13059_2020_1977_MOESM7_ESM.pdf (83.21 kB)
Download fileAdditional file 7 of Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome
journal contribution
posted on 2020-03-31, 03:46 authored by Jacob Schreiber, Timothy Durham, Jeffrey Bilmes, William Stafford NobleAdditional file 7 Subsampling for first stage of training. Follow-up analyis showing that using the ENCODE Pilot Regions for the first step of the Avocado training procedure does not lead to significantly worse imputations than another subsample.
History
References
- 10.1038/nmeth.1906
- 10.1093/nar/gks1284
- 10.1038/nrg3920
- 10.1038/nbt.3157
- 10.1038/ng.3539
- 10.1016/j.celrep.2016.10.061
- 10.1016/j.neunet.2017.10.007
- 10.1038/cr.2011.22
- 10.1016/j.cell.2007.02.005
- 10.1146/annurev-biochem-061809-175347
- 10.1016/j.cell.2008.10.036
- 10.1109/TKDE.2009.191
- 10.1093/bioinformatics/btw427
- 10.1038/nature11247
- 10.1038/nature07829
- 10.1038/nature09906
- 10.1038/nature11232
- 10.1038/nature12787
- 10.1371/journal.pcbi.1006625
- 10.1101/gr.099655.109
- 10.1038/nprot.2017.148
- 10.1126/science.1181369
- 10.1038/nature11082
- 10.1038/nmeth.1937
- 10.1038/nmeth.3547
- 10.1101/gr.200535.115
- 10.1016/j.neunet.2014.09.003
- 10.1038/nature05874
Usage metrics
Read the peer-reviewed publication
Keywords
machine learning models3d chromatin architectureimpute epigenomic datahuman epigenome abstractepigenomic datahuman epigenomehuman genometrained directlyrich representationrepresentation outperformreplication timingprevious methodslearned representationlatent representationgenomics tasksexperimentally characterizedevery basepairenhancer interactions