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Air Pollution as a Cause of Sleeplessness: Social Media

Evidence from a Panel of Chinese Cities∗

Anthony Heyes† Mingying Zhu‡

Abstract

We provide first evidence of a link from daily air pollution exposure to sleep loss

in a panel of Chinese cities. We develop a social media-based, city-level metric for

sleeplessness, and bolster causal claims by instrumenting for pollution with plausibly

exogenous variations in wind patterns. Estimates of effect sizes are substantial and

robust. In our preferred specification a one standard deviation increase in AQI causes

an 11.6% increase in sleeplessness, and for PM2.5 is 12.8%. The results sustain quali-

tatively under OLS estimation but are attenuated. The analysis provides a previously

unaccounted for benefit of more stringent air quality regulation. It also offers a candi-

date mechanism in support of recent research that links daily air quality to diminished

workplace productivity, cognitive performance, school absence, traffic accidents, and

other detrimental outcomes. Keywords: Air pollution - social costs - IV methods
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1 Introduction

Our objective in this paper is to investigate a possible causal effect of urban air pollution

on the sleep of city inhabitants. Air quality - particularly in cities - is one of the great policy

challenges of our time. Understanding the full range of negative impacts of pollution is an

essential prerequisite for welfare evaluation of policy interventions.

Sleep is an essential input to human well-being. Loss of sleep reduces mental function

along various dimensions, such as learning (Huber et al., 2004), memory (Diekelmann and

Born, 2010), judgement (Killgore et al., 2006), speed of reflex (Maquet, 2001) and emotional

balance (Ireland and Culpin, 2006). It is correlated with lower self-reported well-being

(Hamilton et al., 2007; Steptoe et al., 2008). Tiredness - the inevitable consequence of sleep-

lessness - has been causally linked to various negative outcomes, including road traffic acci-

dents (Valent et al., 2010), reduced workplace productivity (Zammit et al., 2010; Rosekind

et al., 2010), industrial injuries (Barnes and Wagner, 2009), absenteeism (Daley et al., 2009),

deteriorated relationship quality (Gordon and Chen, 2014), domestic violence (Meijer et al.,

2010), and compromised school performance (Chung and Cheung, 2008). In terms of health

outcomes, shortage of sleep over various time scales has been linked to reduced functioning

of immune systems and subsequent increased susceptibility to disease, increased risk of hy-

pertension, cardiac and breathing problems, increased adiposity, and negative mental health

outcomes.1

It is not a surprise that both individuals and governments invest in protecting sleep,

and that individuals when asked express a substantial willingness-to-pay to avoid sleep loss

(Pollinger, 2014; Delfino et al., 2008).2 In summary, given that the typical adult in most

societies spends between 7 and 8 hours of each day engaged in the activity of sleep (and

1There is a large literature on the health implications of both short-term and chronic sleep loss (Altevogt
and Colten, 2006; Cappuccio et al., 2010).

2For example, individuals spend on good mattresses and other aids to healthful sleep, worry about the
noise environment when they buy a home, etc.. Governments spend on sleep research, impose regulation on
night-time noise around airports, etc.. Employers are also aware of the benefits of sleep. See for example the
lead article Why Companies are Willing to Pay to Make Sure You Get a Good Night’s Sleep in Executive
Style Magazine (21 April 2016) on the productivity benefits of well-rested employees.
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children longer ): “If sleep does not serve an absolutely vital function, then it is the biggest

mistake the evolutionary process has ever made.” (Rechtschaffen, 1971).

Despite the centrality of sleep to humans, and the diverse contributions that it makes

to individual and societal well-being, economic analysis of it has been cursory. Biddle and

Hamermesh (1990) treat sleep choice as a time allocation problem. Similarly, Asgeirsdottir

and Zoega (2011) provide a model of sleep behavior as an investment that an individual

makes in the level of alertness he then enjoys during the day, in the spirit of the approach

taken to health as human capital.

While the channels that might link pollution exposure to lower quantity or quality of

sleep are obvious (shortness of breath, elevated heart-rate, irritation of upper airways, eyes

etc.), research linking pollution exposure to sleep outcomes is limited. (1) Strøm-Tejsen

et al. (2016) manipulate indoor air quality in the campus bedrooms of 16 students and find

that indoor air quality impacts both sleep quality (as measured by subject-worn actigraphs)

and next-day performance on math and language tests. (2) Using measures of outdoor air

quality in a small number of US cities, Zanobetti et al. (2010) show that the same-night

AQI in the city in which the subject resides correlates with likelihood of episodes of sleep

apnea (pauses in breathing during sleep) and other physiological correlates of sleep health.

This is an important paper to which ours is complementary. The advantage of their methods

is that they deliver very precise individual-level metrics of sleep. The downsides relate to

its focus on sleep-illness, and the observation of subjects via a polysomnograph (sensors at

nose, fingers, face and scalp) - not more natural sleeping circumstances - and at much lower

levels of ambient pollution than we see in the Chinese cities that we study. (3) Focusing on

long-term exposure, and without using tools that would allow for causal inference, Billings

et al. (2017) find a negative association between sleep efficiency amongst a sample of older

people and 5-year and 1-year measures of PM2.5 in the neighborhoods of the six US cities in

which they live.

Sleep loss is a significant problem in China (Luo et al., 2013) and elsewhere. For the 19
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largest Chinese cities, we construct a nightly, population-level measure of sleeplessness using

frequency of use of the Chinese characters meaning ‘can’t sleep’, ‘sleepless’ etc. on the very

widely-used social media site Weibo.3 We estimate an equation using OLS to characterize

a positive association between that measure and same-day local air quality. To reinforce

our causal interpretation of this relationship, we apply IV methods, using plausible exoge-

nous variations in short-term wind patterns to instrument for air quality. In our preferred

specifications, we find that a one standard deviation in AQI causes an 11.6% increase in

sleeplessness relative to mean, and for PM2.5 the number is 12.8%. The statistical signif-

icance and estimated effect size prove to be remarkably robust to a battery of alternative

specifications and tests.

We are cautious not to over-interpret the results. Monetizing the sleep loss caused by

diminished air quality is beyond the scope of this paper, though it is worth noting that

previous research does provide WTP estimates that could be exploited in a back-of-the

envelope exercise. The results are instructive in two ways. First, the loss of sleep plausibly

impacts the well-being of the affected individual him or herself through a variety of channels.

Second, as noted, the results provide a mechanism consistent with recent research linking

short-term variations in air quality to reduced workplace productivity (Zivin and Neidell,

2012; Chang et al., 2016), school absence (Currie et al., 2009), exam performance Mendell

and Heath (2005), motor vehicle accidents (Sager, 2016) etc..

Section 2 details data sources. Section 3 describes methods. Section 4 and Section

3We will be careful to qualify our use of the term “population level” in the data section. Population-level
behavior on various internet platforms is increasingly being exploited by social scientists. Choi and Varian
(2012) show that Google search data can be used to predict demand for automobiles, home sales and travel
behavior. Several papers demonstrate the efficacy of using internet search metrics to predict health outcomes
- especially flu - and Google itself established the Google Flu Trends tool in 2008. Goel et al. (2010) show
that searches can predict the success of movies, songs and video games. In an environmental application,
Herrnstadt and Muehlegger (2014) show that searches for “climate change” and “global warming” in a
particular US city are sensitive to short-term deviations of weather from normal. Much recent work has
been devoted to Twitter-driven predictive analytics. For three examples among many: Bollen et al. (2011)
show that Twitter mood can be used to add explanatory power to stock market forecasts, Gerber (2014)
uses Twitter key words to predict crime patterns, and Gayo-Avello et al. (2011) are among several papers
using Twitter to predict elections. A central way in which our methods depart from this literature is that
we will use measures from social media as our dependent variable. In that regard the paper relates to Baylis
(2015), who shows the effect on unusual temperature on Twitter-sentiment.
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5 present main and robustness results. Section 6 conducts the placebo test. Section 7

summarizes the results from joint estimation. Section 8 concludes.

2 Data

We investigate the effect of air pollution on sleep in the “first-tier” Chinese cities (19

cities). To do this we develop a nightly, city-level measure of sleep quality derived from

posts on social media and connect it to high frequency data on air quality. We also include

detailed meteorological data both to control for the likely confounding influences of weather

on sleep and for the construction of our instrument.

2.1 Sleep

A challenge in this research is to develop a defensible measure of sleeplessness that is a

nightly index for how badly (or well) the inhabitants of a particular city are sleeping.

A number of surveys have asked questions about sleep.4 However none of these provide

the temporal granularity that we require (the exact date of interview and some question about

short-term, ideally daily, sleep experience). Even if such questions were asked, the resulting

responses would be threatened by imperfect recall of respondents, and other shortcomings

typical of retrospective survey-derived data.

We exploit what people are saying on the Chinese micro-blogging Weibo. Weibo was

launched in August 2009, and growth in its use was explosive, not least because most of the

key social media platforms familiar to those living elsewhere (including Twitter, Facebook,

Instagram and Youtube) are blocked in China. It is the biggest social media site in China,

and by 2016 it had more than 503 million registered and 313 million regular users amongst

the 720 million internet users in that country (DeLuca et al., 2016). As with Twitter,

messages were - at least during the period that we analyse - subject to a tight word limit.

4For example Chen et al. (2004), Yu et al. (2007), and Sun et al. (2015).
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In comparison to Twitter, it has a greater personal than professional orientation in the way

it is used (Sullivan, 2012), with substantially more posts outside standard office hours (Gao

et al., 2012). Users typically post what they see, hear and think (Cain K, 2015, September

21) and, while it needs to be mined with caution, the content of posts provides the researcher

with a potential ‘window’ into the mind of users and a rich data source.

Keywords Written Chinese is not alphabetic but rather comprises self-standing charac-

ters or glyphs. It is logo-syllabic, which means that a character represents a whole word

(physical object, concept, etc.). Literacy requires the memorization of a large number of

such characters, and a well-educated Chinese person knows more than 4000, while between

2000 and 3000 are needed to read a newspaper (Norman, 1988). This characteristic is help-

ful to us. By its nature there are many fewer duplicative ways to express concepts than is

common in alphabetic languages such as English. “Shimian” and “Shuibuzhao” are the two

characters that have meaning equivalent to that covered by English words and expressions

such as “sleepless”, “can’t fall asleep”, “losing sleep”, “insomnia”, etc.. A further advantage

of Chinese is that these are used in the affirmative, so we avoid complications arising from

conventions for negation that would arise in most other languages.

We search for the hourly use of these keywords in Weibo posts from users located within

each of the “first-tier” cities in China (these are Shanghai, Beijing, Shenzhen, Guangzhou,

Chengdu, Hangzhou, Chongqing, Wuhan, Suzhou, Xi’an, Tianjin, Nanjing, Zhengzhou,

Changsha, Shenyang, Qingdao, Ningbo, Dongguan, and Wuxi). Weibo offers advanced

search tools that enable users to obtain the public posts filtered by keyword, date, time

period (minimum duration 1 hour), and location (city). We use these to construct a panel

of the number of posts featuring the keywords of interest for each hour of each night (11pm

through 7am) for each city for the two year period 2014 and 2015.

It is worth reflecting on this as a dependent variable. The question is not whether

keyword use on Weibo is a perfect measure of the thing that we want to measure (the extent
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to which inhabitants of a particular city are sleeping on a particular night) - of course it is

not. Rather, is it a good enough measure, and is it better than others available?

There are two main challenges to our claim that intensity of use of the words “shimian”

and “shuibuzhao” provides a valid proxy for city-level sleeplessness. First, perhaps other

terms exist that might be used to express the difficulty sleeping that we fail to consider.

Inspection of Chinese thesauri and discussion with Chinese speakers make us doubt that

this is the case. However, even if it were, it is unlikely to disturb our conclusions. (1) The

correlation between use of “shimian” and “shuibuzhao” in our sample is very high (0.96), and

the ratio between use of one and the other proves to be insensitive to air quality conditions.

We use the word counts as an index, rather than focus on absolute levels. If an additional

synonym exists that we have ignored, then provided that focussing its use is closely correlated

with these two, then its exclusion is not a concern.5 (2) Measurement error in the dependent

variable that such an oversight would imply should not bias OLS or 2SLS estimates, only

reduce their efficiency. We also investigate and refute the possibility that what we are picking

up is a simple proxy for overall Weibo use by showing that the sleep metric is uncorrelated

with the use of a series of sleep-neutral words (table, cat, etc.), with appearances of the

latter not systematically sensitive to air pollution conditions.

Second, Weibo users are not representative of the Chinese population in general. In

particular users are younger, more educated, and earn higher income than the broader pop-

ulation (Chan et al., 2012; Chiu al., 2012). While results should most properly be seen as

reflecting a treatment effect in the Weibo-using part of the community, we do not see this as

problematic. These are likely the high-value workers in Chinese urban society, and distur-

bance of their sleep can be expected to have correspondingly important economic impacts.

Further, there is no reason to think that effects observed in this group would not be observed

in the non-Weibo-using part of the population. Indeed, it is plausible to think that those

effects could be larger for at least two reasons: (1) In terms of self-protection from pollutants,

5A problem would arise for us if there was an excluded means of expression whose comparative intensity
of use varied systematically with air quality conditions. This seems implausible.
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those with internet access are disproportionately likely to own both air conditioners and air

purifiers. (2) Weibo-users are younger than the general population, and most physical effects

of pollution are more pronounced among the old.

An additional point to note is that when interpreting coefficients, we assume that the

propensity to report sleeplessness is not itself sensitive to pollution conditions. In other

words, if we observe a 5% rise in messages about sleeplessness, we take that to imply a 5%

increase in sleeplessness in the Weibo-using population. This is similar to the approach in

which many researchers have interpreted changes in people reporting health symptoms of

pollution, or attending a physician with health symptoms, for example, to reflect changes

in the prevalence of those symptoms in the population. If there were some change in the

propensity to report - for example via pollution-induced changes in emotional state (as

suggested by Zeidner and Shechter (1988) - then the observed change in the proxy would

have to be calculated by the actual prevalence multiplied by the propensity. If it happened

that the propensity was increased by high pollution, then our estimates would over-state

the true effect size. However, recent evidence linking short-run exposure to a depressive

mood and risk aversion might lead us to speculate that the propensity to message would be

reduced. While we are unable to address definitively either possibility, we have no reason to

expect any such effect would be significant. However, in the interest of caution, it is worth

keeping this in mind when interpreting results.

2.2 Pollution

Data on pollution at our locations of interest were collected from www.aqistudy.cn. This

website compiles real-time data on pollutants from the Chinese Ministry of Environmental

Protection (MEP) and converts it into daily average measures. The pollutants for which we

have data are PM2.5, CO, NO2, SO2, and O3 (in addition to AQI).6 Summary statistics

for daily ambient measures in our whole sample are included in Table 1 (and by city in the

6PM10 is not reported or studied due to its high correlation with PM2.5.
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Appendix Table A1).7

Table 2 lists the categories of air quality days as defined by the Chinese government and -

in the right hand column - the percentage of days in our sample that fall within each category

on the AQI measure. Table 3 summarizes the correlations between daily city-level measures

of the individual pollutants in our sample. In a number of cases, the correlations are quite

high, often exceeding 0.6. Most of our analysis will be conducted pollutant by pollutant;

only later do we include all pollutants in the same regressions. This follows Schlenker and

Walker (2016).

Our analysis is conducted at the city-level, and we calculate air quality measures by

taking a simple arithmetic mean of data from all monitors within a city (the number of

monitors within our 19 cities varies between 9 and 17). While we know that a user is based

in a particular city, we do not know precisely where, nor his or her movements during the

day. To allay concerns about intra-city variations in pollution conditions, we calculate the

correlations between readings at each pair of monitors in each city. The results are reported

in Appendix Table A2 (and for illustration in detail for Beijing in Appendix Table A3 through

A8). With the exception of CO - a more localized pollutant - pairwise correlations are very

high, especially for AQI, PM2.5 and O3 which are close to or above 0.9. In other words

pollution measured at any particular monitor is a good indicator of levels across the city.8

2.3 Weather

Disentangling the potentially confounding effects of weather is important. Weather condi-

tions (in particular temperature, humidity, precipitation) can influence sleep activity directly

(Okamoto-Mizuno and Mizuno, 2012; Van, 2006). For example, in recent interesting analysis,

Obradovich et al. (2017) identify an effect of external ambient temperature on sleep.

7Historically the quality of official data on air quality in China has been questioned. In particular there has
been evidence of manipulation around key thresholds (Chen et al., 2012). Stoerk (2016) tests the consistency
of official data with Benford’s Law, and with US Embassy data, and concludes that it is reliable from 2013.

