitability of the pathway converging on the intercalated neurons and CeA GABAergic spiny neurons (Agis-Balboa et al., 2007; Pinna et al., 2008).
This may result in an inhibition of the GABAergic output from the central amygdaloid nucleus to the hypothalamus and brainstem, brain regions
involved in the expression of fear and aggression (reviewed in Pinna et al., 2008, 2009). Thus, a selective reduction in Allo levels in these
glutamatergic neurons could impair the function of cortico-hippocampal-amygdaloid circuits and explain the excessive fear of socially isolated mice.
Decreasing amygdala hyperactivity may be a primary effect of agents that reduce exaggerated fear responses (depicted in the right panel).
Pharmacological interventions by acting on the enzymes that synthesize Allo or direct administration of Allo or its synthetic analogs enhance Allo
function in cortical and hippocampal pyramidal neurons by stimulating synaptic, but mostly, extrasynaptic GABAA receptors, which, under stress,
become hypersensitive to neurosteroids (Pinna, 2014; Locci and Pinna, 2017). The enhanced modulation of the inhibitory GABAergic signaling may
regulate emotional processing, improving the behavioral deficits shown by PTSD patients (Locci and Pinna, 2017). Allo, allopregnanolone; CeA,
central amygdaloid nucleus; ITC, interneuron.
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(Quirk et al., 2003) and decreases conditioned-induced

freezing (Milad et al., 2004). Thus, the prefrontal cortex reg-

ulates fear expression by directing the switching on and off of

the ITC neurons in the amygdala (Pare et al., 2004).

Conversely, infralimbic and prelimbic cortex receive inputs

from several regions that modulate fear responses, including

the amygdala (Herry et al., 2008). The amygdala itself may

engage those brain regions to regulate the output of the

amygdala (Laviolette et al., 2005; Floresco and Tse, 2007).

Furthermore, the ITC GABAergic neurons project to several

brain regions, which include the brainstem and hypothalamus

and influence the intensity of emotional responses to envir-

onmental stimuli (Pinna et al., 2009). Thus, the corticolimbic

circuits, involving prefrontal cortex, hippocampus, and

amygdala, are responsible for the regulation of several emo-

tional behaviors and encompass several circuits involved in

the regulation of aggressiveness, fear responses, impulsivity,

and anxiety disorders (Fig. 2; LeDoux, 2000; Milad et al.,
2007).

Collectively, the protracted SI model mimics some rele-

vant neurobiological and behavioral alterations observed

in PTSD patients (summarized in Fig. 2). Therefore, this

model is valuable for testing the efficacy of new ther-

apeutic approaches for PTSD.

The impact of neurosteroid biosynthesis on
mood disorders
Neurosteroids are implicated in the regulation of several

behavioral, neuroendocrine, and metabolic processes, such

as food intake, impulsivity, and fear. Their biosynthesis,

including the enzymes responsible for their production,

are involved in the neuropathophysiology of mood dis-

orders (Agis-Balboa et al., 2014; Rasmusson et al., 2017,
2018a, 2019). The cascade of enzymatic reactions that

leads to their biosynthesis begins with the cleavage of

cholesterol by the cytochrome P450scc, a rate-limiting

mitochondrial enzyme. Pregnenolone, the main precursor

of neurosteroids, is further metabolized into progesterone,

and its metabolites, which are produced and accumulate in

the mammalian brain, are the best-known neurosteroids

(Do Rego et al., 2009). In the brain, progesterone is a

substrate for the enzyme 5α-reductase type I (5α-RI), that
converts it into 5α-dihydroprogesterone (5α-DHP), and

this is further metabolized into Allo by the enzyme 3α-
hydroxysteroid dehydrogenase (3α-HSD; Wang, 2011).

