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Highlights

Adaptive notch-filtration to effectively recover photoplethysmo-
graphic signals during physical activity

Xiaoyu Zheng, Vincent Dwyer, Mahsa Derakhshani, Laura Barrett, Sijung
Hu

• Low-complexity PPG signal recovery algorithm for real-time health
monitoring and assessment in wearable system.

• Development of ANF for the effective removal of in-band and out-of-
band motion artefact at various physical activity intensities.

• Improved HR and RR values as obtained from the protocol implemen-
tation at four stages of cycling and treadmill exercises with 24 subjects
.

• A smaller absolute error in HR and RR values, using the proposed
signal processing technique, than by other published methods.
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Abstract

Physical activity can severely influence the quality of photoplethysmographic
(PPG) signals due to motion artefacts (MA). This study aims to extract heart
rate (HR) and respiration rate (RR) values from raw PPG signals captured
from a multi-wavelength illumination optoelectronic patch sensor (mOEPS)
during physical activity of different intensities, and to do this in an effective
manner. The proposed method, combined with a 3-axis accelerometer as a
motion reference, was developed for the extraction of the desired PPG sig-
nals. The overall algorithm comprises three parts: 1) the adaptive moving
average filter, 2) the adaptive notch filter, and 3) the physiological parameter
extraction. 24 healthy subjects completed four stages of exercise of increasing
intensity, first on a cycle ergometer and later on a treadmill. The recovered
PPG signals for the calculation of HR and RR were comparable to the mea-
surements from commercial devices, with an average absolute error for HR
of <1.0 beats/min for the IEEE-SPC dataset, and 1.3 beats/min for HR,
and 2.8 breaths/min for RR, from the in-house dataset obtained at Lough-
borough University. The method used is found to have good robustness and
low complexity, making it suitable for application in real-time physiological
monitoring.
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Real-time signal processing

1. Introduction

Photoplethysmography (PPG) as a low-cost, non-invasive, and optical
technique is usually used to measure vital physiological signs, such as heart
rate, heart rate variability, oxygen saturation, and respiration rate [1]. As
a consequence PPG-based health monitoring has been widely adopted for
wearable devices [2, 3]. The periodic variations in the PPG signal, related
to the cardiac rhythm and breathing changes, make it possible to determine
heart rate (HR) and respiration rate (RR) [4, 5]. Despite the wealth of physi-
ological information that the PPG signal can provide, it is easily disturbed by
artefact noise generated from a variety of noise sources, such as: modification
of the optical properties of the internal tissues; poor blood perfusion; motion
artefacts (MA); the distance between the optical sensor and skin surface, and
electromagnetic and electronic noise [6, 7].

Heart rate and RR calculations from noise artefact-induced PPG sig-
nals have been acquired accurately, using a number of different methods
including independent component analysis (ICA) [8], frequency-domain ICA
[9], empirical mode decomposition (EMD) [10], improved complete ensem-
ble empirical mode decomposition with adaptive noise (ICEEMDAN) [11],
a wavelet-transform method [12] and Kalman filtering [13]. However, these
methods are generally only suitable for relatively low-intensity movement
[14]. The relationship between acceleration and the PPG signals has also
been exploited to extract PPG signals in the case of low intensity MA [15].
Subsequently, acceleration data has become the a versatile aid for the re-
moval of MAs. An adaptive noise cancellation method using recursive least
squares (RLS) [16] and an adaptive-size least mean squares (AS-LMS) adap-
tive filter [17] have been applied to weaken the noise artefacts with the aid of
acceleration measurements which are associated with the intensity of motion.
These adaptive filtering (AF) methods have proved to have better proper-
ties at low-intensity than at high-intensity exercise [18]. The performance of
AF is highly associated with the quality of reference signal, i.e., acceleration
signal) as is linearly related to the MAs. Such AF is uneasily applied for a
real-time MAs cancellation [19].