8Insofar as measurement error exists in this regressor, we expect it to attenuate OLS estimates, implying
that the effect sizes identified under OLS should be interpreted as under -stating true effects. The coefficients
from the IV exercise will not be subject to such bias.
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Meteorological data are obtained from the weather stations registered by the World Mete-

orological Organization (WMO) that are collated by the National Oceanic and Atmospheric

Administration (NOAA). The weather variables involved in the study comprise average tem-

perature (◦C), average humidity (%), sea-level pressure (hPa), wind speed (Km/h), wind

direction (◦) and precipitation (mm). We combine the hourly weather data into daily mean

levels corresponding to the daily average air pollution levels of each city. Summary statistics

for the dataset appear in Table 1 (and for each city separately in the Appendix Table A1).

3 Methods

We investigate a link from air pollution in city i on day t to our city-level metric for

sleeplessness in that city on that night. In simple terms: if the air in Nanjing is highly

polluted today, does that damage the quality of sleep in Nanjing tonight?

3.1 Ordinary least squares

We first use OLS to estimate the association between air quality and sleeplessness in a

straight-forward panel fixed effects setting. We estimate the following specification

lnSit = α0 + Pitβ +Witγ + θi + λt + εit. (1)

Sit is the sleeplessness index in city i on the night following calendar date t. lnSit denotes

that the outcome variable is logged. Pit is the daily average pollutant concentration in city

i on date t. The primary pollutants that we consider in turn are PM2.5 and the composite

AQI measure.

We control for a wide set of potential confounders. Wit is a vector of weather controls

containing average temperature, average humidity, precipitation, wind speed, and sea-level

pressure. The temperature and humidity measures enter as indicators or ‘bins’ (5 ◦C indica-

tors for average temperature, 20 % indicators for average humidity) to accommodate possible
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non-linear effects.9 θi is a city fixed effect that controls for time-invariant city characteristics.

λt is a vector of time fixed effects, comprising year by month fixed effects, city by year fixed

effects, city by quarter fixed effects, day of week and a dummy for holiday dates. εit is the

error term.

Our coefficient of interest is β, which relates air pollution to sleeplessness. It can be

interpreted as 100*β% increase in sleeplessness due to additional unit of pollutant. Most of

the estimated effect sizes that we will report are based on the percentage change due to one

standard deviation change in pollutant, which could be computed by multiplying 100*β by

one standard deviation (44.993 for PM2.5 and 52.202 for AQI).

3.2 Single pollutant versus joint estimation

Our initial results are derived from single pollutant models in which regressions are run

that incorporate PM2.5 without co-emission. There is also an AQI variant, where AQI is a

composite measure that captures the ‘binding’ pollutant on any particular date. We report

the joint estimation exercise in Section 7. Note that research in this area is plagued by the

difficulties of disentangling the effects of particular pollutants from the overall cocktail of

pollutants that an individual will typically be inhaling on a ‘bad air’ day.

Some settings do allow for a clean route around this problem. A nice recent example

is Lavaine and Neidell (2017). Helpfully for them, the oil refinery strikes that they exploit

as exogenous events that temporarily improved air quality in a set of French towns acted

on sulphur dioxide in particular, leaving ambient levels of other key pollutants undisturbed.

But often the inclusion or exclusion of pollutants is driven by data availability in particular

settings. Papers typically report results of regressions that include a single (or limited

subset) of pollutants. For example, among well-known investigations of the effect of short

term air quality variations on various outcomes; (1) Zivin and Neidell (2012), who look at

productivity of agricultural works, select ozone as their pollutant of interest and control only

9Results prove to be similar under quadratic estimation, a popular alternative approach to non-linearity.
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for PM2.5. (2) Ransom and Pope (1992), looking at school absences, exploit data only on

PM10, finding negative effects.10 (3) Ebenstein, Lavy and Roth (2016), studying the effect

of daily pollution levels on the exam performance of Israeli children, consider only PM2.5.
11

(4) Schlenker and Walker (2016), looking at the health impacts of pollution, exploit data on

only CO, NO2 and ozone, and their main results are derived from specifications in which

each pollutant is used as explanatory variable sequentially, without controls for the other

two (indeed all but one of the eight tables in Schlenker and Walker (2016) report results

of single pollutant exercises). They later insert the three pollutants in the same regression,

which generated a qualitative loss of results.12

We are to some extent insulated from these problems because our main estimates derive

from IV methods. However, given the (sometimes strong) covariance between pollutants, we

will follow Schlenker and Walker’s caution in tying effects to particular individual pollutants.

As it turns out, our results all work in the same direction - more pollution causing greater

sleeplessness. But we are more confident interpreting this as a story about ‘dirty air’, and

circumspect as far as pollutant by pollutant inferences are concerned.

3.3 Instrumental variable estimation

There are several challenges to the validity of OLS estimation here. First, there is likely

measurement error in pollution. Our theoretical foundation is predicated on the possibility,

founded on plausible physiological foundations, that exposure of an individual to elevated

levels of pollution increases the chance of disturbed sleep. However, we observe ambient

10In the pursuant literature various authors have considered varying permutations of the major pollutants.
For example, Gilliland et al. (2001) add ozone and NO2 and find beneficial effects of PM10 on absences.
Currie et al. (2009) study three of the main pollutants, CO, PM10 and ozone.

11While in an earlier version (Ebenstein et al., 2016) they also investigate CO, they did not do so simul-
taneously, and were unable to account for other major pollutants.

12They are explicit in “...acknowledging that we may be picking up the health effects of other pollutants”
(page 787). The omission of PM2.5 and PM10 - with clear links to a variety of cardiovascular and other
health outcomes - is a challenge for the interpretation of their results. In an Appendix exercise, they note
that this is due to the absence of data. As such they conclude that: “We believe that some amount of
caution is warranted in interpreting CO as the unique pollution-related causal channel leading to adverse
health outcomes; there may be in fact other unobserved sources of ambient air pollution that covary with
CO that may also effect health” (page 800).
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air quality (which we have shown to be comparatively uniform across monitor sites within

a particular city on a particular date) rather than individual exposure. For example, we

do not observe self-defensive behavior, such as closing of windows and use of air purifiers,

which can reduce effective exposure.13 The measurement error that would be present in the

independent variable would lead to attenuated OLS estimates of our coefficient of interest.14

Second, while we included a rich set of controls for potential confounders - taking particular

care with weather - we cannot rule out the presence of omitted variables. For example,

air pollution may be positively correlated with unobserved variations in city-level economic

activity, which may in turn influence sleeplessness through other channels. For these reasons

we supplement our OLS analysis using two-stage least squares (2SLS), with an instrument

based on wind direction.

Instrumental variable Air pollution in Chinese cities is known to be highly sensitive to

wind direction and speed, as pollutants are carried from neighboring cities (Fu et al., 2017).

Ambient pollutants, especially fine particles, can travel over long distances by wind, ranging

from hundreds to thousands of kilometers (EPA, 1996). The fact that airborne particles

can be transported by wind and affect the places on the downwind side has been used in

linking air pollution to health outcomes, for example by Schlenker and Walker (2016) in their

study of adverse health effects downwind of airports. Bayer et al. (2009) use pollution levels

in nearby (but further than 80km) cities to instrument for local pollutant levels. There

are also studies that focus on estimating movement of air pollutants between cities (for

example Chen and Ye (2015)). We develop an instrument based on plausibly exogenous

day-to-day variations in wind patterns which, consistent with the existing literature, proves

to have strong relevance (satisfies the first stage). The method is similar to that applied

by Schlenker and Walker (2016), but whereas they exploited a single source of emission of

13In some sense this doesn’t matter. What we end up with is not an individual level sleep ‘production
function’ but a population-level effect from ambient conditions to sleep. In terms of defensive behaviors, our
results should be interpreted as incorporating such margins of adjustment.

14In their investigation of the effects of short-term exposure to health, Moretti and Neidell (2011) provide
evidence and insightful discussion of the problems associated with measurement error in this context.
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pollution (an airport) to any particular neighborhood, our study’s cities typically import

wind-borne emissions from multiple neighboring cities, requiring that we apply an intuitive

weighting scheme.

For each study or target city i - recall that we consider the 19 most populous in China

- we identify other smaller cities located (centre to centre) within between 100km and 200

km. These are likely sources of pollution imported to city i if the wind happens to blow in

the ‘right’ direction. We refer to these as ‘source’ cities for city i. Neighboring cities within

100km are excluded to minimize risk of endogeneity (Bayer et al., 2009; Zheng et al., 2014).15

Source cities and their coordinates are listed in Appendix Table A9.

We deliberately take a ‘standard’ approach to constructing our first stage equation, which

is

Pit = η0 + ψPsourceit +Witγ + θi + λt + εit (2)

where

Psourceit =
J∑
j

ωijtPjtmonth

Pit is actual pollution in target city i on date t. The coefficient of interest is ψ and captures

the effect of pollution from upwind source cities on the target city. Psourceit is an index that

proxies the amount of pollution expected imported into target city i from source cities on a

particular day. It is important that the construction of this index is fully understood, so that

we will describe its components in some detail. Validity of the instrument will require that

the only way in which wind directions influence sleep patterns in the target city is through

induced changes in target city air quality.

Pjtmonth is the mean level of pollution in source city j in the associated month. In other

15Bayer et al. (2009) exclude the distant sources within 80km, Zheng et al. (2014) within 120km. In their
study of medium-term health effects of PM2.5 and SO2, Barreca, Neidell and Sanders (2017) allow for the
transport of pollution from a single power station up to 100 miles (161 km). We also tried the different
cut-off distances with 100 to 300km, but the instrument is not strong enough because of the uncertainty
embedded in long-distance travel.
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words a measure of how ‘potent’ a particular source is as a supplier of pollution. As is well

known, transport of pollution from source to target city on a particular day depends upon

wind direction and speed. In particular, other things being equal, imports of pollution from

city j by air to city i are greater when: (a) the city is close, (b) windspeed is high on a

particular day, and (c) the angle between wind direction and an imaginary line joining the

two cities is narrow (Zahran et al., 2017; Anderson, 2015; Schlenker and Walker, 2016). The

vector of weights ωijt capture this. In particular we weight the source cities by inverse-

distance (Equation 3), where geographical distance is adjusted to allow for windspeed and

angle (Equation 4).

ωijt =

1
transjt∑J
j

1
transjt

=
J∑
j

1
transjt

1
trans1t

+ 1
trans2t

+ 1
trans3t

+ ...+ 1
transJt

, (3)

where

transj =
dj

windspeedi ∗ cos |φi − φj|>0

(4)

Wind direction can vary during the course of a day. We use daily average direction

constructed from hourly data, consistent with first principles and most existing studies (in-

cluding Schlenker and Walker (2016) and Herrnstadt et al. (2016)). Only positive values of

cos |φi−φj| are included when the index is calculated, i.e. attention is limited to source cities

that are (not necessarily directly) downwind on any particular day.16 This occurs where the

difference between wind direction and the direction of the vector between cities j and i is

16The angle between wind direction and the line joining the central points of cities i and j is |φi −
φj |. All angles are measured in degrees clockwise from due North (0◦ and 360◦ equal North). The cosine
transformation implies a particular weighting to sources at different angles. Recall that the cosine of zero
degrees is 1, cosine of 20 degrees is 0.93, cosine of 60 degrees is 0.5 and so on. So other things being
equal, a source 60 degrees off the wind line carries half the weight as a source that is directly upwind. The
weighting is consistent with first principles (Anderson, 2015). In our unreported analysis, the results are
also qualitatively robust to dropping the weighting scheme altogether. As would be expected the precision
of estimates is compromised, though significance of results is maintained.
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less than 90 degrees. In a robustness check we find that results are largely undisturbed if

we instead limit to those where the difference is no greater than 60 degrees. The complex-

ities of pollution transport by wind do not allow us to specify fully the process whereby

pollution from one city influences air quality in another, but the functional form here is a

simplified version standard in modelling of this sort. For a recent application, the analysis

here coincides with Schlenker and Walker (2016), who account for the cosine of variation of

wind direction from point source (airport) to the centre point of zipcode. Importantly, it is

unlikely that the precise functional form adopted here would influence the defensibility of the

exclusion restriction. Moreover, we will try some alternatives for the purposes of robustness

later. The relevance of the instrument is assessed statistically at the first stage.

Lagged instrumental variable As noted, in our base specifications, we limit attention to

source cities located 100 to 200 km from the target city (100km < dij < 200km). Airborne

pollutants leaving one city take more time to transport over a greater distance, which points

to a delayed impact on the target. Our primary measure of pollution is average ambient

concentrations from midnight to midnight, and the outcome of interest is sleeplessness in

pursuant night (11 pm to 7 am). With average wind speed in the sample at around 8 km/h

transport of air from a city at distance of 100 km would take over 12 hours, from 200km

over 24 hours. To capture this lagged effect in some specifications, we include a one-day lag,

Pit = η0 + ψit−1

J∑
j

ωij(t−1)Pj(t−1)month + ψit

J∑
j

ωijtPjtmonth +Witγ + θi + λt + εit (5)

We expect each of the coefficients ψit−1 and ψit to be positive and similar in order of

magnitude. In unreported analysis we have tried alternative specifications with additional

lags without disturbing results discernibly.
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4 Results

4.1 Ordinary least squares

Table 4 reports the coefficients from estimating equation (1) using OLS regression model

for AQI (Panel A) and PM2.5 (Panel B), where the dependent variable is log form of

sleeplessness, and the independent variable of interest is daily pollution. Each of the 14

coefficients reported in Table 4 is derived from a separate regression. We will talk for now

about coefficient magnitudes, and return to interpret the effect size that they imply later.

Standard errors are clustered at city level. As there are only 19 clusters (cities), we

use wild cluster bootstrap method (Cameron et al., 2008), one of the most versatile reme-

dies for small numbers of clusters.17 The likely alternative approaches would have been

cluster-adjustment of the t-statistics (Bakirov and Székely, 2006) and pairs cluster boot-

strap (Cameron et al., 2008; Harden, 2011).18

Column (1) is the sparsest specification and includes only city fixed effects, netting out

any unobserved, time-invariant city characteristics (size, Weibo-penetration, building char-

acteristics, etc.). Reading down this column, we see positive coefficients for each pollutant,

in most cases significantly stronger than 5%.

From Column (2) to Column (6), we add time controls (year by month fixed effects, city

by year fixed effects, city by quarter fixed effects, day of week and holiday fixed effects one by

one). As expected, monthly effects have an important impact on sleep. Cities have different

characteristics that vary by year and season. Besides, sleep behavior may be expected to be

different on weekdays versus weekends, and on holidays versus non-holidays. The inclusion

of these has little impact on the estimated coefficients on the pollution regressors in Column

(6).

In Column (7) we control for weather effects. The weather controls include bins for

17We report P-values based on wild cluster-bootstrap (1000 replications) in brackets. Robust standard
errors clustered at city level are reported in parentheses.

18Unfortunately, our data are insufficient to generate the estimates under pairs wild bootstrap due to the
inclusion of multiple fixed effects.

16



average temperature and humidity, and linear measures for precipitation, sea-level pressure,

and wind speed. Weather effects are known to have a meaningful impact both on sleep

(estimates not presented in this table) but, more importantly for us, may affect the strength

of the relationship between air quality and sleeplessness. However, after inclusion of time

fixed effects and city by time fixed effects, the inclusion of weather controls does not disturb

substantially our coefficient estimate of interest. For the part of the empirical analysis based

on OLS estimation, Column (7) summarizes the preferred specification.

While the sign and significance obtained for coefficients on all pollutants in this section

provide valuable insight, earlier we identified concerns - in particular measurement error

related to effective pollution exposure levels - that led us to expect attenuation in estimated

coefficient values. Insofar as these concerns are valid we would expect the effects summarized

in the last paragraph to under-state true effect sizes. To address this concern we will report

IV estimates below.

Non-linear effects In order to check for the possible non-linear effects of air pollution on

sleeplessness, we incorporate the categorical variables for different levels of pollution in the

regression model. AQI and PM2.5 are classified into five bins: less than 50, 50 - 100, 100 -

150, 150 - 200 and larger than 200, with the first group serving as the reference group. In

Table 5, the coefficients display evidence of an increasing effect at higher pollution levels.

Compared to the reference group, a realization PM2.5 between 100 and 150 µg/m3 causes

an increase in sleeplessness of 3.5%, 150 to 200 an increase of 6.2% and 200 plus an increase

of 8.4%. Notice that the effects are close to their linear counterpart, which motivates our

use of the linear specifications elsehwere in the paper. They are also comparable with the

effects obtained by linear OLS, namely 4.3%, 6.5% and 8.6% respectively.19

We also plot the points estimates and the corresponding 95% confidence intervals in

Figure 1. Graphs (a) and (b) depict the estimates reported in Table 5 with 50 unit as the

width of each bin. Graphs (c) and (d) repeat the exercise but with bins 25 units in width.