In different regions of the brain, the concentrations of

neurosteroids vary widely (Pibiri et al., 2008). In particular,

the glutamatergic neurons of the corticolimbic circuits,

which include cortical and hippocampal pyramidal neu-

rons and pyramidal-like neurons of the BLA, synthetize

Allo and its equipotent GABAergic stereoisomer, pregna-

nolone (PA; Agis-Balboa et al., 2006, 2007). These neuro-

nal populations highly express GABAA receptors, and Allo

and PA produced locally permit the fine-tuning of the

receptor for GABAmimetics, agonists, and positive allos-

teric modulators (Pinna et al., 2000; Belelli et al., 2005). By

this mechanism, Allo and PA also regulate emotional

behavior (Agis-Balboa et al., 2007; Pinna et al., 2008; Pinna,
2018). Importantly, the neurophysiological effects exerted

by neurosteroids acting at the GABAA receptor are sus-

ceptible to variations in the receptor subunit composition

(reviewed in Locci and Pinna, 2017), which influences the

pharmacological profile of the receptor (Lambert et al.,
2001). For example, benzodiazepines have no pharmaco-

logical effect on a GABAA receptor subunit composition

that fails to include γ2 subunit, while changes in α4 or

δ subunit expression alter the sensitivity of the receptor to

Allo (Turkmen et al., 2011). Furthermore, the sulfated

counterparts of these GABAergic neurosteroids, such

as PA sulfate, are responsible for tonic inhibition of

N-methyl-D-aspartic acid-mediated neurotransmission,

which triggers important neuroprotective effects (Vyklicky

et al., 2016).

Several studies have reported lower levels of Allo and PA

and/or their biosynthetic enzyme expression in serum,

plasma, cerebrospinal fluid (CSF), and brain of patients

with mood disorders (Romeo et al., 1998, Uzunova et al.,
1998; van Broekhoven and Verkes, 2003). Allo con-

centrations are reduced in patients with unipolar major

depression and premenopausal women with PTSD

(Uzunova et al., 1998). The comorbidity with depression

is linked to a more severe decrease of Allo levels in

PTSD patients (Rasmusson et al., 2006). Moreover,

comorbidity of depression and anxiety in patients with

anorexia and obesity was also found to be associated with

a reduction of blood Allo levels (Dichtel et al., 2018). The

levels of these neurosteroids are also altered in other

neuropathologies, such as drug addiction and postpartum

depression (Grobin et al., 2005; Osborne et al., 2017).

In PTSD and depression, the down-regulation of neuroster-

oid biosynthesis includes the reduction of Allo and PA con-

centrations, and most importantly, of the expression and,

possibly, the function of their biosynthetic enzymes, 5α-RI,
and 3α-HSD (Zorumski and Mennerick, 2013; Locci and

Pinna, 2017; Agis-Balboa et al., 2014). These deficits were

pointed out as possible contributors to a GABAergic neuro-

transmission dysfunction that underlies the development of

PTSD symptoms and depressive disorders (Rupprecht, 2003;

Pinna et al., 2006; Pinna, 2018). Indeed, in the CSF and

serum of women with PTSD, a reduction of Allo levels was

observed in absence of changes of progesterone or 5α-DHP

concentrations, which suggests a possible deficit in the

function of the enzyme 3α-HSD (Rasmusson et al., 2006;
Pineles et al., 2017, 2018). In male patients with PTSD, by

contrast, the reduction of Allo in the CSF appears to be

caused by deficits in 5α-RI, which are associated with a strong

negative correlation with PTSD symptoms determined by

total CAPS (Rasmusson et al., 2018a, 2019). In accordance

with this observation, in male patients with depression, a

down-regulation in the expression of 5α-RI was observed in

the prefrontal cortex Broadman Area 9 (Agis-Balboa et al.,
2014). Importantly, the concentration of Allo, its ratio in

138 Behavioural Pharmacology 2019, Vol 30 No 2&3

Copyright r 2019 Wolters Kluwer Health, Inc. All rights reserved.



relation to its neuroactive steroid precursors, and the deficits

in the function and/or expression of their enzymatic pathways,

suggest that these neurochemical alterations may be valuable

sex-related biomarkers for PTSD. Collectively, these findings

provide insights into the development of new appropriate

therapeutic strategies for PTSD patients. Of note, several

studies showed that SSRI treatments in depressed patients

with lower CSF or plasma Allo concentrations lead to recov-

ery from depressive symptoms by normalizing Allo levels

(Romeo et al., 1998; Uzunova et al., 1998).

Preclinical studies on PTSD models show striking analogies

with the neurosteroid alterations found in PTSD patients.