To overcome these shortcomings, Zheng et al. [20] proposed an effective
method (TROIKA) to remove MA from wrist-worn PPG, which has a better
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noise removal ability and robustness. Yet, this method based on the sparse
signal decomposition is not sufficiently accurate for extracting HR. Mean-
while, TROIKA was improved by the joint sparse spectrum reconstruction
(JOSS) [21], by exploiting the fact that the spectra of PPG signals and 3-axis
acceleration signals have common features, to generate a spectral estimation
of these signal as a JOSS model. Although the JOSS method can effec-
tively remove in-band MAs in low and high-intensity motions, it cannot be
used during real-time monitoring due to its high computational complexity.
A time-varying spectral filtering algorithm has been recently developed in
[22], which compares the frequency of the PPG spectrum with the accelera-
tion spectra. These frequency peaks generated by MAs can be distinguished
from the PPG spectrum. Due to the demand of larger data processing ca-
pacity for sample-by-sample windowing process, it may be uneasy to deploy
the algorithm into a wearable electronic system for a real-time recovery of
PPG signals. Lately, Islam et al.[23] introduced a modified spectral subtrac-
tion scheme with a composite motion artifact reference (SPECMAR) method
along with a synthetic motion artefacts reference. Again, a fusion method
was reported in [1], using band-stop filters to remove the in-band MAs. The
method then applies the band-stop filter with a rejection frequency related
to the acceleration spectrum under static conditions, which can be easily
achieved on a primary processor platform.

Referring to these methods, the purpose of this study is to explore how
to effectively recover PPG signal against MA corruption in order to extract
physiological parameters in real-time. To achieve this, an adaptive notch-
filtration algorithm (ANF) was established as a practicable signal processing
platform and developed for reduction of MAs in different physical activity
intensities in order to recover cleansed PPG signals. The ANF is intended
for real-time use, the filtration algorithm has low complexity but still allows
accurate physiological readings. The study includes the following aspects:

1) The proposed ANF to be effectively applied for the in-band and out-of-
band MA at different exercise intensities , to obtain MA-free PPG signals.

2) The better HR and RR readings to be worked out from the recovered
PPG signals by the means of ANF.

3) The smaller absolute error values to be delivered by the ANF along with
a 24 subject engaged protocol in different physical exercises levels.

4) The deploy of ANF into a wearable electronic system to be durable to
achieve an indeed real-time health monitoring.
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2. Methods and Materials

The block diagram of the proposed ANF executive is depicted in Fig.1.
The proposed method consists of three essential parts: 1) the adaptive mov-
ing average filter (AMAF), 2) the adaptive notch filter, and 3) physiological
parameters extraction. Firstly, a smoothing process on the raw PPG signals
is performed, adopting an AMAF for the purpose of removing the out-of-band
noise caused by the poor attached sensor, external electromagnetic impact
or low blood perfusion. Secondly, the adaptive notch filter is employed to
remove the in-band MA from the filtered PPG signals with the aid of the
3-axis acceleration signals by finding a set of peaks from the frequency spec-
trum of the cleaned signals. Finally, the algorithm to extract physiological
parameters (here HR and RR) was designed to ensure that accuracy of those
parameters from the recovered PPG signals show an improvement on previ-
ous work. In the following sections, the overall algorithm (ANF) is presented
in detail.

AMAF Adaptive notch filter

Physiological 

Parameters Extraction

Previous Estimation

Output

Raw PPG signals &

3-axis cceleration signals

Fig. 1. Block diagram of the ANF executive

2.1. Adaptive Moving Average Filter (AMAF)

Prior to the procedure of the ANF, 3-axis acceleration signals are selected
through a 4th Butterworth band-pass filter with cut-off frequencies of 0.2 and
6 Hz. The signals are then subjected to Fast Fourier Transform (FFT). The
raw PPG signals obtained from green illumination of the OEPS are usually
first filtered using an adaptive moving average filter (AMAF). To obtain a
better signals, fitting parameter is often adapted automatically during phys-
iological measurement period for various sliding windows. The input signal
sequences is Sin = [s1, s2, s3, . . . , sn] and the fitting parameter is p. The in-
put raw data sequence is smoothed by a simple background subtraction using
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the p-point moving average filter. The output Sout at the current point i is
represented by the mean from the (i − p/2)th to (i + p/2 − 1)th points as
below:

Sout(i) =
1

p

i+p/2−1∑
k=i−p/2

(Sin(i) − Sin(k)). (1)

For an arbitrary frequency component, Sin(i) = exp(2πjfn/Fs), in the
measured raw data, the output obtained from the AMAF Sout is modified to

Sout(i) = exp(2πjfn/Fs)

(
1 − exp(2πjfp/2Fs) + ...+ 1 + ...+ exp(−2πjf(p/2 − 1)/Fs)

p

)

≈ exp(2πjfn/Fs)

(
1 − sinc

(
pf/Fs

))
= HAMAF (f ; p) exp(2πjfn/Fs).