194.3% is calculated by multiplying the coefficient under the preferred estimation in Column (7) by 100.
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4.2 Instrumental variable

The main IV results are reported in Table 6. From Columns (1) to (4), all the regressions

include the full suite of controls which are shown under the preferred specification in Column

(7) of Table 4. Each column reports the outcome of a separate regression, and for PM2.5

and AQI, we run alternatives without and with the lagged instrument included in the first

stage (odd and even numbered columns respectively).

The dependent variable in the first stage is daily-mean pollutant in target city i, and

the IV is the weighted average pollution of surrounding source cities. Recall that cities are

included if they are between 100km and 200km in the upwind direction, where upwind is

defined as within 90 degrees of the average within-day wind direction.

The first stage estimation works well. We find a strong effect of variations in pollution in

source (upwind) cities on the target city. In each case significance is achieved at better than

the 1% level. The lagged pollutant measure is also significant in both cases, as anticipated.

The Kleibergen-Paap-Wald-F statistic in each of the four first-stages are high enough com-

pared to the Stock-Yogo weak ID test critical values (10% maximal IV size) listed below. So

we have no concerns about weak instruments.

The second stage replicates the preferred OLS specification, regressing the daily sleep-

lessness measure on the predicted level of pollution obtained from the first stage. Comparing

the coefficients in the odd and even columns, the lagged pollution measure ‘matters’ in the

first stage; its inclusion has a little decease impact on coefficient of interest in the second.

The estimates under stronger instruments with larger F-statistics are chosen to be our

preferred specifications, which are listed in odd column of Table 6.20 In each case the

estimated coefficients are four times larger in absolute size than those derived from OLS,

consistent with our expectation that the estimates from the latter were attenuated.

A one standard deviation increase in PM2.5 causes an increase in sleeplessness equal to

20In addition, and following Schlenker and Walker (2016) Table 1, we explore the possibility that pollution
may be dispersed by high winds by adding an interaction term Psourceit ∗ windspeedit to our preferred
first-stage specification. This has little impact on results - summarized in the Appendix Table A10.
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12.8% of the daily mean. For AQI a one standard deviation increase causes a similar increase

in sleeplessness, amounting to 11.6% of mean level.

5 Robustness and falsification

5.1 Wind direction

In developing the instrument, to be considered ‘upwind’, the angle between the wind line

and a straight line drawn between source and target city had to be less than 90 degrees

(i.e. |φi − φj| < 90◦). Since source cities are described by their monthly average pollutant

characteristics, and locations do not move, the only variation in source city across dates comes

from plausibly exogenous day-to-day variations in wind direction. As such it is important

to check that alternative definitions of ‘upwind’ would not deliver a substantially different

result.

In Table 7 we report the results of re-estimating the preferred IV specification but with

cities selected as sources if they lie within a narrower, 60 degree angle of the wind line (i.e.,

|φi − φj| < 60◦). The results from the first stage maintain significance at the 1% level, but

decrease a bit in magnitude for both odd and even columns due to the loss of that part of

the information at 60◦ < |φi − φj| < 90◦. The second stage regression looks very similar to

those reported in Table 6. Significance and coefficient values are little disturbed.21

5.2 Reduced form

Table 8 reports the results of the reduced form estimation corresponding to our preferred

IV specification. Columns (1) and (2) reproduce the OLS and IV results respectively. The

coefficients in Column (1) coincide with Column (7) from the OLS regressions in Table 4.

Column (2) repeats the second stage results under the odd columns in Table 6. Column (3)

21The F-statistics from the first stages are somewhat smaller, though still good. This reflects the fact that
building the instrument on a basis that excludes source cities at 60◦ < |φi − φj | < 90◦ means that we lose
part of correlation of the instrument with target city pollution.
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reports the reduced form exercise in which Psourceit is the regressor of interest in an OLS

regression with lnSit as the dependent variable. In other words from:

lnSit = α
′

0 + Psourceitβup +Witγ
′
+ θi + λt + ε

′

it (6)

Again, each coefficient presented in this table comes from a different regression. As

expected, the estimates from the upwind variant remain significant - the usual reduced form

‘works’.

5.3 Alternative fixed effects

Our preferred estimation accounts for a suite of fixed effects, including year by month,

city by year, city by quarter, day of week and holiday. Table 9 re-conducts the OLS regression

using alternative fixed effects. Each of the eight coefficients comes from a separate regression.

Column (1) reprints the outcomes reported in Column (7) of Table 4. Column (2) adds date-

of-observation fixed effects, which helps to account for likely daily heterogeneity in economic

activity. Column (3) further controls the variations from the differential trends by week of

year, replacing year by month fixed effects in Column (1) with year by week fixed effects.

Column (4) replaces city by quarter fixed effects with city by month fixed effects. Results

are consistent across specifications. Similarly, we re-estimate the IV regressions in table 10.22

Again, second stage results vary only a little between columns.

5.4 Precipitation

The confounding role of rain is a potentially important challenge to our inference. In-

trospection suggests that rainfall - either contemporaneously, or lagged through effect on

mood etc. - might plausibly inhibit sleep. While we include controls for daily-average pre-

22City by month fixed effects are not considered under IV because they render our instrument weak.
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cipitation amongst our weather controls, we further probe this possibility by conducting two

sub-sample exercises.

First, we re-estimate our preferred specifications on that sub-sample of days on which

recorded night-time precipitation (from 11 pm to 7 am) in the target city is zero. This causes

us to lose around 21% of the sample. The results of this exercise are reported in Column

(2) of Table 11 and in Column (2) of Table 12 for OLS and IV respectively. Results are

little disturbed. This implies that the effects observed are not driven by contemporaneous

rainfall.

Second, we re-estimate our preferred specifications on that sub-sample of days on which

recorded precipitation during the night in question and the whole of the preceding calendar

day in the target city is zero. This causes us to lose around 34% of the sample. The results

of this exercise are reported in Column (3) of Table 11, and Column (3) of Table 12 for

OLS and IV respectively. The signs and magnitudes of the coefficients are in all cases quite

similar (the IV estimates in each case in fact become somewhat larger than those derived

from the whole sample). The level of statistical significance obtained is sustained in almost

all cases - better than might have been anticipated given the considerable erosion of sample

size.

5.5 Beijing and environs, Shanghai and environs, Guangzhou and

environs

While we derive results from a panel of the 19 most populous cities in China, a further

concern might be that the results are driven by a small subset of the cities. In an unreported

exercise we re-estimate our preferred specifications on restricted samples of cities, dropping

each individually in turn, and in no case do we observe more that slight disturbances in our

results. However, in this section, we report the impact of dropping clusters of cities that

may exhibit particular features that might be driving the results. In particular, first, we

exclude the cities of Beijing and Tianjin (the Beijing-Tianjin corridor is the country’s most
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heavily industrialized ‘rust-belt’ area (Shao et al., 2006); second, separately we exclude the

cluster of the south-eastern coastal cities of Shanghai, Hangzhou and Suzhou, as well as

southern coastal cities of Guangzhou, Shenzhen and Dongguan (these are less polluted, less

industrialized, and more influenced by coastal effects).

The results of these exercises are summarized from Columns (2) to (4) of Appendix Tables

A14 and A15 for OLS and IV respectively. Again, the results are little-disturbed. The first

stage regressions continue to work well, and the second stage estimates are largely robust.

It is also concerned that whether air pollution remains its health effect across the 19 cities

in the sample. Both OLS and IV estimators of individual city are reported in Appendix

Tables A16 and A17 for AQI, and A18 and A19 for PM2.5 respectively. Although the

magnitude of the effects varies across the cities, most of them still have a significant impact

on city sleeplessness.

5.6 Alternative standard errors

In the calculation of standard errors in the main tables, we chose to cluster at the city

level, judging this to account for the potential correlations among regressors and errors

within clusters. However, this approach delivers only nineteen clusters (each with around

730 observations), which Angrist and Pischke (2008) suggest may be too few. Cameron et al.

(2008) show that small cluster numbers can bias downwards cluster-robust standard errors,

leading researchers to overstate the statistical significance of results. To address this we use

the wild cluster bootstrap technique for the results in our main tables (Cameron et al., 2008;

Esarey and Menger, 2015).

We also supplement the analysis with more clusters by using cluster-robust standard

errors at city by year by season (152 clusters), city by year by month (456 clusters) and city

by year by week (1976 clusters) to explore whether our conclusions would have been changed

substantially by such alternative approaches. The results are displayed in Appendix Tables

A11, A12 and A13 for OLS and IV respectively. All the estimators retain significance at
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conventional levels (in almost all cases at better than 1%).

A separate concern related to standard errors is that spatial correlation can in some cir-

cumstances bias standard errors and so invalidate inference (Hoechle, 2007). To investigate

this possibility in our setting, we apply the methods of Driscoll and Kraay (1998). They in-

troduce a non-parametric covariance matrix estimator for which standard errors are assumed

to be heteroscedastic, auto-correlated with MA(q) within panel (each city), and potentially

correlated among panels. The method is appropriate for panels with small numbers of pan-

els (in our case 19) but many observations per panel (730). The results of this exercise (for

q = 7, though very similar results emerge with different values) are reported in Column (2)

of Tables A11 to A13. Again statistical significance is maintained at conventional levels.

6 Placebos

The air pollution of our target city is instrumented by the daily weighted average pollu-

tants of source cities upwind. The exogeneity of our instrument would be threatened if there

were unobserved (and therefore uncontrolled for), daily-varying factors that are correlated

between source and target cities and cause pollution in both places. For example, daily

variations in traffic density could be correlated across cities source and target cities.

A number of elements of our design, however, point to this not being a big problem. First,

we exclude potential source cities within 100 km of the target, and these sorts of correlations

are likely to be less pronounced over longer distances (think of the traffic spike caused by a

major sporting event, for example). Second, the potency or ‘dirtiness’ of a particular city

as a source of exported pollution is based on a long-run, monthly average measure of air

pollution in that city. As such daily variations in the instrument are - by construction - not

driven by daily or short-term variations in pollution levels in the source city. As such the

variation in daily contribution of distant sources to air quality in a particular target city

should be driven only by variations in wind direction.
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However, to further test the instrument we conduct two placebo tests, replacing wind

directions in the vicinity of each target city with placebo series of irrelevant wind directions.

The tests differ in how we generate the irrelevant or placebo wind data. First, we scram-

ble the wind directions within our sample of Chinese cities by using a reverse-alphabetical

assignment. For example Beijing, the first city in our sample when listed alphabetically, is

falsely-assigned the wind direction series from Zhengzhou, which appears last, and so on.23

Second, we conduct an out-of-sample placebo. To do this we draw wind directions from US

cities (19 largest cities by population), which we matched based on alphabetical assignment.

For example, the first city in our sample (Beijing) is falsely-assigned the wind direction in

the first-alphabetical US city (Austin). The fifth city, Dongguan, has the wind direction

from Dallas in US sample, and so on.

The results of these exercises are reported in Table 13. We can see that in each case,

the first-stage regression breaks down comprehensively. This provides compelling evidence

that the variation in target-city pollution in our IV specifications is driven by (plausibly

exogenous) variations in wind direction, not by correlated day-to-day variations in local air

quality conditions in source and target cities.

7 Joint estimation

Disentangling the independent effects of particular pollutants is a challenge for research

on both health and non-health outcomes. Various authors have addressed the problem

in different ways; typically this involves excluding a subset of the potentially confounding

substances altogether (often due to data limitations). If pollutants tend to positively covary

then this leads to effects being loaded onto that pollutant or subset of pollutants that are

included.24

23For the middle one, we replace that using wind direction in Beijing.
24A different approach taken in some recent work (for example Gendron-Carrier et al. (2017)) exploits data

from NASA satellites that measures Aerosol Optical Depth (AOD). AOD in effect measures how optically
‘thick’ the air is over a particular GIS point, but does not allow for pollutant-by-pollutant inference.
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Ambient levels of the various pollutants (with the exception of ozone) covary positively.25

Some of the pollutants are precursors in the production of ozone. Furthermore the overall

impact of a particular cocktail of pollutants may depend upon their mixture in complex

ways. This leads us to be cautious in interpreting the results reported thus far. Taken

collectively we believe that the results presented in Tables 4 though 13 provide a compelling

case that polluted air has a causal impact on city-level sleep quality. While we have focussed

on PM2.5 and the multi-pollutant AQI measure, for completeness we summarize in Table

14 the results of additional joint estimation exercises.

Columns (1) and (3) report the OLS and IV results from estimation of our preferred

specifications on each single pollutant (PM2.5, CO, NO2 and O3) in turn. Column (2)

reports the results of including the four pollutants in an OLS regression simultaneously - the

so-called ‘horse-race’ regression. As in Schlenker and Walker (2016), signs become mixed.

PM2.5 remain its positive sign and retains significance at the 3.7% level.

Column (4) follows the method proposed by Schlenker and Walker (2016), Knittel et al.

(2016) and Sager (2016).26 In our case, different pollutants are instrumented by their cor-

responding levels in source cities, and the instrumented pollution levels are then included

simultaneously in the same regression.27 The coefficient on PM2.5 remains positive and is

comparable in magnitude to those from the single pollutant exercises; significance is main-

tained at better than 1%.

An alternative approach - adopted by Moretti and Neidell (2011) - is to instrument for

one pollutant at a time, in each case including the other pollutants, uninstrumented, as linear

controls in both the first and second-stage regressions.28 In that case the coefficient on the

instrumented pollutant is unbiassed, though those on the control pollutants are not. Column

25In our dataset, the correlation between PM2.5 and CO is 0.709, between PM2.5 and NO2 is 0.669, and
between CO and NO2 is 0.584.

26Only pollutants with strong instrument are included in the joint estimation, otherwise it is presented by
“-”. See the first stage results in Appendix Table A22 from Column (1) to Column (4).

27To be clear, while each coefficient in Columns (1), (3) and (5) is derived from a separate regression,
Column (2) and (4) each report a single regression.

28More concretely, Moretti and Neidell (2011) instrument for ozone, and include controls (uninstrumented)
for CO, O3 and NO2. They do not include measures for particulate matter.
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(5) reports the results of conducting that exercise repeatedly, with each pollutant in turn

being the one that is subject to instrumentation.29 Under this alternative approach, PM2.5

remains significant at the 5% level with an associated coefficient estimate that is somewhat

larger than in our preferred specification.

8 Conclusions

Sleep is a central contributor to human well-being, and its disturbance has been linked to

a wide set of negative outcomes. If pollution in a city has a significant detrimental impact on

how the inhabitants of that city sleep, this would imply a hitherto unaccounted for social cost

of air pollution. Understanding the full range of channels through which pollution effects

welfare - and by implication the benefits of clean air - is a prerequisite for the design of

welfare-maximising policy interventions in this area.

We provide what we believe to be the first evidence that air pollution on a particular day

has a causal impact on sleep quality in a city on the following night. The estimated effect

is substantial. For the composite air quality index (AQI), notionally moving from a median

clean decile day to a median dirty day (in other words from the 5th to the 95th percentile

when days are ranked from clean to dirty) increases city-level sleeplessness by 36.3% of its

mean value. For PM2.5 that number is 37.3%. The estimates prove to be robust to a wide

set of checks.

The analysis provides further evidence of the susceptibility of individual and social out-

comes to anthropogenic pollution. We have argued that sleep loss is an important outcome in

its own right, but also that it can provide a mechanism to underpin a suite of less proximate

outcomes identified in recent research. Further validation of the results, using alternative

metrics and instruments, is planned in future research.

29Only pollutants with strong instrument are included in the joint estimation, otherwise it is presented by
“-”. See the first stage results in Appendix Table A22, Columns (5) through (8).
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Table 1: Summary Statistics

Obs Mean Std. Dev. Min Max

Sleeplessness Index 13870 798.306 5226.540 12 301569

AQI 13620 92.598 52.202 12 486.5

PM2.5 (µg/m3) 13620 61.810 44.993 0 884

CO (mg/m3) 13620 1.117 0.555 0 12.6

NO2 (µg/m3) 13620 44.706 18.717 0 171

SO2 (µg/m3) 13620 25.050 25.332 0 335

O3 (µg/m3) 13620 91.101 49.431 0 294

Temperature (◦C) 13870 16.869 9.814 -21.9 34.8

Humidity (%) 13870 69.481 16.450 7.875 99.5

Sea-level Pressure (hPa) 13870 1016.262 9.378 983.2 1054.5

Wind Speed (Km/h) 13870 7.944 3.598 1 33

Precipitation (mm) 13870 3.35 11.253 0 204.8

Notes: The dataset contains daily data from 19 target cities from 2014 to 2015.
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Table 2: Air Quality Index (AQI) and Pollutant Concentrations

Level Description AQI
PM2.5
(24hr)

(µg/m3)

Number
of Days
(AQI)

Percent

Low
I Excellent 0-50 0-35 2145 15.75%
II Good 51-100 36-75 7090 52.06%

Medium III
Light Polluted 101-150 76-115 2801 20.57%

Moderately Polluted 151-200 115-150 912 6.70%

High
IV Heavily Polluted 201-300 151-250 578 4.24%
V Severely Polluted 301-500 251-500 94 0.69%

Notes: The table maps PM2.5 to AQI categories. Classification principles are taken from the
Technical Regulation on Ambient Air Quality Index HJ 633-2012. Levels I and II do not have
health implications, and are thus suitable for outdoor activities. Higher levels of pollutants
leads to higher risk of breathing or heart problems. Outdoor exercise should be reduced. Level
V may induce respiratory diseases, and outdoor exposure is to be avoided for elderly and sick
people. The last two columns report the number of days and corresponding percentage of days
falling into each category in the sample.