In the SPS model, rodents show a down-regulation of serum

and cortical Allo levels (Qiu et al., 2015). Likewise, the SI

mouse model shows a reduction of Allo concentrations in

corticolimbic neurons in association with a down-regulation

in the expression of 5α-RI (Dong et al., 2001; Guidotti et al.,
2001). It is also important to underline that the deficits in Allo

biosynthesis in these rodent models correlate with an

increase of aggressive behavior, enhanced contextual fear

responses and impaired fear extinction, and anxiety-like

behavior (Pibiri et al., 2008; Nin et al., 2011; Qiu et al.,
2015; Xu et al., 2018).

Altogether, neurosteroid biosynthesis offers a promising

neuronal target for the development of new drugs as well

as provides a rich selection of various biomarker candi-

dates for PTSD (Kemp et al., 2008).

Neurosteroid biosynthesis down-regulation:
a target for new therapeutic approaches
Currently, PTSD remains a disorder with no specific phar-

macological treatment. The only drugs presently approved by

the Food and Drug Administration, the SSRIs, sertraline, and

paroxetine have low efficacy (∼50%). Several studies show a

strong correlation between specific traumas and the pharma-

cological response of patients to antidepressant treatment

(Prigerson et al., 2001; Pinna, 2015). Moreover, a history of

early-life trauma predicts a failure to respond to antidepres-

sants later in life. Thus, traumas in specific and susceptible

periods of the PTSD patient’s life can predict if they will

respond successfully to treatment with SSRIs. Furthermore,

veterans who suffer from PTSD are particularly resistant to

SSRI treatment (Bernardy and Friedman, 2015).

The high resistance to SSRI antidepressants underscores the

relevance to explore new approaches for nonresponsive

patients. Preclinical studies have recently exploited various

neurosteroidogenic targets for promising new PTSD agents

(Rupprecht et al., 2009, 2010; Pinna, 2014). For example, one

of themost studied targets to develop new neurosteroidogenic

drugs is the 18 kDa translocator protein (TSPO), which is a

prominent starting point to activate the neurosteroidogenic

cascade that ultimately results in enhanced brain Allo con-

centrations (Schule et al., 2011). TSPO forms a complex with

the steroidogenic acute regulatory protein (StAR), which

allows the entry of cholesterol from the cytosol into the inner

mitochondrial membrane (Papadopoulos et al., 2006). In the

mitochondria, the enzyme cytochrome P450scc converts cho-

lesterol into pregnenolone, the precursor for all neurosteroids

(Fig. 3). Thus, drugs that stimulate TSPO activity, and

increase the corticolimbic Allo concentrations, are emerging as

potential approaches to facilitate recovery from anxiety and

PTSD (Rupprecht et al., 2009). Administration of YL-IPA08, a

selective TSPO ligand, to SPS rodents, enhances Allo levels

in mouse hippocampus and cortex and reverses depressive

behaviors and anhedonia by enhancing locomotor activity and

the sucrose preference (Zhang et al., 2017). The administration

of YL-IPA08 in animal models of PTSD also induces a

powerful suppression of contextual fear responses and reduces

anxiety-like behaviors by decreasing contextual freezing time

(Zhang et al., 2014). Another drug targeting the TSPO

receptor is etifoxine. By this mechanism, etifoxine improves

behavior by inducing neurosteroid biosynthesis. After its

administration, the enhancement of Allo concentrations cor-

relates with a reduction of anxiety-like behavior displayed by

the rats during the Vogel conflict test (Verleye et al., 2005).
The anxiolytic effect exerted by inducing neurosteroidogen-

esis was confirmed by studies in which pretreatment with

finasteride, a 5α-reductase inhibitor, suppresses the pharma-

cological effect of etifoxine (Schule et al., 2011). Furthermore,

etifoxine has proven to improve anxiety-related disorders in

humans (Choi and Kim, 2015). In addition to increasing

neurosteroid levels by stimulating TSPO, etifoxine may exert

a positive allosteric modulation of GABAA receptor after

binding selective sites that are not a target for benzodiazepines

(Poisbeau et al., 2018). Indeed, etifoxine exerts anxiolytic

effects also by binding β2 and β3 subunits of the GABAA

receptor complex (Poisbeau et al., 2018).