(2)

HAMAF (f ; p) represents an adaptive high-pass filter, with an adaptation pa-
rameter p, and a cut-off frequency of f ≈ Fs/p ≈ 256/p Hz with the current
sample rate of Fs = 256 Hz. Choosing p = 256 samples would ensure all
Heart Rates > 60 beats/min not be cut off. Similarly, p should be reduced
to ≈ 64, or a cutoff of 15 breaths/min, when calculating RR.

With the time variation of HR or RR, the bandwidth of the AMAF filter
window must adjust (under adaptation) to reflect the change. We set up the
adaptation rule in a manner that keeps the value HAMAF (fHR/RR) roughly
fixed, i.e.,pfHR/RR/Fs ≈ 1. This is implemented, for the mth interval, by
using the frequency of previous HR or RR as, thus

p(m) × fHR/RR(m− 1)

Fs

= 1. (3)

where all frequencies are in Hz. In this way p = 256 is used in the case
that fHR = 1Hz. After the above procedure, a digital FIR band-pass filter
acts on the Sout to remove the out-band noise impact with the same cut-off
frequencies of 0.2 to 6Hz as earlier.

2.2. Adaptive Notch Filter for In-band Motion Artefacts Removal

To further remove MAs, the pre-processed PPG signal, along with 3-axis
acceleration references, are loaded into the signal processing system, here
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denoted as ANF and shown in Fig.2. Suitable notch filters are selected in
each sliding time window rather than using a fixed notch filter, as in [1].

Fig. 2. The flowchart of the adaptive notch filter

Prior to processing with the ANF, the acceleration signal (ACC) is chosen
as a reference noise signal in each sliding time window. Precisely, to mini-
mize the complexity of ANF, the analysis of only one axis (i.e., x-axis) of the
acceleration signal was considered [1]. Next, it needs to be verified whether
the peaks in the ACC spectrum are related to MAs; such peaks are expected
to present as fairly large during strenuous exercise. When the 3-axis accel-
eration spectrum is too broad, the useful MA component cannot easily be
extracted by exploring the acceleration signal. Thus, Decision 1 is adopted
to check the largest spectral peak in the selected acceleration data as shown
in Fig.2. When the largest spectral peak is less than some threshold (th1),
it indicates that the current motion state is not significant to feed through
to the PPG signal and the MA interference is relatively trivial. Again, th1 is
the critical threshold between exercise and rest. It is obvious that the NFFT -
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point FFT with zero paddings was adopted to arrive at the ACC spectrum,
thus th1 (i.e. the value of 50) would be estimated according to the sampling
rate and NFFT . In this case, the AMAF filtered PPG signal is used as the
algorithm output (State 1). Thus, the ACC signal is unnecessary in this
sliding time window, and State 2 is triggered as detailed below.

The 2nd infinite impulse response (IIR) filter is also introduced to imple-
ment the notch filter in State 2, which is always stable and has a linear delay
[24]. The notch filter general transfer function [25] is shown as:

H(z) =
r2 − (1 + r2) cos(ω)z−1 + z−2

1 − (1 + r2) cos(ω) + r2z−2
, (4)

where

ω =
2fc
fs
, r =

fc
µ
. (5)

In (4) and (5), r controls the bandwidth of the notch filter and µ is
the bandwidth coefficient, fc is the central frequency of the notch filter and
fs is the signal sampling rate. The magnitude response of the notch filter is
illustrated in Fig.3. As can be seen from the graphs, the parameter ω controls
the bandwidth of the notch filter, and the notch filter removes the signal
around notch frequencies while keeping the other frequency components close
to their original amplitudes.

Fig. 3. Magnitude responses of the notch filter

Suppose that fa1 , fa2 and fa3 are the location indexes of the top three
ACC spectrum peaks, which are also the central rejection frequencies of the
notch filters. In the proposed algorithm, for a central rejection frequency fa,
fa/µ is assumed to be the bandwidth of the notch filter and µ is set to 48.
The general equation for a notch filter is expressed by
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Hnotch(f ; fa) =

{
δ,

(
1 − 1/µ

)
fa ≤ f ≤

(
1 + 1/µ

)
fa.

1, otherwise.
(6)

where δ � 1 and fa stands for fa1 , fa2 or fa3 .
Next, the notch filter, which has adaptive rejection frequencies chosen

based on the different scenarios, is applied to the PPG signal recovered in
each time window. In the following, we discuss different ANF scenarios con-
sidering cases where the spectral peaks indicating the desired physiological
parameters (i.e., HR and RR) are located on the first, second or third PPG
spectrum peaks, depending on which PPG peak is closest to the previous
calculated physiological parameter value. Here the spectral peak selected to
represent the related physiological parameter is labelled fsel.