Table 3: Correlations between Pollutants

AQI PM2.5 PM10 CO NO2 SO2 O3

AQI 1.000
PM2.5 0.957 1.000
PM10 0.896 0.875 1.000
CO 0.672 0.709 0.672 1.000
NO2 0.640 0.669 0.658 0.584 1.000
SO2 0.490 0.498 0.522 0.496 0.508 1.000
O3 0.008 -0.125 -0.064 -0.313 -0.155 -0.223 1.000

Notes: The table displays correlation matrix of pollutants in the dataset.
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Table 4: Air Quality and Sleeplessness — OLS

Independent Variable
Daily Pollutant

Dependent Variable Ln(Sleepless)

City FEs Temporal Controls
Weather

Covariates
(1) (2) (3) (4) (5) (6) (7)

Panel A: AQI 0.050*** 0.056** 0.055*** 0.041** 0.040** 0.038** 0.037***
(0.017) (0.022) (0.018) (0.014) (0.014) (0.014) (0.012)
[0.010] [0.029] [0.008] [0.021] [0.025] [0.034] [0.001]

Panel B: PM2.5 0.043* 0.056** 0.057*** 0.049*** 0.046** 0.044** 0.043***
(0.021) (0.018) (0.015) (0.016) (0.016) (0.016) (0.017)
[0.072] [0.019] [0.007] [0.011] [0.021] [0.030] [0.012]

Observations 13617 13617 13617 13617 13617 13617 13617

Additional Controls
City FEs Y Y Y Y Y Y Y
Year by month FEs N Y Y Y Y Y Y
City by year FEs N N Y Y Y Y Y
City by quarter FEs N N N Y Y Y Y
Day of Week FEs N N N N Y Y Y
Holiday FEs N N N N N Y Y
Weather Covariates N N N N N N Y

Notes: Dependent variable is log form of Sleeplessness Index. Data collection period runs from 11pm to 7am.
Independent variable of interest is daily average measure of specific pollutant. All estimators have been adjusted
into percentage by multiplying 100. Temporal controls include year by month fixed effects, city by year fixed
effects, city by quarter fixed effects, as well as day of week and holiday fixed effects. Weather controls contain
temperature, humidity, precipitation, wind speed and sea-level pressure. Temperature and humidity are measured
by the way of bins (5 degree C indicators for average temperature, 20 percent indicators for average humidity).
Robust standard errors clustered at the city level are reported in parentheses. P-values based on wild cluster-
bootstrap (1000 replications) are reported in brackets. Asterisk indicates the statistical significance according to
the wild bootstrap p-values (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table 5: Non-linear Effects

AQI PM2.5
(1) (2)

AQI/PM2.5 <50 Omitted
[50, 100) 0.483 0.504

(0.932) (0.942)
[0.749] [0.622]

[100, 150) 2.766* 3.493*
(1.839) (1.992)
[0.094] [0.060]

[150, 200) 3.561** 6.231***
(1.702) (2.043)
[0.044] [0.002]

>200 7.264** 8.411**
(3.112) (3.368)
[0.021] [0.051]

Observations 13617 13617

Additional Controls
City FEs Y Y
Year by month FEs Y Y
City by year FEs Y Y
City by quarter FEs Y Y
Day of week FEs Y Y
Holiday FEs Y Y
Weather Covariates Y Y

Notes: This table reports the non-linear effects of pollutants on
sleeplessness, with AQI and PM2.5 incorporated in the form of
bins (50 units in each bin). All the regressions include city fixed ef-
fects, temporal controls, and weather covariates. Temperature and
humidity are measured in the form of bins. Robust standard errors
clustered at the city level are reported in parentheses. P-values
based on wild cluster-bootstrap (1000 replications) are reported in
brackets. Asterisk indicates the statistical significance according
to the wild bootstrap p-values (* significant at 10%, ** significant
at 5%, *** significant at 1%).
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Figure 1: Non-linear Effects

(a) (b)

(c) (d)

Notes: This diagram displays the estimates of non-linear effects of AQI and PM2.5. Graphs (a) and
(b) plots the point estimates reported in Table 5, as well as the corresponding 95% confidence intervals.
(c) and (d) break the pollutant into more bins with 25 units per bin, and re-estimate the effects in the
same way as Table 5 did.
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Table 6: Air Quality and Sleeplessness — IV

2SLS
AQI PM2.5

(1) (2) (3) (4)

First Stage(a)

Instrumental
Pollution t

0.455*** 0.181*** 0.463*** 0.201***
(0.062) (0.034) (0.061) (0.032)
[<0.01] [<0.01] [<0.01] [<0.01]

Instrumental
Pollution lagged t-1

0.514*** 0.50***
(0.059) (0.065)
[<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

54.791 52.868 56.846 46.156

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 19.93 16.38 19.93

Second Stage(b)

Instrumented
Pollution

0.223** 0.149** 0.285** 0.213**
(0.096) (0.075) (0.118) (0.098)
[0.039] [0.045] [0.033] [0.045]

Observations 12904 12579 12989 12662

Additional Controls
City FEs Y Y Y Y
Year by month FEs Y Y Y Y
City by year FEs Y Y Y Y
City by quarter FEs Y Y Y Y
Day of week FEs Y Y Y Y
Holiday FEs Y Y Y Y
Weather Covariates Y Y Y Y

Notes: (a) Dependent variable in the first stage is daily-mean pollutant of target city, and inde-
pendent variable is daily weighted average pollution of surrounding cities (100km < dij < 200km)
from upwind direction (within 90 degree to the wind). (b) Second stage reports the results re-
gressing the log form of Sleeplessness Index on the instrumented daily pollution with estimators
being adjusted into percentages by multiplying by 100. Columns (2) and (4) incorporate the
day before variable as an additional instrument. Temporal controls include year by month fixed
effects, city by year fixed effects, city by quarter fixed effects, as well as day of week and hol-
iday fixed effects. Weather controls contain temperature, humidity, precipitation, wind speed
and sea-level pressure. Temperature and humidity are measured by the way of bins. Robust
standard errors clustered at the city level are reported in parentheses. P-values based on wild
cluster-bootstrap (1000 replications) are reported in brackets. Asterisk indicates the statistical
significance according to the wild bootstrap p-values (* significant at 10%, ** significant at 5%,
*** significant at 1%).
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Table 7: Robustness — IV with 60 Degree Wind Angle Inclusion

2SLS
AQI PM2.5

(1) (2) (3) (4)

First Stage(a)

Instrumental
Pollution t

0.378*** 0.175*** 0.392*** 0.200***
(0.077) (0.033) (0.078) (0.032)
[<0.01] [<0.01] [<0.01] [<0.01]

Instrumental
Pollution lagged t-1

0.437*** 0.433***
(0.077) (0.078)
[<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

23.883 23.415 25.092 23.919

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 19.93 16.38 19.93

Second Stage(b)

Instrumented
Pollution

0.250** 0.173* 0.306** 0.234**
(0.098) (0.079) (0.114) (0.097)
[0.038] [0.057] [0.030] [0.034]

Observations 11944 11049 12021 11116

Additional Controls
City FEs Y Y Y Y
Year by month FEs Y Y Y Y
City by year FEs Y Y Y Y
City by quarter FEs Y Y Y Y
Day of week FEs Y Y Y Y
Holiday FEs Y Y Y Y
Weather Covariates Y Y Y Y

Notes: (a) Dependent variable in the first stage is daily-mean pollutant of target city, and
independent variable is the daily weighted average pollution of surrounding cities (100km <
dij < 200km) from upwind direction (within 60 degree to the wind). (b) Second stage reports
the results regressing the log form of Sleeplessness Index on the instrumented daily pollution.
Columns (2) and (4) incorporate the day before measure as an additional instrument. Temporal
controls include year by month fixed effects, city by year fixed effects, city by quarter fixed effects,
as well as day of week and holiday fixed effects. Weather controls contain temperature, humidity,
precipitation, wind speed, and sea-level pressure. Temperature and humidity are measured by
the way of bins. Robust standard errors clustered at the city level are reported in parentheses.
P-values based on wild cluster-bootstrap (1000 replications) are reported in brackets. Asterisk
indicates the statistical significance according to the wild bootstrap p-values (* significant at
10%, ** significant at 5%, *** significant at 1%).
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Table 8: Reduced Form

OLS IV Reduced Form
(1) (2) (3)

Panel A: AQI 0.037*** 0.223** 0.102**
(0.012) (0.096) (0.044)
[0.001] [0.039] [0.039]

Observations 13617 12904 13093

Panel B: PM2.5 0.043*** 0.285** 0.132**
(0.017) (0.118) (0.055)
[0.012] [0.033] [0.033]

Observations 13617 12989 13179

Additional Controls
City FEs Y Y Y
Year by month FEs Y Y Y
City by year FEs Y Y Y
City by quarter FEs Y Y Y
Day of week FEs Y Y Y
Holiday FEs Y Y Y
Weather Covariates Y Y Y

Notes: Column (1) repeats the OLS results of Column (7) in Table 4. Col-
umn (2) repeats the second stage results under Column (1) and Column
(3) in Table 6. Column (3) presents the results of reduced form regress-
ing the log form of daily Sleeplessness Index on daily weighted average
pollutant of peripheral cities (100km < dij < 200km) from the upwind
direction (within 90 degree to the wind). All the regressions include city
fixed effects, temporal controls (year by month fixed effects, city by year
fixed effects, city by quarter fixed effects, as well as day of week and holi-
day fixed effects) and weather controls (average temperature bins, average
humidity bins, precipitation, sea-level pressure, and wind speed). Robust
standard errors clustered at the city level are reported in parentheses. P-
values based on wild cluster-bootstrap (1000 replications) are reported in
brackets. Asterisk indicates the statistical significance according to the
wild bootstrap p-values (* significant at 10%, ** significant at 5%, ***
significant at 1%).
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Table 9: Alternative Fixed Effects — OLS

(1) (2) (3) (4)

Panel A: AQI 0.037*** 0.041*** 0.032*** 0.025***
(0.012) (0.013) (0.011) (0.008)
[0.001] [<0.01] [0.001] [0.010]

Panel B: PM2.5 0.043*** 0.046*** 0.036*** 0.027*
(0.017) (0.018) (0.016) (0.012)
[0.012] [0.008] [0.013] [0.060]

Observations 13617 13617 13617 13617

Additional Controls
City FEs Y Y Y Y
Year by month FEs Y Y N Y
City by year FEs Y Y Y Y
City by quarter FEs Y Y N N
City by month FEs N N N Y
Year by week FEs N N Y N
Date FEs N Y N N
Day of week FEs Y Y Y Y
Holiday FEs Y Y Y Y
Weather Covariates Y Y Y Y

Notes: This table re-runs the OLS estimation for AQI and PM2.5 under
various sets of fixed effects. Column (1) replicates the preferred OLS results
of Column (7) in Table 4. Robust standard errors clustered at the city
level are reported in parentheses. P-values based on wild cluster-bootstrap
(1000 replications) are reported in brackets. Asterisk indicates the statistical
significance according to the wild bootstrap p-values (* significant at 10%,
** significant at 5%, *** significant at 1%).
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Table 10: Alternative Fixed Effects — IV

AQI PM2.5
(1) (2) (3) (4) (5) (6)

First Stage
Instrumental
Pollution t

0.455*** 0.518*** 0.455*** 0.463*** 0.522*** 0.462***

(0.062) (0.046) (0.059) (0.061) (0.048) (0.058)
[<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

54.791 130.600 60.317 56.846 117.546 62.509

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 16.38 16.38 16.38 16.38 16.38

Second Stage
Instrumented Pollutant 0.223** 0.200* 0.204** 0.285** 0.264* 0.264**

(0.096) (0.097) (0.092) (0.118) (0.121) (0.113)
[0.039] [0.063] [0.044] [0.033] [0.056] [0.045]

Observations 12904 12904 12904 12989 12989 12989
Additional Controls
City FEs Y Y Y Y Y Y
Year by month FEs Y Y N Y Y N
City by year FEs Y Y Y Y Y Y
City by quarter FEs Y Y N Y Y N
City by month FEs N N N N N N
Year by week FEs N N Y N N Y
Date FEs N Y N N Y N
Day of week FEs Y Y Y Y Y Y
Holiday FEs Y Y Y Y Y Y
Weather Covariates Y Y Y Y Y Y

Notes: This table re-conducts the IV estimation under various sets of fixed effects. Column (1) and Column (4) reprint
the preferred second stage results under Column (1) and Column (3) in Table 6. Robust standard errors clustered at the
city level are reported in parentheses. P-values based on wild cluster-bootstrap (1000 replications) are reported in brackets.
Asterisk indicates the statistical significance according to the wild bootstrap p-values (* significant at 10%, ** significant at
5%, *** significant at 1%).
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Table 11: Precipitation Exclusion — OLS

Full
Clear
Nights

Zero
Rain Days

(1) (2) (3)
Panel A: AQI 0.037*** 0.039*** 0.049***

(0.012) (0.013) (0.016)
[0.001] [0.003] [<0.01]

Panel B: PM2.5 0.043*** 0.044** 0.057***
(0.017) (0.017) (0.021)
[0.012] [0.016] [0.001]

Observations 13617 10774 9051

Additional Controls
City FEs Y Y Y
Year by month FEs Y Y Y
City by year FEs Y Y Y
City by quarter FEs Y Y Y
Day of week FEs Y Y Y
Holiday FEs Y Y Y
Weather Covariates Y Y Y

Notes: Dependent variable is log form of Sleeplessness Index. In-
dependent variable is city daily-mean value of specific pollutant.
Column (1) displays the results for all observations replicating the
results under Column (7) in Table 4. Column (2) excludes days
with precipitation from 11pm to 7am. Column (3) excludes days
with precipitation from 12pm to 7am on the following day. All the
regressions include city fixed effects, temporal controls and weather
covariates. Temperature and humidity are measured in the form
of bins. Robust standard errors clustered at the city level are re-
ported in parentheses. P-values based on wild cluster-bootstrap
(1000 replications) are reported in brackets. Asterisk indicates the
statistical significance according to the wild bootstrap p-values (*
significant at 10%, ** significant at 5%, *** significant at 1%).
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Table 12: Precipitation Exclusion — IV

Full
Clear
Nights

Zero
Rain Days

(1) (2) (3)

Panel A: AQI
First Stage
Instrumental AQI t 0.455*** 0.440*** 0.454***

(0.062) (0.080) (0.082)
[<0.01] [<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

54.791 30.529 30.417

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 16.38 16.38

Second Stage
Instrumented AQI 0.223** 0.225** 0.215**

(0.096) (0.094) (0.084)
[0.039] [0.037] [0.038]

Observations 12904 10207 8560

Panel B: PM2.5
First Stage
Instrumental PM2.5 t 0.463*** 0.436*** 0.446***

(0.061) (0.082) (0.082)
[<0.01] [<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

56.846 28.070 29.399

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 16.38 16.38

Second Stage
Instrumented PM2.5 0.285** 0.284** 0.288**

(0.118) (0.116) (0.104)
[0.033] [0.041] [0.032]

Observations 12989 10280 8633
Additional Controls
City FEs Y Y Y
Temporal Controls Y Y Y
Weather Covariates Y Y Y

Notes: Column (1) displays IV results for all observations, replicating the results under
Column (1) and Column (3) in Table 6. Column (2) excludes the days with snowy or rainy
nights. The results in Column (3) limit the sample to clear days without rain or snow in
the daytime or nighttime. All the regressions include the same city fixed effects, temporal
controls and weather controls as those in Table 6. Robust standard errors clustered at
the city level are reported in parentheses. P-values based on wild cluster-bootstrap (1000
replications) are reported in brackets. Asterisk indicates the statistical significance according
to the wild bootstrap p-values (* significant at 10%, ** significant at 5%, *** significant at
1%).
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Table 13: Placebo Test

Preferred
Chinese Cities

Reverse-alphabetic
(wind direction)