Moreover, the treatment with the precursor of Allo, pregne-

nolone improves emotional behavior by enhancing brain Allo

concentrations. Pregnenolone administration reduces neural

activity in the circuits associated with negative emotions, in

particular, the amygdala and the insula (Stein et al., 2007;
Sripada et al., 2013). The serum levels of pregnenolone and

Allo are negatively correlated with the activation levels of

these two brain areas. Furthermore, pregnenolone adminis-

tration also increases the activity of the dorsal medial prefrontal

cortex, a region that impacts the regulatory control over

emotions (Ochsner and Gross, 2005), as well as the con-

nectivity between the amygdala and the dorsal medial pre-

frontal cortex, which is associated with a reduction in self-

reported anxiety and improvement of performance in emotion

regulation tasks. Thus, the increased Allo levels that result

from administration of pregnenolone are associated with

reduced neuronal activity in regions that regulate negative

emotions (Sripada et al., 2013).

The use of SSRIs at low nonserotonergic doses in SI

mice produces an up-regulation of Allo concentrations

with a reduction of anxiety-like behavior, fear responses,

and aggression (Pibiri et al., 2008; Pinna et al., 2008).
Hence, SSRIs by acting as selective brain steroidogenic
stimulants (Pinna et al., 2003, 2006) increase Allo
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concentrations and improve depression and anxiety

symptoms in patients (Romeo et al., 1998; Uzunova et al.,
1998). This treatment strategy employing SSRIs at low

dosage could be useful to treat PTSD more efficaciously

(discussed in Pinna, 2014, 2015; Locci and Pinna, 2017).

Several studies on animal models confirmed a role of Allo in

improving behavioral deficits. In SImice, the administration of

Allo or its analogs, such as ganaxolone, BR351 or BR297,

reduce behavioral abnormalities (Pinna and Rasmusson, 2014;

Locci et al., 2017). Ganaxolone exerts a strong dose-dependent
anxiolytic effect and decreases aggression in socially isolated

mice subjected to a same-sex resident-intruder protocol.

Importantly, ganaxolone reduces contextual fear responses by

blocking the reconsolidation processes, which prevents the

spontaneous reemergence of contextual fear a week after a

successful extinction of fear memory (Pinna and Rasmusson,

2014). Of note, recent phase 3 clinical trials in patients affected

by postpartum depression and depression, confirmed that

intravenous infusions of Allo (brexanolone: SAGE 547) or an

oral Allo analog (SAGE 217) lead to a remission from the

depressive symptoms in 70% of treated patients versus 10%

for placebo (Kanes et al., 2017a, 2017b).

Figure 3 shows TSPO ligands, selective brain steroido-

genic stimulants, PE, or Allo analogs as promising ther-

apeutic strategies for the treatment of mood disorders and

potentially for PTSD.

The relevance of cannabinoids and their
congeners in post-traumatic stress disorder
Recently, the endocannabinoids have been linked to the

neuropathophysiology of depression, anxiety disorders

and PTSD (Trezza and Campolongo, 2013; Coccaro et al.,
2018; Poleszak et al., 2018). The endocannabinoid system

affects connectivity between various regions of the brain

Fig. 3

Pharmacological strategies to upregulate allopregnanolone (Allo) levels and improve emotional behavior. Allo biosynthesis is downregulated in
association with behavioral deficits. (1) Schematic representation of the physiological pathway of Allo biosynthesis. (2) The reduced Allo levels are
restored by administration of TSPO ligands (e.g. etifoxine), that, by enhancing cholesterol entry into the inner mitochondria membrane, stimulate
neurosteroidogenesis. (3) The administration of the precursor of Allo, pregnenolone (PE) provides the substrate to restore the physiological
concentrations of Allo levels and improve emotional behavior. (4) The use of the SSRIs at nonserotonergic doses increases Allo levels by acting as
selective brain steroidogenic stimulants (SBSSs), acting on the enzyme 3α-HSD, which converts 5α-DHP into Allo. (5) The direct administration of
Allo or of its analogs, such as ganaxolone, BR351 and BR297 recovers the behavioral deficits observed in stressed mice. Allo, allopregnanolone;
CeA, central amygdaloid nucleus; 5α-DHP, 5α-dihydroprogesterone; 3α-HSD, 3α-hydroxysteroid dehydrogenase; 3β-HSD, 3β-hydroxysteroid
dehydrogenase; P, progesterone; P450scc, cytochrome P450 side-chain cleavage; PE, pregnenolone; StAR, steroidogenic acute regulatory protein;
5α-RI, 5α-reductase type I; SSRIs, selective serotonin reuptake inhibitors; TSPO, translocator protein 18 kDa.
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involved in stress regulation and relevant stress-related