• Scenario 1: fsel isn’t taken account for the overlap with any of the
three largest ACC spectrum peaks, and so is not affected by the notch
filter. Precisely, the peak of the PPG spectrum corresponding to the
HR or RR frequency does not coincide with the three leading ACC
spectral peaks. In this case, the ANF is comprised of the three notch
filters, and is demonstrated in Fig.4. There, Fig.4(a2) and (b2) shows
the measured PPG signal corrupted with MAs. As is apparent, features
of the PPG signal in the time-domain (and in the frequency-domain)
are poor. It is necessary to remove the frequencies from the MAs that
are related to the ACC reference, these are marked by red circles in
Fig.4(a1) and Fig.4(a1).

• Scenario 2: fsel is taken account for the overlap with one of the three
largest of the ACC spectral peaks. Fig.5(a2) shows an example case
in which the physiological parameter frequency (indicated by the black
circle) overlaps with the largest of the ACC spectral peak. Continuing
with the ANF from scenario 1 would filter out the true HR (or RR) fre-
quency, and not recover the desired PPG signals in the time-domain as
is illustrated in Fig.5(a3) and (b3). Clearly this spectral peak should be
retained, but the other MA related spectrum peak should be removed.
The recovered PPG signal in this case is illustrated in Fig.5(a4) and
(b4). These two scenarios can be pressed as the function of ANF as
shown below:
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HANF (f) =



∏
k∈{1,2,3}

Hnotch(f ; fak), FHR/RR��≈faj .

∏
k 6=j,∈{1,2,3}

Hnotch(f ; fak), FHR/RR ≈ faj .

(7)

a1 b1

b2

b3

a2

a3

a1 b1

b2

b3

a2

a3

a1 b1

b2

b3

a2

a3

Fig. 4. Detailed processing for the PPG signal when frequencies of the MAs are in-band
of the PPG signal in Scenario 1. (a1) ACC spectrum peaks as the reference for MAs. (b2)
ACC signals in time-domain. (a2) corrupted PPG signals with the MAs, and the red circle
marks coincide with the three most significant spectrum peaks of ACC, and the black and
green circles correspond to the frequency of HR and RR. (b2) filtered PPG signals after
AMAF in time-domain. (a3) desired PPG signals and respiration signals spectrums. (b3)
recovered PPG signals and respiration signals after AMAF and ANF.

2.3. Physiological Parameters Extraction

2.3.1. Heart Rate Extraction

Usually, the identified MAs are removed and the cleaned PPG signals
are recovered effectively in the previous steps. However, in some cases, the
sensor may barely capture the PPG signal; for example, if the sensor con-
tact is loose. Thus, a spectral peak calibration and selection are crucial for
accurate HR/RR extraction. Prior to these two steps, the HR is calculated
as HRBPM = fsel × 60 beats/min, and similarly RR.

(1) Calibration: Calibration mainly ensures that the filtered PPG signals
are still adversely affected by motion. Typically the change in the HR,
between successive sliding time window observations, is expected to be
limited. Accordingly the following check is performed.
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Fig. 5. Detailed processing for the PPG signal when frequencies of the MAs are in-band
of the PPG signal in Scenario 2. (a1) ACC spectrum peaks as the reference for MAs. (b2)
ACC signals in time-domain. (a2) corrupted PPG signals with the MAs, and red and black
circle marks overlap with the three largest ACC spectrum peaks, but the black and green
circles correspond to the frequency of HR and RR. (a3) applying the ANF bandwidth of
scenario 1. (b3) its corresponding time-domain waveform. (a4) desired PPG signals and
respiration signals spectrums. (b4) its corresponding time-domain waveform.

HRBPM [i] −HRBPM [i− 1] < φ, (8)

where φ is a tolerance parameter, ensuring that the difference between the
current time window heart rate and previous value is within a reasonable
tolerance (φ = 5beats/min). When the rule is satisfied, the current
HRBPM is selected as the final calculated HR. Otherwise, the algorithm
moves on to the last part, Selection.