US largest Cities
(wind direction)

(1) (2) (3)

Panel A: AQI
First Stage
Instrumental AQI t 0.455*** 0.063 0.045

(0.062) 0.093 0.048
[<0.01] [0.658] [0.352]

Kleibergen-Paap rk
Wald F statistic

54.791 - -

Second Stage
Instrumented AQI 0.223** - -

(0.096) - -
[0.039] - -

Observations 12904 12810 13502

Panel B: PM2.5
First Stage
Instrumental PM2.5 t 0.463*** 0.081 0.023

(0.061) 0.088 0.018
[<0.01] [0.537] [0.18]

Kleibergen-Paap rk
Wald F statistic

56.846 - -

Second Stage
Instrumented PM2.5 0.285** - -

(0.118) - -
[0.033] - -

Observations 12989 12896 13502
Additional Controls
City FEs Y Y Y
Temporal Controls Y Y Y
Weather Covariates Y Y Y

Notes: Column (1) reports the IV estimations from the preferred specification in Table
6. Column (2) and Column (3) re-construct the weights based on the scrambled wind
directions in other Chinese cities (reverse-alphabetic order in the sample) and US largest
cities, respectively. All the regressions include city fixed effects, temporal controls (year by
month fixed effects, city by year fixed effects, city by quarter fixed effects, as well as day
of week and holiday fixed effects) and weather controls (average temperature bins, average
humidity bins, precipitation, sea-level pressure, and wind speed). Robust standard errors
clustered at the city level are reported in parentheses. P-values based on wild cluster-
bootstrap (1000 replications) are reported in brackets. Asterisk indicates the statistical
significance according to the wild bootstrap p-values (* significant at 10%, ** significant at
5%, *** significant at 1%).
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Table 14: Joint Estimation

OLS 2SLS

Single
Estimation

Joint
Estimation

Single
Estimation

Joint
Estimation

(Schlenker and
Walker 2016)

Joint
Estimation

(Moretti and
Neidell 2011)

(1) (2) (3) (4) (5)

PM2.5 0.043*** 0.041** 0.285** 0.371*** 0.519**
(0.017) (0.016) (0.118) (0.143) (0.229)
[0.012] [0.037] [0.033] [0.006] [0.049]

CO 2.688** 1.030 - - -
(1.135) (1.570) - - -
[0.023] [0.547] - - -

NO2 0.064 -0.024 0.018 -0.551** -
(0.041) (0.047) (0.220) (0.250) -
[0.171] [0.674] [0.944] [0.032] -

O3 0.022 0.012 0.072 0.052 0.071
(0.017) (0.015) (0.172) (0.168) (0.179)
[0.261] [0.521] [0.835] [0.854] [0.834]

Observations 13617 13617 12989 12989 12989

Additional Controls
City FEs Y Y Y Y Y
Temporal Controls Y Y Y Y Y
Year by month FEs Y Y Y Y Y
City by year FEs Y Y Y Y Y
City by quarter FEs Y Y Y Y Y
Day of week FEs Y Y Y Y Y
Holiday FEs Y Y Y Y Y
Weather Covariates Y Y Y Y Y

Notes: Column (1) and Column (3) repeat the OLS and IV estimations from the preferred specification in Table
4 and 6. Joint estimations that include co-emission are reported in Column (2), Column (4) and Column (5).
Column (4) regresses Sleeplessness Index on different instrumented pollutants together. Column (5) instruments
for one pollutant at a time, in each case including the other pollutants, uninstrumented, as linear controls in
both the first and second-stage regressions. All the regressions include city fixed effects, temporal controls and
weather covariates. Robust standard errors clustered at the city level are reported in parentheses. P-values based
on wild cluster-bootstrap (1000 replications) are reported in brackets. Asterisk indicates the statistical significance
according to the wild bootstrap p-values (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A1: Summary Statistics by City

Beijing Changsha Chengdu Chongqing Dongguan Guangzhou Hangzhou
(1) (2) (3) (4) (5) (6) (7)

Sleeplessness Index 5676.008 258.247 458.869 347.193 127.575 3331.537 649.112
(18024.220) (58.018) (92.582) (78.808) (26.877) (12400.320) (562.917)

AQI Index 119.335 92.860 97.616 85.764 71.122 68.645 93.996
(76.912) (52.043) (54.903) (45.355) (36.409) (31.623) (43.868)

PM2.5 (µg/m3) 81.882 67.443 67.006 58.570 40.202 42.988 62.780
(70.034) (43.542) (47.492) (37.251) (22.462) (23.035) (36.668)

CO (mg/m3) 1.278 1.026 1.079 1.127 0.878 0.976 1.087
(0.997) (0.344) (0.363) (0.269) (0.238) (0.259) (0.345)

NO2 (µg/m3) 51.290 37.999 50.815 39.849 37.702 45.168 44.422
(24.239) (16.290) (15.475) (11.703) (16.570) (17.459) (16.274)

SO2 (µg/m3) 16.605 20.756 16.742 19.638 17.372 14.529 32.338
(19.585) (10.794) (8.407) (11.792) (9.014) (6.364) (14.689)

O3(µg/m
3) 100.085 76.858 90.064 66.825 110.322 89.897 98.223

(65.199) (39.527) (51.312) (46.810) (53.341) (49.914) (48.935)
Temperature (◦C) 14.093 18.531 17.125 17.849 22.835 22.317 17.075

(10.693) (8.294) (7.152) (7.567) (6.196) (6.622) (8.535)
Humidity (%) 52.560 58.076 80.219 78.975 76.225 75.011 74.596

(19.837) (16.823) (8.506) (10.441) (10.140) (12.878) (12.992)
Sea-level Pressure (hPa) 1016.923 1015.726 1014.542 1014.212 1013.424 1013.655 1016.579

(10.044) (9.083) (8.963) (9.060) (6.995) (7.328) (9.221)
Wind Speed (Km/h) 7.826 8.185 4.914 6.023 8.327 7.341 6.589

(2.930) (4.024) (1.581) (1.738) (3.276) (3.197) (2.814)
Precipitation (mm) 1.260 4.007 2.542 3.813 6.447 6.680 3.974

(5.700) (10.063) (8.533) (10.857) (16.846) (18.671) (10.722)
continued
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Nanjing Ningbo Qingdao Shanghai Shenyang Shenzhen Suzhou
(8) (9) (10) (11) (12) (13) (14)

Sleeplessness Index 471.386 141.430 133.243 845.545 206.784 468.010 307.849
(109.433) (42.431) (26.092) (2498.374) (45.883) (151.464) (226.141)

AQI Index 96.843 71.608 88.059 81.320 104.742 51.551 90.072
(46.782) (33.376) (40.671) (39.625) (57.086) (20.945) (41.381)

PM2.5 (µg/m3) 65.151 45.067 52.833 53.053 70.576 31.140 61.765
(39.841) (28.382) (36.993) (33.542) (58.055) (17.731) (34.119)

CO (mg/m3) 0.936 0.924 0.926 0.836 1.044 0.978 0.927
(0.346) (0.267) (0.698) (0.286) (0.499) (0.213) (0.291)

NO2 (µg/m3) 50.200 41.779 36.529 44.465 47.634 32.823 51.744
(19.145) (17.972) (17.297) (19.910) (17.768) (11.581) (18.590)

SO2 (µg/m3) 20.958 18.707 30.090 17.220 67.358 8.130 20.886
(12.057) (10.378) (18.949) (9.977) (67.123) (3.132) (10.223)

O3(µg/m
3) 100.517 96.606 102.146 102.752 92.272 78.678 97.158

(53.182) (39.177) (40.703) (42.989) (48.966) (32.456) (48.678)
Temperature (◦C) 16.828 17.551 14.214 17.261 9.290 24.130 17.261

(8.495) (7.556) (8.996) (8.220) (12.749) (5.605) (8.220)
Humidity (%) 72.626 79.627 69.600 72.682 59.307 71.594 72.682

(14.393) (11.447) (16.290) (12.602) (15.627) (11.839) (12.602)
Sea-level Pressure (hPa) 1017.057 1016.565 1017.550 1017.085 1016.625 1013.252 1017.085

(9.250) (8.695) (9.170) (8.974) (9.859) (6.657) (8.974)
Wind Speed (Km/h) 9.412 7.616 11.823 9.308 8.018 7.579 9.308

(3.789) (3.170) (4.735) (3.308) (3.250) (2.472) (3.308)
Precipitation (mm) 3.915 4.789 1.490 4.035 1.277 4.424 4.035

(13.777) (13.851) (6.889) (11.550) (4.298) (15.748) (11.550)
continued

52



Tianjin Wuhan Wuxi Xian Zhengzhou
(15) (16) (17) (18) (19)

Sleeplessness Index 443.933 459.155 105.373 357.637 375.643
(369.787) (106.965) (34.321) (59.897) (78.325)

AQI Index 112.737 106.519 95.279 104.029 128.748
(62.388) (54.983) (42.070) (54.515) (62.903)

PM2.5 (µg/m3) 78.577 74.769 64.210 66.339 91.210
(54.586) (47.490) (33.967) (48.639) (55.645)

CO (mg/m3) 1.526 1.149 1.078 1.783 1.664
(0.796) (0.393) (0.335) (0.730) (0.665)

NO2 (µg/m3) 48.008 50.227 42.725 43.593 52.807
(23.867) (20.332) (16.349) (14.638) (18.164)

SO2 (µg/m3) 38.401 25.905 26.976 27.380 37.405
(35.471) (15.127) (11.661) (22.797) (27.967)

O3(µg/m3) 80.822 96.440 100.660 71.073 79.994
(49.732) (49.278) (52.992) (44.906) (45.317)

Temperature (◦C) 14.333 17.376 17.075 9.084 16.287
(10.786) (8.676) (8.535) (15.190) (9.400)

Humidity (%) 56.554 78.278 74.596 57.982 58.949
(17.466) (10.546) (12.992) (12.442) (18.056)

Sea-level Pressure (hPa) 1017.158 1016.150 1016.579 1021.632 1017.183
(9.992) (9.260) (9.221) (12.655) (9.726)

Wind Speed (Km/h) 9.970 5.890 6.589 9.167 7.055
(3.665) (3.161) (2.814) (3.787) (2.661)

Precipitation (mm) 1.391 3.606 3.974 0.300 1.700
(6.226) (11.005) (10.722) (1.436) (6.516)

Notes: The table lists the sample means at daily level. Standard deviations are shown in paren-
theses.

53



Table A2: Average Correlation among Monitoring Stations within Each City

City
Average

Correlation
AQI

Average
Correlation

PM2.5

Average
Correlation

CO

Average
Correlation

NO2

Average
Correlation

SO2

Average
Correlation

O3
Beijing 0.885 0.952 0.933 0.881 0.917 0.944

Changsha 0.925 0.966 0.544 0.692 0.635 0.812
Chengdu 0.830 0.932 0.804 0.716 0.593 0.797

Chongqing 0.831 0.895 0.553 0.672 0.723 0.840
Dongguan 0.907 0.965 0.735 0.885 0.802 0.939
Guangzhou 0.845 0.932 0.454 0.795 0.716 0.860
Hangzhou 0.803 0.866 0.665 0.719 0.522 0.852
Nanjing 0.942 0.972 0.720 0.772 0.802 0.880
Ningbo 0.895 0.967 0.742 0.836 0.815 0.860
Qingdao 0.859 0.953 0.714 0.546 0.786 0.791
Shanghai 0.932 0.966 0.773 0.908 0.899 0.873
Shenyang 0.867 0.944 0.872 0.796 0.810 0.847
Shenzhen 0.762 0.901 0.350 0.568 0.424 0.775
Suzhou 0.942 0.977 0.794 0.819 0.819 0.914
Tianjin 0.881 0.940 0.789 0.908 0.837 0.812
Wuhan 0.897 0.947 0.708 0.802 0.649 0.724
Wuxi 0.926 0.972 0.611 0.749 0.767 0.911
Xian 0.765 0.866 0.678 0.454 0.806 0.859

Zhengzhou 0.905 0.955 0.746 0.834 0.880 0.856
Overall Average 0.874 0.940 0.694 0.755 0.747 0.850

Notes: The table reports the average pairwise correlations for daily average pollutant levels from all the moni-
toring stations in each city. The mean values under Beijing are the same as those average values from Table A3
to A8.
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Table A3: Pairwise Correlations among Monitoring Stations in Beijing — AQI

Correlation
Station

1
Station

2
Station

3
Station

4
Station

5
Station

6
Station

7
Station

8
Station

9
Station

10
Station

11
Station

12
Station 1 -
Station 2 0.792 -
Station 3 0.957 0.816 -
Station 4 0.976 0.799 0.962 -
Station 5 0.947 0.811 0.968 0.960 -
Station 6 0.962 0.826 0.963 0.961 0.953 -
Station 7 0.928 0.854 0.936 0.927 0.931 0.961 -
Station 8 0.883 0.818 0.888 0.888 0.897 0.889 0.879 -
Station 9 0.840 0.857 0.841 0.841 0.844 0.858 0.864 0.915 -
Station 10 0.776 0.907 0.795 0.784 0.794 0.804 0.840 0.790 0.821 -
Station 11 0.931 0.841 0.956 0.938 0.959 0.959 0.950 0.899 0.863 0.812 -
Station 12 0.912 0.839 0.904 0.900 0.892 0.932 0.940 0.865 0.862 0.817 0.910 -
Average 0.885
Longitude 116.366 116.170 116.434 116.434 116.473 116.361 116.315 116.720 116.644 116.230 116.407 116.225
Latitude 39.867 40.287 39.952 39.875 39.972 39.943 39.993 40.144 40.394 40.195 40.003 39.928

Notes: The table reports the correlations among daily average AQI generated from each monitoring station in Beijing.
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Table A4: Pairwise Correlations among Monitoring Stations in Beijing — PM2.5

Correlation
Station

1
Station

2
Station

3
Station

4
Station

5
Station

6
Station

7
Station

8
Station

9
Station

10
Station

11
Station

12
Station 1 -
Station 2 0.868 -
Station 3 0.968 0.908 -
Station 4 0.984 0.894 0.992 -
Station 5 0.963 0.906 0.992 0.989 -
Station 6 0.971 0.913 0.992 0.990 0.986 -
Station 7 0.953 0.937 0.978 0.974 0.975 0.988 -
Station 8 0.948 0.912 0.957 0.960 0.964 0.962 0.960 -
Station 9 0.918 0.937 0.926 0.926 0.930 0.940 0.949 0.973 -
Station 10 0.887 0.978 0.921 0.912 0.924 0.923 0.952 0.921 0.934 -
Station 11 0.957 0.914 0.989 0.985 0.988 0.994 0.986 0.965 0.939 0.925 -
Station 12 0.958 0.925 0.967 0.970 0.965 0.979 0.983 0.961 0.951 0.933 0.975 -
Average 0.952
Longitude 116.366 116.170 116.434 116.434 116.473 116.361 116.315 116.720 116.644 116.230 116.407 116.225
Latitude 39.867 40.287 39.952 39.875 39.972 39.943 39.993 40.144 40.394 40.195 40.003 39.928

Notes: The table reports the correlations among daily average PM2.5 generated from each monitoring station in Beijing.
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Table A5: Pairwise Correlations among Monitoring Stations in Beijing — CO

Correlation
Station

1
Station

2
Station

3
Station

4
Station

5
Station

6
Station

7
Station

8
Station

9
Station

10
Station

11
Station

12
Station 1 -
Station 2 0.858 -
Station 3 0.953 0.881 -
Station 4 0.966 0.872 0.987 -
Station 5 0.950 0.876 0.980 0.978 -
Station 6 0.958 0.884 0.989 0.988 0.980 -
Station 7 0.914 0.885 0.962 0.949 0.946 0.966 -
Station 8 0.928 0.888 0.932 0.933 0.933 0.927 0.902 -
Station 9 0.909 0.916 0.913 0.914 0.911 0.914 0.893 0.952 -
Station 10 0.903 0.944 0.922 0.915 0.916 0.923 0.937 0.911 0.927 -
Station 11 0.954 0.902 0.977 0.974 0.979 0.981 0.943 0.941 0.922 0.929 -
Station 12 0.937 0.895 0.942 0.943 0.944 0.951 0.952 0.907 0.911 0.936 0.948 -
Average 0.933
Longitude 116.366 116.170 116.434 116.434 116.473 116.361 116.315 116.720 116.644 116.230 116.407 116.225
Latitude 39.867 40.287 39.952 39.875 39.972 39.943 39.993 40.144 40.394 40.195 40.003 39.928

Notes: The table reports the correlations among daily average CO generated from each monitoring station in Beijing.
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Table A6: Pairwise Correlations among Monitoring Stations in Beijing — NO2