neurohormones and neurotransmitters, such as gluco-

corticoids and serotonin (Haring et al., 2013; Morena et al.,
2016). By interacting with the glucocorticoids and their

signaling, endocannabinoids suppress the activity of

the HPA axis, through mechanisms that involve the

prefrontal cortex, amygdala, and hypothalamus (Hill and

Tasker, 2012).

The endocannabinoid system includes twoG-protein coupled

receptors, CB1 and CB2 (Lu and Mackie, 2016). While the

CB2 receptor is thought to have a more peripheral expression,

CB1 receptors are widely expressed throughout the brain

(Howlett et al., 2002). For this reason, most of the research

investigating the relationship between endocannabinoids and

responses to stress has focused on CB1. Several studies have

suggested that during environmental stress the CB1 receptor

plays a role in the regulation of HPA axis activity (Cota, 2008).

Activation of the endocannabinoid system induces gluco-

corticoid release in both human and animal models (Wade

et al., 2006; Ranganathan et al., 2009).

CB1 receptors are strongly activated by Δ9-tetrahy-
drocannabinol (THC), the psychoactive constituent of

Cannabis sativa (Pertwee, 2008), but their stimulation by

several endocannabinoids is also relevant. N-arachidonoy-
lethanolamine (anandamide, AEA; Devane et al., 1992)
and 2-AG (Sugiura et al., 1995) are both synthetized and

released postsynaptically and activate presynaptical CB1

receptors located on glutamatergic and GABAergic axon

terminals (Alger, 2002), resulting in inhibition of neuro-

transmitter release (Wilson and Nicoll, 2001; Ruehle

et al., 2012). The counterbalanced activity of GABAergic

and glutamatergic neurons ensures a physiological emo-

tional reactivity under basal conditions (Fig. 4; Hill et al.,
2007; Ruehle et al., 2012). However, the tuning of glu-

tamatergic and GABAergic neurons by CB1 receptors

may influence the behavioral response in stressful

conditions. Recently, the CB1 receptor has received

extensive attention for its implications in different mood

disorders. The regulation of emotion processing, includ-

ing anxiety and fear, is influenced by several neuro-

transmitters, among which glutamatergic and GABAergic

systems play the main role (Hill et al., 2007; Ruehle et al.,
2012). In case of stress, CB1 receptors expressed on

GABAergic neurons are downregulated, while those present

on glutamatergic presynaptic neurons are strongly activated,

which more potently inhibit glutamate release (Fig. 4;

Rademacher et al., 2008; Rossi et al., 2008; Campos et al., 2010;
Ruehle et al., 2012). The stronger inhibition of glutamate

release after modulation of CB1 receptors expressed in gluta-

matergic neurons versus a weaker inhibition of GABA release

following activation of CB1 onGABAergic neurons is regarded

as the mechanism for the anxiolytic effects observed after

cannabinoid administration (Ruehle et al., 2012).

CB1 receptor expression was found to be increased in

individuals with PTSD (Neumeister et al., 2013). This

enhancement of expression has been correlated to a

reduction of the peripheral levels of AEA, suggesting a

neuroadaptation between lower concentrations of AEA

and CB1 expression (Neumeister et al., 2013). Moreover,

lower concentrations of both AEA and 2-AG have been

found in the plasma of depressed women, suggesting a

potential role of endocannabinoids in psychiatric disorder and

in the development of novel drugs (Monteleone et al., 2010).
However, whereas peripheral AEA levels have been found

to be decreased in PTSD patients in comparison to trauma-

exposed and healthy controls (Neumeister et al., 2013).

Hauer et al. (2013) reported enhanced AEA and 2-AG con-

centration in plasma of individual with PTSD in comparison

to healthy controls only. While these conflicting results may

result from different methodologies used to assess endo-

cannabinoid concentrations (PET vs. HPLC-MS−MS),

they highlight the need for a better investigation of the

endocannabinoid system in PTSD patients.