(2) Selection: The selection deals with the situations that the verification
rule (Eq. 8) is not satisfied. When no satisfactory fsel can be found, the
offending sliding time-window is skipped, and HRBPM [i] is estimated by
the trend of the previous three HR values. Specifically, when the trend
is upwards (i.e. HR[i − 3] ≤ HR[i − 2] ≤ HR[i − 1])), HRBPM [i] is
set to HRBPM [i − 1] + 2. Again, when the trend is down, HRBPM [i] is
set to HRBPM [i− 1] − 2. Otherwise, the HRBPM [i] is kept the same as
previous heart rate, HRBPM [i−1]. Finally, the output HR is the average
value of the five previous HRs.
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2.3.2. Respiration Rate Extraction

After removing the MAs from the PPG signals, the acceleration-derived
method is used to extract RR [26]. Precisely, a motion intensity (MI) in-
dex is defined using the amplitudes of the 3-axis acceleration signal (ACC)
(AmpACC).

MI =


low AmpACC ≤ 100,

medium 100 < AmpACC ≤ 400,
high AmpACC > 400.

(9)

Again, the parameters of the band-pass filter are selected adaptively.
When the MI is low, the passband of the band-pass filter is set to 0.2-0.5Hz;
when MI is medium, the passband is set to 0.3-0.7 Hz and when MI is high
the passband is set to 0.4-0.9. Thereafter, the RR can be obtained from the
peak in the frequency domain FFT.

2.4. Parameter Settings

For the LU-Db dataset the sampling rate (Fs) is at 256 Hz, the time
window sliding along the signals is 10 seconds long with HR values are (using
the ANF) are extracted in 1s intervals, and the number of FFT points (NFFT )
is set to 8192. In general we recommended that NFFT is set so that each
frequency bin (Fs/NFFT×60) corresponds to about 1 beats/min. By contrast
for the IEEE-SPC dataset, the sampling rate is Fs = 128Hz so NFFT is set
to 4096. Here, the time window is 8 seconds long with an incremental step
of 2 seconds.

2.5. Measurement Protocol

The ANF was conducted with two databases: a) Loughborough Univer-
sity database (LU-Db) and b) IEEE Signal Processing Cup (SPC) 2015. LU-
Db was well suited for the validation on two exercise forms with four different
motion intensities, e.g., 1) cycling, and 2) running . The SPC database was
used as a benchmark for verification of state-of-the-art signal processing algo-
rithms. Specifically, with LU-Db, 12 healthy subjects (aged 24±3 years, two
females and ten males) undertook the protocol which was approved by the
Loughborough University Ethical Advisory Committee. During the protocol
implementation, a reference of HR was recorded using a Polar Bluetooth®
Smart chest strap (Polar, Electro, Kempele, Finland)) [27]. RR was also
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determined using a VyntusTM CPX Metabolic cart (JAEGER(TM) Vyn-
tus(TM) CPX, Carefusion, Germany). The OEPS sensor with 3-axis accel-
eration as a MA reference was placed on the subject thumb. During data
recording, the subjects performed the following exercises: 1) cycling at four
different levels of resistance 2) walking, and 3) running on a treadmill at
different speeds . In these designated exercises, the female subjects cycled
at 60, 90, 120 and 150 watts and the male subjects cycled at 90, 120, 150
and 180 watts, and all subjects walked or ran on a treadmill at 3, 6, 9 and
12 km/h for 4 min at each intensity with 1 min rest before the exercise in-
tensity was increased. Fig.6 displays several subjects with the actual testing
environment and equipment.

The IEEE-SPC database comprises of PPG signals of 5-minute duration
from 12 healthy subjects aged 18 to 35 [20]. The dataset for each subject
comprises one channel of PPG signals obtained from the OEPS corresponding
with green LEDs (illumination wavelength: 525 nm), the 3-axis acceleration
signals from the wrist, and the ECG signal from the chest using wet ECG
sensors. During data recording, the subjects walked or ran on a treadmill
with the following speeds in order: the running exercise at a speed of 6 km/h
for a period of 60 s; again, the faster running exercise at a speed of 12 km/h
for a period of 60 sec; the running exercise at a speed of 6 km/h for a period
of 60 sec; then the faster running exercise at a speed of 12 km/h for a period
of 60 sec and take 30 sec break.