Correlation
Station

1
Station

2
Station

3
Station

4
Station

5
Station

6
Station

7
Station

8
Station

9
Station

10
Station

11
Station

12
Station 1 -
Station 2 0.799 -
Station 3 0.962 0.780 -
Station 4 0.962 0.794 0.965 -
Station 5 0.946 0.808 0.967 0.948 -
Station 6 0.968 0.802 0.961 0.955 0.949 -
Station 7 0.919 0.750 0.882 0.858 0.886 0.904 -
Station 8 0.897 0.796 0.894 0.872 0.914 0.881 0.868 -
Station 9 0.827 0.885 0.780 0.792 0.831 0.817 0.818 0.877 -
Station 10 0.866 0.941 0.856 0.864 0.884 0.872 0.831 0.876 0.892 -
Station 11 0.932 0.789 0.970 0.948 0.948 0.932 0.847 0.883 0.773 0.844 -
Station 12 0.943 0.843 0.933 0.929 0.919 0.935 0.887 0.875 0.826 0.881 0.927 -
Average 0.881
Longitude 116.366 116.170 116.434 116.434 116.473 116.361 116.315 116.720 116.644 116.230 116.407 116.225
Latitude 39.867 40.287 39.952 39.875 39.972 39.943 39.993 40.144 40.394 40.195 40.003 39.928

Notes: The table reports the correlations among daily average NO2 generated from each monitoring station in Beijing.
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Table A7: Pairwise Correlations among Monitoring Stations in Beijing — SO2

Correlation
Station

1
Station

2
Station

3
Station

4
Station

5
Station

6
Station

7
Station

8
Station

9
Station

10
Station

11
Station

12
Station 1 -
Station 2 0.869 -
Station 3 0.973 0.882 -
Station 4 0.952 0.849 0.937 -
Station 5 0.974 0.906 0.982 0.944 -
Station 6 0.976 0.890 0.972 0.936 0.979 -
Station 7 0.971 0.903 0.969 0.922 0.971 0.975 -
Station 8 0.903 0.858 0.898 0.896 0.918 0.900 0.901 -
Station 9 0.875 0.849 0.875 0.879 0.893 0.877 0.875 0.926 -
Station 10 0.887 0.936 0.879 0.881 0.917 0.909 0.921 0.893 0.877 -
Station 11 0.936 0.884 0.944 0.900 0.956 0.964 0.953 0.878 0.848 0.914 -
Station 12 0.961 0.878 0.937 0.912 0.948 0.955 0.967 0.903 0.878 0.914 0.922 -
Average 0.917
Longitude 116.366 116.170 116.434 116.434 116.473 116.361 116.315 116.720 116.644 116.230 116.407 116.225
Latitude 39.867 40.287 39.952 39.875 39.972 39.943 39.993 40.144 40.394 40.195 40.003 39.928

Notes: The table reports the correlations among daily average SO2 generated from each monitoring station in Beijing.
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Table A8: Pairwise Correlations among Monitoring Stations in Beijing — O3

Correlation
Station

1
Station

2
Station

3
Station

4
Station

5
Station

6
Station

7
Station

8
Station

9
Station

10
Station

11
Station

12
Station 1 -
Station 2 0.900 -
Station 3 0.974 0.907 -
Station 4 0.974 0.900 0.983 -
Station 5 0.968 0.905 0.990 0.976 -
Station 6 0.969 0.901 0.984 0.972 0.978 -
Station 7 0.946 0.899 0.972 0.951 0.970 0.969 -
Station 8 0.937 0.912 0.960 0.950 0.961 0.942 0.936 -
Station 9 0.884 0.915 0.906 0.900 0.905 0.886 0.885 0.957 -
Station 10 0.933 0.943 0.948 0.941 0.947 0.942 0.947 0.957 0.942 -
Station 11 0.953 0.902 0.975 0.963 0.974 0.968 0.970 0.948 0.902 0.949 -
Station 12 0.969 0.896 0.974 0.965 0.969 0.972 0.970 0.936 0.883 0.947 0.971 -
Average 0.944
Longitude 116.366 116.170 116.434 116.434 116.473 116.361 116.315 116.720 116.644 116.230 116.407 116.225
Latitude 39.867 40.287 39.952 39.875 39.972 39.943 39.993 40.144 40.394 40.195 40.003 39.928

Notes: The table reports the correlations among daily average O3 generated from each monitoring station in Beijing.
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Table A9: Target City and Source Instrumental Cities

Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Beijing Chengde 40.97N 117.94E 175.93 56
39.96N 116.43E Tangshan 39.62N 118.18E 154.4 101

Tianjin 39.09N 117.20E 113.34 140
Langfang 39.54N 116.68E 48.48 150
Baoding 38.89N 115.47E 140.06 222
Zhangjiakou 40.76N 114.88E 161.34 297

Changsha Yueyang 29.36N 113.31E 126.24 10
28.23N 112.94E Xinyu 27.81N 114.92E 200 102

Yichun 27.81N 114.42E 152.5 105
Pingxiang 27.62N 113.85E 112.43 123
Zhuzhou 27.83N 113.13E 48.86 159
Xiangtan 27.83N 112.94E 44.99 180
Hengyang 26.89N 112.57E 153.68 195
Shaoyang 27.25N 111.47E 181.64 236
Loudi 27.69N 111.99E 110.36 240
Yiyang 28.55N 112.36E 66.7 300
Changde 29.03N 111.7E 149.44 303

Chengdu Aba 31.91N 102.22E 229.74 305
30.58N 104.07E Fanzi 30.05N 101.96E 209.96 256

Yaan 30.00N 103.02E 119.56 241
Leshan 29.57N 103.76E 115.40 196
Yibin 28.73N 104.65E 208.80 162
Zigong 29.33N 104.78E 153.36 150
Meishan 30.08N 103.85E 58.52 203
Ziyang 30.13N 104.63E 72.59 128
Neijiang 29.59N 105.05E 144.97 134
Luzhou 28.89N 105.43E 229.73 140
Chongqing 29.56N 106.54E 301.39 112
Suining 30.54N 105.59E 147.17 91
Guangan 30.47N 106.63E 246.20 92
Nanchong 30.85N 106.13E 197.34 82
Bazhong 31.87N 106.75E 292.92 64
Guangyuan 32.44N 105.84E 267.09 43
Deyang 31.13N 104.40E 69.52 30
Mianyang 31.47N 104.68E 115.30 34

continued
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Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Chongqing
29.56N 106.54E Guangan 30.45N 106.64E 99.19 6

Dazhou 31.21N 107.47E 203.96 29
Zunyi 27.73N 106.92E 207.33 168
Luzhou 28.86N 105.44E 133.13 238
Yibin 28.73N 104.65E 206.64 246
Zigong 29.33N 104.78E 173.39 263
Neijiang 29.58N 105.05E 145.03 271
Ziyang 30.13N 104.63E 195.25 286
Suining 30.54N 105.59E 142.07 316
Nanchong 30.85N 106.13E 148.98 342

Dongguan Huizhou 23.11N 114.41E 68.26 82
23.02N 113.75E Heyuan 23.76N 114.7E 127.16 52

Meizhou 24.3N 116.12E 280.21 61
Jieyang 23.58N 116.37E 274.72 77
Chaozhou 23.67N 116.62E 301.64 77
Shantou 23.37N 116.68E 302.32 83
Shanwei 22.81N 115.37E 167.44 97
Zhuhai 22.28N 113.58E 84.11 192
Yangjiang 21.86N 111.98E 223.00 236
Jiangmen 22.58N 113.08E 84.49 236
Foshan 23.03N 113.13E 63.46 270
Yunfu 22.91N 112.04E 175.50 266
Zhaoqing 23.02N 112.48E 129.97 0
Guangzhou 23.12N 113.27E 50.35 281
Wuzhou 23.46N 111.27E 258.06 280
Hezhou 24.41N 111.57E 270.65 302
Qingyuan 23.68N 113.06E 101.72 313
Shaoguan 24.8N 113.6E 198.51 355

Guangzhou Shaoguan 24.8N 113.6E 118.05 11
23.12N 113.27E Heyuan 23.76N 114.7E 162.57 66

Huizhou 23.11N 114.41E 117.49 91
Dongguan 23.02N 113.75E 52.29 101
Shenzhen 22.55N 114.06E 104.1 126
Zhuhai 22.28N 113.58E 99.92 160
Jiangmen 22.58N 113.08E 64.29 119
Yangjiang 21.86N 111.98E 192.95 226
Foshan 23.03N 113.13E 18.27 236
Yunfu 22.91N 112.04E 127.79 260
Zhaoqing 23.02N 112.48E 80.5 263
Qingyuan 23.68N 113.06E 64.85 340
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Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Hangzhou
30.28N 120.15E Suzhou 31.32N 120.59E 118.59 23

Jiaxing 30.75N 120.76E 78.84 52
Shanghai 31.23N 121.47E 164.45 54
Zhoushan 30.02N 122.21E 200.09 97
Ningbo 29.88N 121.54E 142.69 105
Shaoxing 30.01N 120.61E 52.9 124
Lishui 28.48N 119.95E 203.64 187
Jinhua 29.06N 119.65E 140.28 203
Quzhou 29N 118.9E 188.8 225
Huangshan 29.72N 118.38E 183.42 253
Xuancheng 30.94N 118.76E 152.66 295
Wuhu 31.37N 118.42E 203.74 302
Huzhou 30.89N 120.08E 68.97 355
Changzhou 31.81N 119.97E 172.53 353

Nanjing Huaian 33.6N 119.02E 172.28 8
32.06N 118.79E Yangzhou 32.38N 119.41E 68.42 63

Taizhou 32.45N 119.91E 114.29 71
Zhenjiang 32.2N 119.43E 61.71 78
Nantong 31.96N 120.89E 199.18 93
Changzhou 31.81N 119.97E 115.35 102
Wuxi 31.48N 120.3E 156.81 111
Suzhou 31.32N 120.59E 189.96 113
Huzhou 30.89N 120.08E 178.78 132
Xuancheng 30.94N 118.76E 126.48 181
Wuhu 31.37N 118.42E 86.46 206
Maanshan 31.66N 118.51E 51.54 215
Tongling 30.94N 117.82E 153.9 221
Chizhou 30.66N 117.5E 198.53 223
Hefei 31.83N 117.23E 149.82 262
Huainan 32.64N 117.01E 179.49 288
Chuzhou 32.25N 118.33E 48.49 293
Bengbu 32.91N 117.39E 162.03 301
Suqian 33.96N 118.28E 216.55 345

continued
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Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Ningbo Shanghai 31.23N 121.47E 150.26 357
29.88N 121.54E Nantong 31.96N 120.89E 239.45 342

Changzhou 31.81N 119.97E 262.01 320
Wuxi 31.48N 120.30E 213.80 322
Suzhou 31.32N 120.59E 183.61 326
Xuancheng 30.94N 118.76E 291.47 290
Hangzhou 30.28N 120.15E 141.16 286
Shaoxing 30.01N 120.61E 90.76 277
Huangshan 29.72N 118.38E 305.45 267
Quzhou 29.00N 118.90E 273.73 251
Jinhua 29.06N 119.65E 204.42 246
Lishui 28.48N 119.95E 219.34 228
Wenzhou 28.00N 120.69E 224.78 204
Taizhou 28.66N 121.42E 136.17 185
Zhoushan 30.02N 122.21E 66.40 78

Qingdao Yantai 37.46N 121.46E 181.46 37
36.08N 120.39E Weifang 36.72N 119.16E 131.51 297

Jinan 36.66N 117.11E 300.80 280
Linyi 35.11N 118.35E 213.50 244
Lianyungang 34.61N 119.21E 194.33 218
Weihai 37.52N 122.11E 222.18 50
Dongying 37.45N 118.67E 216.40 308
Binzhou 37.39N 117.97E 260.94 298
Zibo 36.82N 118.06E 224.27 287
Taian 36.21N 117.08E 297.57 272
Laiwu 36.22N 117.68E 243.63 273
Rizhao 35.43N 119.52E 106.50 233
Suqian 33.96N 118.28E 303.02 224
Huaian 33.56N 119.11E 303.57 206
Zaozhuang 34.82N 117.33E 310.41 247

Shanghai Zhoushan 30.02N 122.21E 155.64 149
31.23N 121.47E Ningbo 29.88N 121.54E 150.87 177

Shaoxing 30.01N 120.61E 157.34 215
Hangzhou 30.28N 120.15E 164.45 233
Suzhou 31.32N 120.59E 82.2 276
Changzhou 31.81N 119.97E 154.08 292
Taizhou 32.45N 119.91E 198.03 309
Nantong 31.96N 120.89E 100.1 323
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Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Shenyang Fushun 41.87N 123.96E 44.18 83
41.81N 123.43E Tonghua 41.73N 125.94E 208.14 91

Baishan 41.95N 126.41E 247.10 87
Benxi 41.50N 123.69E 40.49 140
Anshan 41.14N 122.99E 83.61 212
Yingkou 40.69N 122.23E 160.51 226
Panjin 41.14N 122.06E 136.40 243
Chaoyang 41.60N 120.43E 249.88 265
Fuxin 42.03N 121.68E 146.73 277
Tongliao 43.66N 122.24E 226.89 327
Changchun 43.84N 125.32E 272.86 43
Siping 43.18N 124.35E 170.16 33
Tieling 42.23N 123.72E 52.06 34

Shenzhen Heyuan 23.76N 114.70E 148.86 27
22.55N 114.06E Meizhou 24.30N 116.12E 286.70 49

Jieyang 23.58N 116.37E 262.38 65
Shanwei 22.81N 115.37E 137.27 78
Shantou 23.37N 116.68E 283.63 72
Yangjiang 21.86N 111.98E 226.50 251
Wuzhou 23.46N 111.27E 302.84 288
Zhaoqing 23.02N 112.48E 174.50 288
Guangzhou 23.12N 113.27E 106.03 306
Dongguan 23.02N 113.75E 61.85 326
Shaoguan 24.80N 113.60E 257.64 348

Suzhou Taizhou 28.66N 121.42E 305.37 162
31.32N 120.59E Jinhua 29.06N 119.65E 261.33 203

Hangzhou 30.28N 120.15E 120.78 202
Nanjing 32.06N 118.79E 190.64 293
Nantong 31.96N 120.89E 80.13 25
Shanghai 31.23N 121.47E 83.71 95
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Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Tianjin Tangshan 39.62N 118.18E 103.88 60.84
39.09N 117.19E Binzhou 37.39N 117.97E 200.5 155.381

Cangzhou 38.31N 116.84E 92.16 304.27
Dezhou 37.44N 116.36E 198.12 206.83
Hengshui 37.73N 115.66E 200.69 228.52
Baoding 38.89N 115.47E 151.83 263.06
Langfang 39.54N 116.68E 65.5 310.95
Beijing 39.96N 116.43E 113.34 319.13

Wuhan Huanggang 30.45N 14.88E 56.93 104.84
30.61N 114.33E Hangshi 30.19N 115.05E 84.53 119.04

Jiujiang 29.71N 116.00E 191.59 117.81
Xianning 29.83N 114.33E 84.72 178.51
Yueyang 29.36N 113.31E 178.8 222.77
Jinzhou 30.34N 112.24E 198.96 262.81
Xiaogan 30.91N 113.94E 49.14 310.22
Suizhou 31.69N 113.4E 149.01 319.99
Xinyang 32.15N 114.09E 173.69 351.97

Wuxi Suzhou 31.32N 120.59E 32.77 118
31.48N 120.30E Shanghai 31.23N 121.47E 114.52 102

Jiaxing 30.75N 120.76E 92.23 147
Ningbo 29.88N 121.54E 213.80 142
Zhoushan 30.02N 122.21E 244.27 127
Shaoxing 30.01N 120.61E 166.12 168
Hangzhou 30.28N 120.15E 134.10 187
Jinhua 29.06N 119.65E 276.24 195
Huzhou 30.89N 120.08E 68.86 200
Huangshan 29.72N 118.38E 268.74 227
Chizhou 30.66N 117.50E 281.83 253
Tongling 30.94N 117.82E 243.37 90
Xuancheng 30.94N 118.76E 158.29 250
Wuhu 31.37N 118.42E 178.80 266
Heifei 31.83N 117.23E 293.17 276
Maanshan 31.66N 118.51E 170.76 275
Chuzhou 32.25N 118.33E 204.79 291
Nanjing 32.06N 118.79E 156.64 291
Zhenjiang 32.2N 119.43E 114.73 309
Yangzhou 32.38N 119.41E 130.65 315
Huaian 33.60N 119.02E 264.51 328
Taizhou 32.45N 119.91E 113.96 338
Changzhou 31.81N 119.97E 48.19 315
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Target Cities Instrumental Cities Coordinate (◦) Distance (km) Location (◦)

Wuxi Suzhou 31.32N 120.59E 32.77 118
31.48N 120.30E Shanghai 31.23N 121.47E 114.52 102