Rodents exposed to chronic unpredictable stress showed

an increase of CB1 receptor binding sites and diminished

AEA levels in prefrontal cortex, ventral striatum, and

hippocampus (Hill et al., 2008). In rats, the activation of

cannabinoid CB1 and CB2 receptors through microinjec-

tion of the agonist WIN in the BLA reduces the stress-

induced increase of corticosterone levels and reverses the

effects of stressors on inhibitory avoidance conditioning

and extinction (Ganon-Elazar and Akirav, 2009). The

administration of WIN after SPS exposure prevents the

disruption of extinction learning induced by the stressors

(Ganon-Elazar and Akirav, 2012). Several studies have

shown that the activation of CB1 and the increase of AEA

reduce HPA axis reactivity, reversing some of the PTSD-

like behavioral effects induced by SPS in rodents

(Gorzalka et al., 2008; McLaughlin et al., 2014).

AEA also plays a prominent role in the modulation of plastic

changes in fear. This endocannabinoid is degraded by the

catabolic enzymes fatty acid amide hydrolase (FAAH) and

monoacylglycerol lipase. Following administration of specific

enzyme inhibitors, including URB597, the increase of AEA

and 2-AG levels results in antidepressant and anxiolytic-like

effects (Schlosburg et al., 2010; Bambico et al., 2016). Research
on fear extinction in animal models has shown that enhanced

AEA concentrations in the BLA facilitate fear extinction

(Marsicano et al., 2002). The endocannabinoid reuptake

blocker AM404 increases AEA and 2-AG and facilitates fear

extinction in rats (Bitencourt et al., 2008). Moreover, a deletion

in the FAAH gene in mice induces extinction of spatial

reference memory (Varvel et al., 2007). Thus, the inhibition of

FAAH activity could lead to enhanced levels of AEA in cor-

ticolimbic circuits and to an improvement of fear extinction,

suggesting a promising strategy to attenuate reconsolidation

processes and ameliorate PTSD symptoms.

Interestingly, congeners of the endocannabinoids, inclu-

ding the ethanolamides, appear to be involved in PTSD.

N-oleoyldopamine (OEA) and N-palmitoylethanolamine
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(PEA) act by stimulating the peroxisome proliferator-

activated receptor-α (PPAR-α), which is involved in neu-

roinflammatory processes (Racke and Drew, 2008, Esmaeili

et al., 2016). These two PPAR-α endogenous agonists are

not strictly considered as part of the endocannabinoid sys-

tem because of their lack of affinity for the classic CB1 and

CB2 receptors. However, they exhibit cannabimimetic

actions for an ‘entourage’ effect, potentiating the AEA

response (Smart et al., 2002; Ho et al., 2008) by the inhibi-

tion of FAAH, for which PEA is also a substrate (Di Marzo

et al., 2001).

Recent studies have shown that PEA and OEA are decreased

in the hair of patients with PTSD (Wilker et al., 2016).

Fig. 4

Endocannabinoid regulation of glutamatergic and GABAergic neurons and improvement of behavioral dysfunctions. The counterbalanced activity of
GABAergic and glutamatergic neurons ensures a physiological emotional reactivity under basal conditions. Under the stressful condition, CB1
receptors are hyperactivated in presynaptic glutamatergic neurons, whereas they are downregulated in presynaptic GABAergic terminals (Ruehle
et al., 2012). Endocannabinoids, including anandamide (AEA), by acting at CB1 receptors on glutamatergic terminals, greatly inhibit glutamate release
(Wilson and Nicoll, 2001). However, the decreased activation of CB1 receptors in presynaptic GABAergic terminals fails to decrease GABA release
in the synaptic cleft. This results in a potentiation of GABAergic inhibitory neurotransmission over a decreased glutamatergic excitatory
neurotransmission, which is proposed as the molecular mechanism underlying the anxiolytic effects of cannabinoids (Rademacher et al., 2008; Ruehle
et al., 2012). However, behavioral improvements may also be facilitated by the enhancement of Allo biosynthesis (Locci and Pinna, 2019a; reviewed in
Pinna, 2018). Recent findings suggest that endocannabinoids, such as AEA or endocannabinoid-like molecules, including N-palmitoylethanolamine
(PEA), may activate the nuclear PPAR-α receptor, which increases corticolimbic Allo concentration by stimulating the expression of enzymes involved
in the neurosteroid biosynthetic pathway (Locci and Pinna 2019b). In turn, Allo, by binding GABAA receptors, potently and allosterically facilitates the
inhibitory action of GABA (Pinna et al., 2000; Guidotti et al., 2001). Moreover, AEA may stimulate neurosteroid biosynthesis by acting directly at CB1
receptors located presynaptically on glutamatergic neurons (Vallee et al., 2014). These mechanisms are consistent with an improvement of behavioral
deficits, including exaggerated fear responses and impaired fear extinction, observed in animal models of post-traumatic stress disorder (PTSD) and in
PTSD patients (Pinna and Rasmusson, 2014; Pinna, 2018; Rasmusson et al., 2019). Allo, allopregnanolone; 5α-DHP, 5α-dihydroprogesterone; PE,
pregnenolone; PPAR-α, peroxisome proliferator-activated receptor-α; Prog, progesterone; RXR, retinoid X receptor.
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Although it is important that this initial study should be