4 stages of cycling in 1
st
  session:

Female: 60 90 120 150watts

Male: 90 120 150 180watts

4 stages of treadmill exercise in 2nd session:

3km/h(4min) rest(1min) 6km/h(4min)

rest(1min) 9km/h(4min)  

rest(1min) 12km/h(4min)

4 stages of cycling in 1
st
  session:

Female: 60 90 120 150watts

Male: 90 120 150 180watts

4 stages of treadmill exercise in 2nd session:

3km/h(4min) rest(1min) 6km/h(4min)

rest(1min) 9km/h(4min)  

rest(1min) 12km/h(4min)

Fig. 6. Illustration of the exercise protocol during multi-stage cycle (1st session) and
treadmill (2nd session) tests. The location of mOEPS sensor and respiration rate mea-
surement sensor.
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3. Results of Physiological Monitoring

3.1. Results Analysis

The results of continuous HR and RR monitoring of two different subjects
in LU-Db dataset are presented by the ANF in Fig.7(a), Fig.7(b), Fig.8(a)
and Fig.8(b). The ground-truth HR generated by the chest strap and the
reference RR measured by the metabolic cart are also shown in Figs 7 and 8.
It is observed that, for the ANF, the RR and HR performance is very robust,
and highly accurate in tracking the reference RR and actual HR. In Fig.7, the
blue shaded area represents the average RR at different exercise intensities,
and it can be observed that the average RR increases as the motion intensity
increases.

60w 90w 120w
rest rest rest

rest 6km/h rest 12km/h

Fig. 7. RR calculation results on two subjects chosen LU-Db datasets. (a) The results
of subject F03 in 1st session. (b) The results of subject M08 in 2nd session

Fig.9 and Fig.10 show that the detailed PPG signals in the time-domain
correspond to the different motion intensity points as shown in Fig.8(a) and
(b). (a1) is selected from the motion section with an intensity of 3km/h.
Again, (a2), (a3) and (a4) are selected from running sessions at intensities
of 6km/h, 9km/h and 12km/h respectively. (b1), (b2), (b3) and (b4) are
chosen in the same way.

Table 1 expresses the average absolute error (ε1) and the average error
percentage (ε2) for 12 subjects from the LU-Db datasets, 1st and 2nd sessions
are listed, respectively. Satisfactory results are attained by using the ANF. In
the 1st session, through an average of all 12 subjects’ recordings, the average
ε1 = 1.07 ± 0.17 beats/min (mean ± std), and the average ε2 = 1.04%.
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60w 90w 120w 150w
rest rest rest rest

b1

b2

b3 b4

60w 90w 120w 150w
rest rest rest rest

b1

b2

b3 b4

a1

a2

a3

a4

3km/h 6km/h rest 9km/h rest

a1

a2

a3

a4

3km/h 6km/h rest 9km/h rest

(a) (b)

Fig. 8. HR calculation results on two subjects chosen LU-Db datasets. (a) The results
of subject F03 in 1st session. (b) The results of subject M08 in 2nd session

Fig. 9. Detailed PPG signals in the time domain correspond to different points in Fig.8(a).

Furthermore, in the 2nd session, the average ε1 is 1.50±0.28 beats/min (mean
± std), and the average ε2 is 1.26%. The Bland-Altman plot between the
ground-truth HR (ECG) and the calculated HR (PPG) is shown in Fig.11(b).
The Limit of Agreement (LOA) is [-5.54, 6.19] beats/min with standard
deviation σ : 2.99 in the two sessions, and 95% of all differences are inside
this range. Fig.11(a) illustrates the scatter plot between the ground-truth
HR and the related estimates on 12 subjects in LU-Db with the Pearson
Correlation r : 0.9953.

Table 2 illustrates the ε1 values of RR in the 1st and 2nd sessions for
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Fig. 10. Detailed PPG signals in the time domain correspond to different points in
Fig.8(b).

Subj F01 F02 F03 M04 M05 M06 M07 M08 M09 M10 M11 M12
1st ε1 0.91 1.16 1.15 0.93 1.01 1.25 1.04 0.73 1.21 1.32 1.22 0.93

ε2 0.72 1.10 0.99 0.97 0.79 1.18 1.07 0.91 1.12 1.37 1.40 0.88
2nd ε1 1.52 1.47 1.16 1.35 1.31 1.37 1.37 1.49 1.27 2.19 1.67 1.78

ε2 1.08 1.03 0.90 1.02 1.10 1.05 1.18 1.48 1.02 2.11 1.58 1.60

Table 1: Average Absolute Error (ε1) (in beats/min) and Average Absolute Error Per-
centage (ε2(%)) on all 12 subjects (F-female, M-male) of LU-Db with different sessions.

12 subjects, and average ε1 in different sessions are 2.56 ± 0.34 (mean ±
std) and 2.99 ± 0.15 (mean ± std) breaths/min, respectively. Fig. 12(a)
displays the scatter plot between the ground-truth and calculated RR on 12
subjects in LU-Db with the Pearson Correlation r : 0.9269. Additionally, the
Bland-Altman plot is applied for all 12 subjects, is given in Fig. 12(b). The
LOA between the ground-truth and the calculated RR data is [-6.41, 6.87]
breath/min.