Jiaxing 30.75N 120.76E 92.23 147
Ningbo 29.88N 121.54E 213.80 142
Zhoushan 30.02N 122.21E 244.27 127
Shaoxing 30.01N 120.61E 166.12 168
Hangzhou 30.28N 120.15E 134.10 187
Jinhua 29.06N 119.65E 276.24 195
Huzhou 30.89N 120.08E 68.86 200
Huangshan 29.72N 118.38E 268.74 227
Chizhou 30.66N 117.50E 281.83 253
Tongling 30.94N 117.82E 243.37 90
Xuancheng 30.94N 118.76E 158.29 250
Wuhu 31.37N 118.42E 178.80 266
Heifei 31.83N 117.23E 293.17 276
Maanshan 31.66N 118.51E 170.76 275
Chuzhou 32.25N 118.33E 204.79 291
Nanjing 32.06N 118.79E 156.64 291
Zhenjiang 32.20N 119.43E 114.73 309
Yangzhou 32.38N 119.41E 130.65 315
Huaian 33.60N 119.02E 264.51 328
Taizhou 32.45N 119.91E 113.96 338
Changzhou 31.81N 119.97E 48.19 315

Xi’an Shiyan 32.65N 110.77E 253.39 132
34.34N 108.94E Shangluo 33.87N 109.93E 104.93 115

Ankang 32.69N 109.02E 183.80 177
Hanzhong 33.06N 107.02E 227.65 236
Tianshui 34.59N 105.70E 298.41 274
Baoji 34.37N 107.24E 156.23 271
Pingliang 35.54N 106.63E 249.23 297
Guyuan 36.01N 106.24E 307.84 301
Qingyang 35.71N 107.64E 193.39 316
Tongchuan 34.90N 108.93E 62.41 358
Yanan 36.59N 109.49E 255.56 13
Weinan 34.50N 109.49E 53.67 73
Yuncheng 35.04N 111.00E 203.28 71
Linfen 36.10N 111.53E 305.97 55
Sanmenxia 34.80N 111.20E 212.86 78
Xianyang 34.34N 108.71E 21.57 270

67



Table A10: Robustness — Accounting for Daily Wind Speed in IV

AQI PM2.5
(1) (2) (3) (4)

First Stage(a)

Psourceit 0.529*** 0.268*** 0.536*** 0.270***
(0.083) (0.078) (0.076) (0.058)
[<0.01] [<0.01] [<0.01] [<0.01]

Psourceit ∗ windspeedit -0.010 -0.003 -0.009 -0.001
(0.007) (0.008) (0.005) (0.005)
[0.249] [0.721] [0.123] [0.873]

Psourceit−1
0.726*** 0.778***
(0.063) (0.067)
[<0.01] [<0.01]

Psourceit−1
∗ windspeedit−1 -0.035*** -0.045***

(0.005) (0.007)
[<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

40.422 95.029 49.312 103.185

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 19.93 16.38 19.93

Second Stage(b)

Instrumented pollutant 0.219** 0.121** 0.297** 0.170**
(0.089) (0.049) (0.116) (0.061)
[0.026] [0.02] [0.034] [0.012]

Observations 12904 12579 12989 12662
Additional Control
City FEs Y Y Y Y
Temporal Controls Y Y Y Y
Weather Covariates Y Y Y Y

Notes: (a) Dependent variable in the first stage is daily-mean pollutant of target city, and independent
variable is source pollutant (100km < dij < 300km) from upwind direction (within 90 degrees to the
wind), and its interaction term with wind speed in the target city. (b) Second stage reports the results
regressing log form of Sleeplessness Index on the instrumented daily pollution. Column (2) and (4)
incorporate day before as an additional instrument. Temporal controls include year by month fixed
effects, city by year fixed effects, city by quarter fixed effects, as well as day of week and holiday
fixed effects. Weather controls contain temperature, humidity, precipitation, wind speed and sea-
level pressure. Temperature and humidity are measured by the way of bins. Robust standard errors
clustered at the city level are reported in parentheses. P-values based on wild cluster-bootstrap (1000
replications) are reported in brackets. Asterisk indicates the statistical significance according to the
wild bootstrap p-values (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A11: Alternative Standard Errors — OLS

Wild Cluster
Bootstrap

Driscoll-Kraay
Spatial Correlation

Alternative
Clusters

(1) (2) (3) (4) (5) (6)
Panel A: AQI 0.037*** 0.037*** 0.037*** 0.037*** 0.037*** 0.037***

[0.001] (0.010) (0.013) (0.012) (0.010) (0.012)
Observations 12365 12365 12365 12365 12365 12365

Panel B: PM2.5 0.043*** 0.043*** 0.043*** 0.043*** 0.043*** 0.043***
[0.012] (0.012) (0.013) (0.013) (0.011) (0.017)

Observations 13617 13617 13617 13617 13617 13617
Additional Controls
City FEs Y Y Y Y Y Y
Year by month FEs Y Y Y Y Y Y
City by year FEs Y Y Y Y Y Y
City by quarter FEs Y Y Y Y Y Y
Day of week FEs Y Y Y Y Y Y
Holiday FEs Y Y Y Y Y Y
Weather Covariates Y Y Y Y Y Y

Clusters
City
(19)

-
City by year

by season
(152)

City by year
by month

(456)

City by year
by week
(1976)

City
Year by month

Notes: Dependent variable is log form of Sleeplessness Index. Independent variable is city daily-mean value of specific pollutant. Column (1)

implements the wild bootstrap procedure as described in Cameron et al. (2008), which replicates the results under Column (7) in Table 4.

Column (3) follows Driscoll and Kraay (1998) to consider spatial correlation. Column (3) through Column (5) are clustered at city by year

by season, city by year by month and city by year by week, respectively. Column (6) adopts the multi-way clusters at both city and year by

month. Temporal controls include year by month fixed effects, city by year fixed effects, city by quarter fixed effects, as well as day of week

and holiday fixed effects. Weather controls contain temperature, humidity, precipitation, wind speed and sea-level pressure. Temperature and

humidity are measured by the way of bins. Robust standard errors clustered at different levels are reported in parentheses. P-values based on

wild cluster-bootstrap (1000 replications) are reported in brackets in Column (1). Robust standard errors clustered at alternative levels are

reported in parentheses (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A12: Alternative Standard Errors — IV

AQI
Wild Cluster

Bootstrap
Driscoll-Kraay

Spatial Correlation
Alternative Clusters

(1) (2) (3) (4) (5) (6)

First Stage
Instrumental AQI t 0.455*** 0.455*** 0.455*** 0.455*** 0.455*** 0.455***

[<0.01] (0.056) (0.058) (0.051) (0.047) (0.080)
F-statistic 54.791 65.3 61.362 77.607 92.526 32.120

Second Stage
Instrumented AQI 0.223** 0.223*** 0.223** 0.223*** 0.223*** 0.223**

[0.039] (0.062) (0.098) (0.089) (0.062) (0.091)

Observations 12904 12904 12904 12904 12904 12904

Additional Controls
City FEs Y Y Y Y Y Y
Year by month FEs Y Y Y Y Y Y
City by year FEs Y Y Y Y Y Y
City by quarter FEs Y Y Y Y Y Y
Day of week FEs Y Y Y Y Y Y
Holiday FEs Y Y Y Y Y Y
Weather Covariates Y Y Y Y Y Y

Clusters
City
(19)

-
City by year

by season
(152)

City by year
by month

(456)

City by year
by week
(1976)

City
Year by month

Notes: Dependent variable in the first stage is daily-mean AQI of local city, and independent variable is daily weighted average pollution of source

cities. Second stage reports the results regressing log Sleeplessness Index on the instrumented daily pollution. Column (1) repeats the IV results

under Column (1) and Column (3) in Table 6, in which wild bootstrap clustered at city is used to indicate the significance level. Column (3)

follows Driscoll and Kraay (1998) to consider spatial correlation. Column (3) through Column (5) are clustered at city by year by season, city

by year by month and city by year by week, respectively. Column (6) adopts the multi-way clusters at both city and year by month. Temporal

controls include year by month fixed effects, city by year fixed effects, city by quarter fixed effects, as well as day of week and holiday fixed effects.

Weather controls contain temperature, humidity, precipitation, wind speed and sea-level pressure. Temperature and humidity are measured

by the way of bins. Robust standard errors clustered at different levels are reported in parentheses. P-values based on wild cluster-bootstrap

(1000 replications) are reported in brackets in Column (1). Robust standard errors clustered at alternative levels are reported in parentheses (*

significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A13: Alternative Standard Errors — IV

PM2.5
Wild Cluster

Bootstrap
Driscoll-Kraay

Spatial Correlation
Alternative Clusters

(1) (2) (3) (4) (5) (6)

First Stage
Instrumental PM2.5 t 0.463*** 0.463*** 0.463*** 0.463*** 0.463*** 0.463***

[<0.01] (0.058) (0.063) (0.057) (0.052) (0.075)
F-statistic 56.846 62.820 53.071 65.903 78.358 38.450

Second Stage
Instrumented PM2.5 0.285** 0.285*** 0.285*** 0.285*** 0.285*** 0.285**

[0.033] (0.068) (0.113) (0.100) (0.068) (0.117)

Observations 12989 12989 12989 12989 12989 12989

City FEs Y Y Y Y Y Y
Year by month FEs Y Y Y Y Y Y
City by year FEs Y Y Y Y Y Y
City by quarter FEs Y Y Y Y Y Y
Day of week FEs Y Y Y Y Y Y
Holiday FEs Y Y Y Y Y Y
Weather Covariates Y Y Y Y Y Y

Clusters
City
(19)

-
City by year

by season
(152)

City by year
by month

(456)

City by year
by week
(1976)

City
Year by month

Notes: Dependent variable in the first stage is daily-mean PM2.5 of local city, and independent variable is daily weighted average pollution of

source cities. Second stage reports the results regressing log Sleeplessness Index on the instrumented daily pollution. Column (1) repeats the IV

results under Column (1) and Column (3) in Table 6, in which wild bootstrap clustered at city is used to indicate the significance level. Column

(3) follows Driscoll and Kraay (1998) to consider spatial correlation. Column (3) through Column (5) are clustered at city by year by season, city

by year by month and city by year by week, respectively. Column (6) adopts the multi-way clusters at both city and year by month. Temporal

controls include year by month fixed effects, city by year fixed effects, city by quarter fixed effects, as well as day of week and holiday fixed effects.

Weather controls contain temperature, humidity, precipitation, wind speed and sea-level pressure. Temperature and humidity are measured

by the way of bins. Robust standard errors clustered at different levels are reported in parentheses. P-values based on wild cluster-bootstrap

(1000 replications) are reported in brackets in Column (1). Robust standard errors clustered at alternative levels are reported in parentheses (*

significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A14: City Sub-samples — OLS

Full
Exclude

Beijing and
Environ

Exclude
Shanghai and

Environs

Exclude
Guangzhou and

Environs
(1) (2) (3) (4)

Panel A: AQI 0.037*** 0.026** 0.041*** 0.038***
(0.012) (0.010) (0.013) (0.013)
[0.001] [0.019] [0.002] [<0.01]

Panel B: PM2.5 0.043*** 0.026** 0.047*** 0.043***
(0.017) (0.011) (0.018) (0.017)
[0.012] [0.032] [0.005] [0.009]

Observations 13617 12173 11479 11433

Additional Controls
City FEs Y Y Y Y
Year by month FEs Y Y Y Y
City by year FEs Y Y Y Y
City by quarter FEs Y Y Y Y
Day of week FEs Y Y Y Y
Holiday FEs Y Y Y Y
Weather Covariates Y Y Y Y

Notes: Column (1) replicates the OLS results in Column (7) of Table 4. Column (2) excludes
Beijing and its nearby city, Tianjin, both of which are situated in northern heavy industrial
region. Column (3) excludes Shanghai and its nearby cities, Suzhou and Hangzhou, which are
coastally located and dominated by light industry. Column (4) exludes the cleanest part in
Southern China, Guangzhou and its nearby cities, Shenzhen and Dongguan. All the regressions
include city fixed effects, temporal controls (year by month fixed effects, city by year fixed
effects, city by quarter fixed effects, as well as day of week and holiday fixed effects) and weather
controls (temperature, humidity, precipitation, wind speed and sea-level pressure). Temperature
and humidity are measured in the form of bins. Robust standard errors clustered at the city
level are reported in parentheses. P-values based on wild cluster-bootstrap (1000 replications)
are reported in brackets. Asterisk indicates the statistical significance according to the wild
bootstrap p-values (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A15: City Sub-samples — IV

Full
Exclude

Beijing and
Environ

Exclude
Shanghai and

Environs

Exclude
Guangzhou and

Environs
(1) (2) (3) (4)

Panel A: AQI
First Stage
Instrumental AQI t 0.455*** 0.509*** 0.469*** 0.436***

(0.062) (0.060) (0.067) (0.061)
[<0.01] [<0.01] [<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

54.791 72.472 48.488 51.714

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 16.38 16.38 16.38

Second Stage
Instrumented Pollutant 0.223** 0.134* 0.213* 0.239**

(0.096) (0.073) (0.098) (0.105)
[0.039] [0.079] [0.076] [0.047]

Observations 12904 11461 11037 10720
Panel B: PM2.5

First Stage
Instrumental PM2.5 t 0.463*** 0.524*** 0.473*** 0.444***

(0.061) (0.051) (0.067) (0.060)
[<0.01] [<0.01] [<0.01] [<0.01]

Kleibergen-Paap rk
Wald F statistic

56.846 72.472 48.488 51.714

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 16.38 16.38 16.38

Second Stage
0.285** 0.177* 0.276* 0.302**
(0.118) (0.094) (0.119) (0.128)
[0.033] [0.078] [0.056] [0.052]

Observations 12989 11546 11122 10805
Additional Controls
City FEs Y Y Y Y
Temporal Controls Y Y Y Y
Weather Covariates Y Y Y Y

Notes: Column (1) repeats the IV results under Column (1) and Column (3) in Table 6 with full sample. Column (2)
excludes Beijing and its nearby city, Tianjin, both of which are situated in northern heavy industrial region. Column
(3) excludes Shanghai and its nearby cities, Suzhou and Hangzhou, which are coastally located and dominated by
light industry. Column (4) exludes the cleanest part in Southern China, Guangzhou and its nearby cities, Shenzhen
and Dongguan. All the regressions include city fixed effects, temporal controls (year by month fixed effects, city by
year fixed effects, city by quarter fixed effects, as well as day of week and holiday fixed effects) and weather controls
(temperature, humidity, precipitation, wind speed and sea-level pressure). Robust standard errors clustered at the
city level are reported in parentheses. P-values based on wild cluster-bootstrap (1000 replications) are reported in
brackets. Asterisk indicates the statistical significance according to the wild bootstrap p-values (* significant at 10%,
** significant at 5%, *** significant at 1%). 73



Table A16: Individual City Effect — AQI

Independent Variable
(Daily Pollutant)
Individual City

Dependent Variable (Ln(Sleepless))
Full Beijing Changsha Chengdu Chongqing Dongguan Guangzhou Hangzhou Nanjing Ningbo Qingdao
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A11: AQI-OLS
AQI

(OLS)
0.037*** 0.050 0.046*** 0.049*** 0.019 0.057** 0.095 0.089** 0.058*** -0.022 0.038**

[0.001] (0.046) (0.015) (0.017) (0.017) (0.024) (0.089) (0.037) (0.018) (0.037) (0.018)
Observations 13617 730 713 714 730 724 730 714 714 713 714

Panel A21: AQI-IV
First Stage
Instrumental AQI t 0.455** 0.300*** 0.781*** 0.968*** 0.835*** 0.690*** 0.737*** 0.460*** 0.937*** 0.688*** 0.394***

[<0.01] (0.112) (0.122) (0.165) (0.092) (0.098) (0.101) (0.182) (0.161) (0.126) (0.108)
F-statistics 54.791 7.13 41.191 34.274 82.471 49.529 53.054 6.407 33.945 29.686 13.454
Second Stage

Instrumented AQI 0.223** -0.510 0.190*** 0.302*** 0.244*** 0.288*** -1.573*** 1.642*** 0.153*** 0.017 0.104
[0.039] (0.398) (0.057) (0.075) (0.054) (0.098) (0.411) (0.626) (0.050) (0.124) (0.128)

Observations 12904 729 575 651 730 724 730 599 714 692 714
continued
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Table A17: Individual City Effect — AQI

Independent Variable
(Daily Pollutant)
Individual City

Dependent Variable (Ln(Sleepless))
Full Shanghai Shenyang Shenzhen Suzhou Tianjin Wuhan Wuxi Xian Zhengzhou
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A12: AQI-OLS
AQI