replicated in serum and, possibly, CSF of PTSD patients, this

and other findings in the field have suggested a role for

PPAR-α and its endogenous modulators in mood disorders.

For example, in preclinical studies, the predator-stress model

shows a reduction of PEA and OEA levels (Holman et al.,
2014). PEA has antidepressant and anxiolytic effects, reducing

immobility of mice exposed to the FST (Yu et al., 2011, Crupi
et al., 2013). In their study, Yu et al. (2011) compared the

behavioral improvement obtained by administering PEA with

that after giving fluoxetine. They observed that, in the tail

suspension test, PEA is more effective at a lower dosage than

fluoxetine, whereas in the FST their effects are comparable

(Yu et al., 2011). Furthermore, PEA is a safe adjuvant to

the SSRI citalopram in male patients with major depressive

disorder (Ghazizadeh-Hashemi et al., 2018). The exact

mechanism of action of PEA in depression is still not clear, but

its anti-inflammatory effects might be beneficial to improve

the depressive symptoms (Kohler et al., 2014). By binding

PPAR-α, PEA reduces inflammation and the expression of

proinflammatory cytokines such as IL-6 (Lo Verme et al.,
2005). It has also been reported that the administration of the

PPAR-α synthetic agonist, fenofibrate reduces behavioral

abnormalities linked to impulsivity in a rat model of schizo-

phrenia (Rolland et al., 2012). Fenofibrate has shown neuro-

protective action in an animal model of Huntington’s disease

and of stroke (Deplanque et al., 2003). The activation of

PPAR-α by fenofibrate promotes mitochondrial stability and

leads to neuroprotection by reducing neuroinflammation

(Esmaeili et al., 2016).

Importantly, given that PEA shares the same catabolic

enzymes with AEA, the enzyme FAAH, an intriguing

hypothesis is that behavioral effects observed following

administration of FAAH inhibitors, in addition to the

enhancement of AEA levels and activation of CB1 receptor

signaling, may also include the activation of PPAR-α by

elevated brain PEA levels. Furthermore, AEA may also bind

and act at PPAR-α (O’Sullivan, 2007). While this hypothesis

remains to be corroborated by experimental findings, it is

noteworthy that recent observations have shown that the

activation of PPAR-α by PEA, by increasing biosynthesis of

Allo in hippocampus, amygdala, and frontal cortex improves

fear extinction and retention of fear extinction and decreases

depressive-like and anxiety-like behavior, and aggression in

socially isolated mice (Locci and Pinna, 2017; Locci et al.,
2017; Locci and Pinna, 2019b). Also, the behavioral effects of

PEA in socially isolated mice are blocked by the use of

PPAR-α antagonists and in PPAR-αKOmice. Moreover, the

administration of finasteride, by reducing the activity of 5α-
RI and, consequently, of Allo levels, reverts the behavioral

effects of PEA. This evidence provides mechanistic insights

into the role of Allo and PPAR-α in the pharmacological

effects of PEA. The ability to induce de novo synthesis of

Allo has been previously observed in the spinal cord in

association with potentiation of pentobarbital-induced seda-

tion (Sasso et al., 2010). This evidence highlights an

interesting novel role of PPAR-α in neuropsychiatric dis-

orders (Locci and Pinna, 2019b).