Subj F01 F02 F03 M04 M05 M06 M07 M08 M09 M10 M11 M12
1st ε1 3.07 2.16 2.25 2.81 2.41 3.16 2.24 2.17 2.65 2.79 2.47 2.64
2nd ε1 2.94 2.95 2.72 2.81 3.17 3.23 3.17 3.09 2.96 3.01 2.86 3.02

Table 2: Average Absolute Error (ε1) (in breaths/min) on all 12 subjects (F-female, M-
male) of LU-Db datasets with different sessions.
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Fig. 11. HR calculation results on 12 subjects of LU-Db with 1st and 2nd sessions (BPM:
beats/min). (a) Pearson correlation plot. (b) Bland-Altman plot.

(b)(a)

Pearson Correlation r = 0.9269

Mean + 1.96Std

Mean - 1.96Std

(b)(a)

Pearson Correlation r = 0.9269

Mean + 1.96Std

Mean - 1.96Std

Fig. 12. RR calculation results on 12 subjects of LU-Db with 1st and 2nd sessions. (a)
Pearson correlation plot. (b) Bland-Altman plot.

3.2. Results Comparison

To better represent the performance of the ANF, the IEEE-SPC dataset
is adopted as a benchmark for comparison of the proposed algorithm with
other recently reported algorithms as shown in Table 3. It is observed that
the ANF performance exceeds that of the other algorithms in terms of overall
mean error (ε1). Table 4 shows that the ANF has fewer tunable parameters
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compared to other algorithms listed. Fewer user-tunable parameters could
simplify the complexity of the algorithm and improve the generalization per-
formance on other datasets.

Subject TROIKA
[20]

Wang
[24]

MUARD
[16]

Zhao.
[6]

Arunkumar
et al. [28]

Zhang.
[29]

ANF

1 2.29 1.09 1.17 1.23 1.13 2.06 1.08
2 2.19 0.87 0.93 1.51 0.87 3.59 0.94
3 2.00 1.20 0.70 1.19 0.73 0.92 0.74
4 2.15 0.81 0.82 0.92 0.95 1.54 0.75
5 2.01 0.67 0.88 0.61 0.85 0.97 0.69
6 2.76 1.15 0.97 0.78 0.94 1.64 0.89
7 1.67 0.73 0.67 0.48 0.66 2.25 0.73
8 1.93 0.49 0.74 0.56 0.70 0.63 0.60
9 1.86 0.34 0.49 0.49 0.59 0.62 0.61
10 4.70 2.06 2.69 3.81 3.94 4.62 1.94
11 1.72 0.87 0.81 0.78 1.01 1.30 0.92
12 2.84 0.78 0.77 1.04 0.95 1.80 0.99
Mean 2.32 0.92 0.97 1.06 1.11 1.83 0.91
(Std) (0.84) (0.44) (0.57) (0.91) (0.90) (1.21) (0.36)

Table 3: Average Absolute Error (ε1) (in beats/min) on the IEEE-SPC of the ANF along
with the same of other recently reported results.

Tunable threshold TROIKA
[20]

Wang
[24]

MUARD
[16]

Zhao.
[6]

Arunkumar
et al. [28]

Zhang.
[29]

ANF

MA-Removal >10 5 6 >10 >10 6 4
HR tracking and validation >10 4 2 2 3 2 2

Table 4: The number of user-tunable parameters in MA-removal and HR tracking and
validation steps.

3.3. Feasibility of Real-time Signal Processing

To perform the ANF algorithm in the near-real-time situation, the mem-
ory size of the embedded system is considered to be a crucial indicator to
evaluate the algorithm portability. The computational complexity depends
more on the FFT operation in ANF algorithm. Specifically, the ANF adopted
four NFFT -point FFTs with zero padding operations, i.e., ACC spectrum,
PPG spectrum, HR calculation and RR calculation, and NFFT -point was
set 8192. According to the actual embedded memory and clock cycle, tak-
ing ARM Cortex-M4 as an example, it supports a maximum of 1024-point
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FFT operations and the required block size is 139,898 bytes. ANF with
8192-point FFT cannot meet the computing and memory requirements of
embedded systems. Thus, ANF with 1024-point FFT would be applied to
achieve the near-real-time signal processing through the downsampling. In
other words, the sampling rate of LU-Db dataset is 256 Hz, which means that
the 2560 samples would be collected in each 10s sliding window. In order to
meet the actual embedded memory requirements, the sampling rate needs
to be reduced to 64 Hz to perform the 1024-point FFT operation. There-
fore, four 1024-point FFTs required 4 ∗ 139898 ≈ 0.5M clock cycles, and the
ARM Cortex-M4 can run at 100 MHz that means a hundred FFTs is not
much of a problem. The comparison result of ANF with 1024-point FFT and
8192-point FFT is as follows.