(OLS)
0.037*** -0.010 0.061*** 0.121** -0.005 0.039 0.080*** 0.023 -0.030 0.019*

[0.001] (0.022) (0.019) (0.051) (0.041) (0.025) (0.016) (0.028) (0.020) (0.011)
Observations 13617 714 707 730 710 712 713 708 713 714

Panel A22: AQI-IV
First Stage
Instrumental AQI t 0.455** 0.497*** 0.504*** 0.526*** 0.582*** 0.699*** 0.613*** 0.373*** 0.619*** 0.504***

[<0.01] (0.110) (0.170) (0.059) (0.154) (0.139) (0.097) (0.132) (0.150) (0.111)
F-statistics 54.791 20.438 8.745 79.673 14.268 24.05 40.046 7.937 17.029 20.572
Second Stage

Instrumented AQI 0.223** -0.076 0.337*** 0.745*** 0.471** 0.037 0.281*** 0.795*** -0.261*** 0.452***
[0.039] (0.152) (0.121) (0.166) (0.205) (0.097) (0.061) (0.305) (0.101) (0.120)

Observations 12904 699 590 730 569 712 708 708 616 714

Notes: Column (1) repeats the preferred results for AQI in Table 4 and Table 6. Column (2) through Column (11) present
individual health effect of AQI for each city via both OLS and IV. The instruments are as used in the Column (6) of Table 5.
All the regressions include temporal controls (year by season fixed effect) and weather controls (average temperature bins, average
humidity bins, precipitation, sea-level pressure, and wind speed). Robust standard errors clustered at the city level are reported in
parentheses. P-values based on wild cluster-bootstrap (1000 replications) are reported in brackets. Asterisk indicates the statistical
significance according to the wild bootstrap p-values (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table A18: Individual City Effect — PM2.5

Independent Variable
(Daily Pollutant)
Individual City

Dependent Variable (Ln(Sleepless))
Full Beijing Changsha Chengdu Chongqing Dongguan Guangzhou Hangzhou Nanjing Ningbo Qingdao
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel B11: PM2.5-OLS
PM2.5
(OLS)

0.043*** 0.064 0.056*** 0.058*** 0.039* 0.100*** -0.071 0.100** 0.067*** -0.022 0.039*

[0.017] (0.050) (0.018) (0.021) (0.022) (0.040) (0.120) (0.044) (0.020 (0.045) (0.020)
Observations 13617 730 713 714 730 724 730 714 714 713 714

Panel B21: PM2.5-IV
First Stage
Instrumental PM2.5 t 0.463*** 0.306*** 0.725*** 1.040*** 0.787*** 0.776*** 0.787*** 0.360** 0.952*** 0.724*** 0.524***

[<0.01] (0.112) (0.121) (0.172) (0.088) (0.084) (0.092) (0.172) (0.174) (0.120) (0.101)
F-statistics 56.846 7.467 36.137 36.506 79.96 84.809 73.105 4.377 29.83 36.298 26.665
Second Stage
Instrumented PM2.5 0.285** -0.192 0.244*** 0.347*** 0.332*** 0.301*** -1.668*** 2.374** 0.193*** 0.174 0.069

[0.033] (0.372) (0.073) (0.084) (0.071) (0.104) (0.430) (1.092) (0.061) (0.136) (0.104)
Observations 12989 729 579 651 730 724 730 599 714 692 714
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Table A19: Individual City Effect — PM2.5

Independent Variable
(Daily Pollutant)
Individual City

Dependent Variable (Ln(Sleepless))
Full Shanghai Shenyang Shenzhen Suzhou Tianjin Wuhan Wuxi Xian Zhengzhou
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel B12: PM2.5-OLS
PM2.5
(OLS)

0.043*** -0.011 0.068*** 0.148** -0.012 0.036 0.095*** 0.031 0.007 0.031***

[0.017] (0.027) (0.011) (0.064) (0.052) (0.029) (0.019) (0.036) (0.023) (0.012)
Observations 13617 714 707 730 710 712 713 708 713 714

Panel B22: PM2.5-IV
First Stage
Instrumental PM2.5 t 0.463*** 0.569*** 0.628*** 0.564*** 0.617*** 0.595*** 0.641*** 0.419*** 0.790*** 0.492***

[<0.01] (0.100) 90.2240 (0.061) (0.147) (0.129) (0.101) (0.133) (0.154) (0.107)
F-statistics 56.846 32.357 7.865 86.125 17.612 20.074 40.174 9.983 26.466 21.007
Second Stage
Instrumented PM2.5 0.285** -0.032 0.239*** 0.907*** 0.636*** 0.072 0.360*** 1.042*** -0.059 0.526***

[0.033] (0.155) (0.096) (0.194) (0.239) (0.125) (0.074) (0.352) (0.093) (0.136)
Observations 12989 699 290 730 569 712 708 708 701 714

Notes: Column (1) repeats the preferred results for PM2.5 in Table 4 and Table 6. Column (2) through Column (11) present
individual health effect of PM2.5 for each city via both OLS and IV. The instruments are as used in the Column (6) of Table
5. All the regressions include temporal controls (year by season fixed effect) and weather controls (average temperature bins,
average humidity bins, precipitation, sea-level pressure, and wind speed). Robust standard errors clustered at the city level
are reported in parentheses. P-values based on wild cluster-bootstrap (1000 replications) are reported in brackets. Asterisk
indicates the statistical significance according to the wild bootstrap p-values (* significant at 10%, ** significant at 5%, ***
significant at 1%).

77



Table A20: Air Quality and Sleeplessness — All Coefficients

AQI PM2.5
OLS IV OLS IV
(1) (2) (3) (4)

Pollutant 0.037*** 0.223** 0.043*** 0.285**
(0.012) (0.096) (0.017) (0.118)
[0.001] [0.039] [0.012] [0.033]

Average Temperature (T∈ [10,15) Omitted)
T <0 8.294 12.653** 7.996 11.573*

(5.579) (5.537) (5.494) (5.457)
[0.203] [0.025] [0.218] [0.067]

T ∈[0,5) 9.926*** 11.706*** 9.803*** 11.205***
(3.790) (3.727) (3.776) (3.703)
[0.005] [<0.01] [0.007] [<0.01]

T ∈[5,10) 6.291*** 5.344** 6.305*** 5.191**
(2.377) (2.257) (2.393) (2.188)
[0.011] [0.026] [0.007] [0.029]

T ∈[15,20) 7.214*** 6.111*** 7.227*** 6.437***
(2.148) (1.817) (2.131) (1.888)
[0.001] [0.002] [0.001] [0.002]

T ∈[20,25) 13.915*** 11.635*** 13.808*** 12.126***
(3.681) (3.156) (3.678) (3.166)
[<0.01] [<0.01] [<0.01] [<0.01]

T ∈[25,30) 15.546*** 10.916*** 15.587*** 12.020***
(4.961) (4.279) (4.988) (4.144)
[<0.01] [0.008] [<0.01] [0.001]

T ≥ 30 10.943** 5.425 11.311*** 8.656*
(5.872) (5.613) (5.940) (5.327)
[0.015] [0.381] [0.014] [0.097]

Precipitation -0.021 0.015 -0.023 0.008
(0.021) (0.012) (0.021) (0.013)
[0.316] [0.128] [0.277] [0.472]

Sea-level Pressure -0.214 -0.047 -0.202 -0.009
(0.122) (0.177) (0.127) (0.185)
[0.112] [0.801] [0.128] [0.959]

Wind Speed 0.124 0.503** 0.128 0.546**
(0.094) (0.204) (0.092) (0.214)
[0.197] [0.022] [0.164] [0.016]

Continued

78



AQI PM2.5
(1) (2) (3) (4)

Average Humidity (H∈[40,60) Omitted)
H <20 13.753 22.587 14.134 26.456

(4.889) (7.612) (5.090) (8.998)
[0.264] [0.125] [0.277] [0.108]

H ∈[20,40) 0.462 5.480 0.654 7.181
(2.608) (3.953) (2.696) (4.475)
[0.849] [0.312] [0.808] [0.229]

H ∈[60,80) 3.285*** 2.459** 3.223*** 1.311
(1.128) (1.078) (1.186) (1.226)
[<0.01] [0.027] [0.002] [0.309]

H ≥ 80 5.613*** 7.091*** 5.329*** 4.802***
(1.060) (0.914) (1.153) (1.228)
[<0.01] [<0.01] [<0.01] [0.001]

Day of Week (Monday Omitted)
Tuesday -13.195*** -13.065*** -13.186*** -12.968***

(0.991) (1.024) (0.987) (1.044)
[<0.01] [<0.01] [<0.01] [<0.01]

Wednesday -12.798*** -12.507*** -12.782*** -12.333***
(1.104) (1.122) (1.103) (1.114)
[<0.01] [<0.01] [<0.01] [<0.01]

Thursday -13.023*** -12.310*** -13.000*** -12.223***
(1.128) (1.209) (1.131) (1.198)
[<0.01] [<0.01] [<0.01] [<0.01]

Friday -13.465*** -13.165*** -13.445*** -12.984***
(1.075) (1.139) (1.076) (1.156)
[<0.01] [<0.01] [<0.01] [<0.01]

Saturday -14.542*** -14.235*** -14.501*** -14.042***
(1.060) (1.125) (1.067) (1.138)
[<0.01] [<0.01] [<0.01] [<0.01]

Sunday -9.022*** -8.666*** -9.019*** -8.639***
(0.750) (0.794) (0.750) (0.789)
[<0.01] [<0.01] [<0.01] [<0.01]

Holiday -9.664*** -8.576*** -9.521*** -7.924***
(1.150) (1.333) (1.162) (1.451)
[<0.01] [<0.01] [0.012] [<0.01]

Notes: The table reports detailed OLS and IV results. Each column represents a separate regression.
Dependent variable is log form of Sleeplessness Index. Independent variables include daily mean level
of specific pollutant, weather controls (average temperature bins, average humidity bins, precipitation,
sea-level pressure, and wind speed), temporal controls (year by month fixed effects, city by year fixed
effects, city by quarter fixed effects, as well as day of week and holiday fixed effects) and city fixed
effects. Robust standard errors clustered at the city level are reported in parentheses. P-values based
on wild cluster-bootstrap (1000 replications) are reported in brackets. Asterisk indicates the statistical
significance according to the wild bootstrap p-values (* significant at 10%, ** significant at 5%, ***
significant at 1%). 79



Table A21: Pollution Regressed on Imported Source Pollutants All Coefficients (First Stage)

First Stage
AQI PM2.5
(1) (2)

Instrumental
Pollutant t

0.455*** 0.463***
(0.062) (0.061)
[<0.01] [<0.01]

Average Temperature (T∈ [10,15) Omitted)
T <0 -26.803** -18.887*

(7.187) (7.094)
[0.024] [0.066]

T ∈[0,5) -15.260*** -10.746***
(3.759) (3.196)
[<0.01] [0.002]

T∈ [5,10) 1.386 1.702
(2.145) (1.782)
[0.500] [0.345]

T ∈[15,20) 6.948*** 4.064**
(2.184) (1.674)
[0.002] [0.017]

T∈ [20,25) 12.147*** 6.735**
(3.540) (2.756)
[0.002] [0.023]

T [25,30) 24.962*** 14.608***
(5.463) (4.169)
[0.001] [0.004]

T ≥ 30 30.398*** 11.283***
(5.161) (3.957)
[<0.01] [0.005]

Precipitation -0.178*** -0.114***
(0.036) (0.027)
[<0.01] [<0.01]

Sea-level Pressure -0.937*** -0.835***
(0.254) (0.213)
[0.006] [0.002]

Wind Speed -1.914*** -1.602***
(0.271) (0.202)
[<0.01] [<0.01]
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First Stage
AQI PM2.5
(1) (2)

Average Humidity (H ∈[40,60) Omitted)
H <20 -42.911 -45.284*

(14.122) (11.782)
[0.108] [0.086]

H∈ [20,40) -25.111*** -24.904***
(9.139) (7.447)
[0.014] [0.001]

H∈ [60,80) 5.814 8.884**
(4.152) (3.974)
[0.197] [0.026]

H ≥ 80 -6.629 2.927
(4.927) (4.473)
[0.199] [0.578]

Day of Week (Monday Omitted)
Tuesday -0.368 -0.617

(0.802) (0.777)
[0.631] [0.426]

Wednesday -2.114* -2.215**
(1.126) (0.967)
[0.092] [0.049]

Thursday -3.549** -2.863**
(1.206) (1.138)
[0.019] [0.048]

Friday -2.103 -2.228
(1.259) (1.274)
[0.129] [0.110]

Saturday -1.631 -1.830*
(1.159) (0.945)
[0.170] [0.078]

Sunday -0.834 -0.679
(0.865) (0.727)
[0.383] [0.384]

Holiday -7.642*** -7.935***
(1.346) (1.029)
[<0.01] [<0.01]

Notes: The table reports detailed results of the first stage under IV estimations. Each column represents a

separate regression. Dependent variable is daily mean level of specific pollutant for each city. Independent

variables include instrumented pollutant, weather controls (average temperature bins, average humidity

bins, precipitation, sea-level pressure, and wind speed), temporal controls (year by month fixed effects,

city by year fixed effects, city by quarter fixed effects, as well as day of week and holiday fixed effects)

and city fixed effects. Robust standard errors clustered at the city level are reported in parentheses.

P-values based on wild cluster-bootstrap (1000 replications) are reported in brackets. Asterisk indicates

the statistical significance according to the wild bootstrap p-values (* significant at 10%, ** significant at

5%, *** significant at 1%). 81



Table A22: Joint Estimation (First Stage and Second Stage)

Individual Pollutant
Whether to Control Co-emissions in the first stage
NO Yes

PM2.5 CO NO2 O3 PM2.5 CO NO2 O3
(1) (2) (3) (4) (5) (6) (7) (8)

First Stage
Instrumental
Pollutant t

0.463*** 0.184*** 0.326*** 0.442*** 0.236*** 0.105*** 0.168** 0.433***

(0.061) (0.077) (0.071) (0.044) (0.054) (0.050) (0.066) (0.045)
[<0.01] [0.011] [0.001] [<0.01] [<0.01] [0.006] [0.023] [<0.01]

Kleibergen-Paap rk
Wald F statistic)

56.846 5.742 20.621 101.465 18.987 4.451 6.508 93.942

Stock-Yogo weak ID test
critical values: 10% maximal IV size

16.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38

Second Stage
Instrumented Pollutant 0.285** - 0.018 0.072 0.519** - - 0.071

(0.118) - (0.220) (0.172) (0.229) - - (0.179)
[0.033] - [0.944] [0.835] [0.049] - - [0.834]

Observations 12989 - 12989 12989 12989 - - 12989
Additional Controls
City FEs Y Y Y Y Y Y Y Y
Temporal Controls Y Y Y Y Y Y Y Y
Weather Covariates Y Y Y Y Y Y Y Y

Notes: This table reports the results from both the first stage and second stage of joint estimation in Table 14. Column (1) through Column (4)
does not include co-emissions at the first stage. The second stage regresses Sleeplessness Index on different instrumented pollutants together, which
corresponds to Column (4) of Table 14. Column (5) through Column (8) controls co-pollution when making instrument and reports each second
stage estimate one by one, which corresponds to Column (5) of Table 14. All the regressions include city fixed effects, temporal controls and weather
covariates. Robust standard errors clustered at the city level are reported in parentheses. P-values based on wild cluster-bootstrap (1000 replications)
are reported in brackets. Asterisk indicates the statistical significance according to the wild bootstrap p-values (* significant at 10%, ** significant
at 5%, *** significant at 1%).
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Table A23: Air Pollution and Neutral Keywords

Sleeplessness Cat Table
(1) (2) (3)

Panel A: AQI 0.037*** -0.004 -0.017
(0.012) (0.015) (0.027)
[0.001] [0.798] [0.499]

Panel B: PM2.5 0.043*** -0.009 -0.022
(0.017) (0.019) (0.029)
[0.012] [0.600] [0.395]

Observations 13617 13617 13617

Additional Controls
City FEs Y Y Y
Year by month FEs Y Y Y
City by year FEs Y Y Y
City by quarter FEs Y Y Y
Day of week FEs Y Y Y
Holiday FEs Y Y Y
Weather Covariates Y Y Y

Notes: This table compares the effects of air pollution on the
neutral keywords “cat” and “table”, by regressing air pollution
on the log form of the keywords. Entries have been adjusted to
percentage form. All the regressions include city fixed effects,
temporal controls and weather covariates. Robust standard er-
rors clustered at the city level are reported in parentheses. P-
values based on wild cluster-bootstrap (1000 replications) are
reported in brackets. Asterisk indicates the statistical signifi-
cance according to the wild bootstrap p-values (* significant at
10%, ** significant at 5%, *** significant at 1%).
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