In addition to THC, one of the primary psychoactive com-

ponent of cannabis, cannabidiol (CBD) has recently received

growing attention for its pharmacological properties. CBD is

devoid of the psychotomimetic effects observed following

THC administration, and it fails to induce withdrawal and

tolerance liabilities (Bergamaschi et al., 2011). Several pre-
clinical studies that focused on the effects of THC, CBD, or

their analogs on fear memory have suggested that by their

action, mediated by CB1 receptors, these herbal extracts

facilitate extinction of fear memory (Pamplona et al., 2006;
Stern et al., 2012; Do Monte et al., 2013). In rodents, CBD

affects emotional behavior, including a reduction of

depressive-like behaviors and of anhedonia and improving

fear responses (Stern et al., 2012; Linge et al., 2016; Sartim
et al., 2016).

CBD may act through different mechanisms: It has low

affinity for CB1 and CB2 receptors but increases canna-

binoid neurotransmission by reducing the activity of

FAAH (Bisogno et al., 2001). Besides these mechanisms,

CBD may act at the 5HT1A and at the PPAR-γ which

exerts anti-inflammatory effects (Russo et al., 2005;

Esposito et al., 2011). Interestingly, this receptor can be

activated not only by CBD, but also by cannabinoids,

AEA, 2-AG, and THC (Muñoz et al., 2017). The exact

mechanisms through which activation of PPAR receptor-γ
by CBD produces anxiolytic effects is still elusive, but

the release of cytokines or the restoration of brain-derived

neurotrophic factor levels associated with an enhanced

neurogenesis rate are all mechanisms that could be impli-

cated in the pharmacological action of CBD (Angelucci et al.,
2000). These observations, collectively, increase our under-

standing of the complex interactions of the endocannabinoid

system, endocannabinoid-like and endocannabinoid con-

geners, and their interaction with the neurosteroid system in

the regulation of emotional behavior. The interface between

the endocannabinoid and neurosteroid systems may unveil a

useful and exclusive biomarker axis for PTSD (reviewed in

Aspesi and Pinna, 2018; Pinna, 2018; Pinna and Izumi,

2018). The use of a biomarker axis that reflects the syner-

gistic relation of several neurobiological alterations for one

disorder may enhance diagnostic accuracy and improve

drug selection to treat PTSD more efficiently. In PTSD, for

example, the altered peripheral endocannabinoid con-

centrations together with the down-regulation of Allo levels,

the changes in GABAA receptor subunits, and the lack of

benzodiazepine pharmacological effects may represent a

specific biomarker profile that can be considered dis-

criminative for the disorder (Fig. 2). The identification of a

panel of altered biomarkers, which are specific for a disorder

or even for a subpopulation of that disorder, will be instru-

mental in establishing an objective diagnosis and providing a

more appropriate therapeutic approach.
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Conclusion

PTSD is complex and debilitating neuropathology with a

frequent overlap of symptoms and comorbidity with other

disorders, including depression, anxiety disorders, drug abuse,

and suicidal ideation. Taking into account its heterogeneity,

the hypothesis that single alterations might be found that are

responsible for the multifaceted aspects of the disorder is not

conceivable. For this reason, it is also challenging to establish

an appropriate animal model that recapitulates the several

behavioral and biochemical abnormalities observed in PTSD

patients. Among the preclinical models proposed, we have

focused on the SI mouse model, which offers a valuable

experimental tool to explore new pharmacological approaches

by enhancing GABAergic neurotransmission. SI leads to both

behavioral and neurobiological alterations that are reminiscent

of deficits observed in PTSD patients. These include an

enhanced level of aggression and impaired fear extinction, in

association with altered neurosteroid biosynthesis and changes

in the GABAA receptor subunit composition (reviewed in

Locci and Pinna, 2017).

Unveiling a biomarker axis for PTSD could be a useful

strategy to assess a relevant biosignature to improve

diagnosis and treatment options for PTSD patients

(Pinna and Izumi, 2018; Aspesi and Pinna, 2018). The fact

that there are several subpopulations of PTSD patients with

specific impairments or comorbidity with other psychiatric

disorders makes it clear that only a few biomarkers or only

one treatment option are insufficient to help all PTSD

patients.
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