(a) (b)

Fig. 13. The comparison result of ANF with 1024-point FFT and 8192-point FFT on
M011 subject chosen LU-Db datasets. (a) ANF with 8192-point FFT. (b) ANF with
1024-point FFT.

4. Discussion

Although the acceleration-based adaptive filter could improve the accu-
racy of HR calculation, such adaptive filters are still dependent on the signal
quality of the reference acceleration signal [28]. The previous study [19] had
addressed this issue by proposing the bandstop filter based on the 3-axis
acceleration reference, the work was mainly proposed to address the motion
scenarios with lower intensity. The ANF described in the present study has
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effectively removed MAs and recovered cleansed PPG signals using a refer-
ence signal from the 3-axis accelerometer at different motion intensities. In
spite of the application of bandstop or notch filters, in noise-free PPG signal
extraction, having been used before [1] [24], the calculation accuracy still
needs to be improved. In this study, the proposed solution creates a algo-
rithm to accurately extract HR and RR, and provides a flexible combination
of the notch filter to retain physiological information in these PPG signal
datasets, making it easier to extract accurate physiological parameters. At
this point, ANF could represent an improved solution for embedded, real-
time, wearable detection devices due to the low complexity.

Compared with other algorithms, the ANF has an improved HR/RR
calculation performance. Specifically, the adaptability of the ANF gives it an
advantage for removing MAs in different motion intensities, much superior
to fixed bandstop filters [1]. Table 3 presents the better performance of ANF
for the IEEE-SPC dataset. Although the average error result of the ANF
is only marginally better (0.01 beats/min) than method in [24], the error
between datasets (std) is lower than in [24]. Additionally, the ANF shows it
is capable of extracting accurate HR at four stages of increasing intensity on
a cycle ergo-meter and a treadmill compared to standard commercial devices.

Conversely, the accuracy of RR extraction has a larger ε1 compared to
the HR measurement, which is 2.56 ± 0.34 and 2.99 ± 0.15 breaths/min in
cycling and treadmill exercises with different motion intensities. On the
other hand, the RR is located in a much lower frequency range (0.1–1.0 Hz),
and it is more susceptible to interference from MAs than HR measurement
[30]. As shown in Fig.7, the measured RR was broadly consistent with the
reference RR trend, and it also shows the stepwise increase with increasing
exercise intensity. Again, to make the ANF algorithm more lightweight, a
low-complexity and efficient method is adopted for RR extraction, but it
could reduce the extraction accuracy.

Furthermore, the methods as reported in Table 4 follows a number of
heuristic rules and thresholds. For instance, the MA removal as presented
in [20], [24], [16], [6], [28] and [29] requires several and defined parameters.
Increasing the tunable parameters of designated algorithms could lead to an
improved performance but it could increase complexity of signal processing
and lead a risk of poor generalization on physiological monitoring datasets
with MAs. Although the present ANF runs on a PC, its performance has
demonstrated that the ANF could be easily deployed onto a wearable em-
bedded platform in consolidating with the mOEPS.
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5. Conclusion

This study has demonstrated that the ANF that has been developed can
accurately remove of MAs allowing for the extraction of two physiological
parameters, i.e., HR and RR, for health monitoring during physical activ-
ity/exercise, by the utilization the mOEPS.

The ANF processing procedures, as described in the section on Methodol-
ogy and Materials, demonstrates the removal of MA using a low complexity
and intuitive method, thus making real-time signal processing achievable.
With the ANF, the AMAF plays a critical role in removing out-of-band
noise, and the adaptive notch filter works on the removal of in-band noise by
the means of 3-axis acceleration reference. HR and RR, as critical physio-
logical parameters, are obtained with a sliding time window, thus recovering
the distinctive PPG signals.

The proposed ANF has been applied to the LB-Db and IEEE-SPC datasets
to deliver improved accuracy for HR and RR readings compared to other
methods in the literature. These results have illustrated that the ANF could
effectively recover the desired PPG signals with apparent features, in real-
time, even when the subject was exercising at different intensities.
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