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1 Proofs of Theorems

1.1 Proof of Theorem 1

Let us first formulate g(σx̃y, C) as a function of γ and λ:

g(γ, λ) =
γ′Dλγγ

′D−1λ γ

(γ′γ)2
=

∑p
j=1 λjγ

2
j

∑p
j=1

γ2j
λj(∑p

j=1 γ
2
j

)2 ,

g(γ, λ) =
λ′(γ � γ).(λ�−1)′(γ � γ)

(γ � γ)′(γ � γ)
, (1)

where λ�−1 = (1/λ1, . . . , 1/λp)
′ and � is the term-by-term product of two vectors of equal

dimension.
A sharp upper bound for g(γ, λ) over all possible γ is deduced from expression (1) by

equating to zero the derivative of g(γ, λ) with respect to γ � γ:

g(γ, λ) ≤ v(λ)′λ.v(λ)′λ�−1 = gmax(λ),

1



where v(λ) denotes the eigenvector associated to the only positive eigenvalue of the matrix
λλ�−1

′
+ λ�−1λ′ with v(λ)′v(λ) = 1.

Indeed, since

λλ�−1
′
+ λ�−1λ′ =

1

2
[λ+ λ�−1, λ− λ�−1]

(
1 0
0 −1

)
[λ+ λ�−1, λ− λ�−1]′,

then λλ�−1
′

+ λ�−1λ′ can only have one positive eigenvalue and the coordinates of the
corresponding eigenvector v(λ) are all positive.

Moreover, for any vector γ with only one nonzero coordinate, the corresponding value
of g(γ, λ) equals one.

1.2 Proof of Theorem 2

First, let us reformulate expression (10) in the main paper of β̂κ by introducing the condi-
tional covariance matrix S:

D−1s SxD
−1
s + κIp = D−1s SD−1s +

D−1s sxys
′
xyD

−1
s

s2y
+ κIp,

= Ĉ +
D−1s sxys

′
xyD

−1
s

s2y
+ κIp.

Using the Sherman-Morrison identity (see Hager (1989), equation (2)),

(D−1s SxD
−1
s + κIp)

−1 = (Ĉ + κIp)
−1 −

(Ĉ + κIp)
−1D−1s sxys

′
xyD

−1
s (Ĉ + κIp)

−1

s2y + s′xyD
−1
s (Ĉ + κIp)−1D−1s sxy

.

Expression (10) of β̂κ can therefore be reformulated as follows:

β̂κ =
s2y

s2y + s′xyD
−1
s (Ĉ + κIp)−1D−1s sxy

(Ĉ + κIp)
−1D−1s sxy.

It is deduced that β̂κ and (Ĉ + κIp)
−1D−1s sxy are collinear, which also implies that:

LRidge(X, κ) ≡ (X − X̄)′D−1s (Ĉ + κIp)
−1D−1s sxy.

Introducing the eigendecomposition of Ĉ leads to:

LRidge(X, κ) ≡ (X − X̄)′D−1s ÛDκ
−1Û ′D−1s sxy,

where Dκ is the p× p diagonal matrix which vector of diagonal entries is λ̂+ κ1p. Finally,

LRidge(Ẑ, κ) ≡ Ẑ ′D−1κ γ̂.

Therefore, up to a scaling factor, LRidge(Ẑ, κ) belongs to L:

LRidge(Ẑ, κ) ≡ h′κξ(Ẑ),
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where the first q coordinates of the weighting vector hκ are

hi,κ =

1

λ̂i+κ√∑q
j=1

1

(λ̂j+κ)2
+ p−q

κ2

, i = 1, . . . , q,

and the last p− q coordinates are all equal to:

hi,κ =
1
κ√∑q

j=1
1

(λ̂j+κ)2
+ p−q

κ2

, i = q + 1, . . . , p.

As a consequence, LRidge ⊂ L. Moreover, it is straightforwardly checked that limκ→+∞ hκ =

(1/
√
p)1p and limκ→0 hκ = λ̂�−1/

√
λ̂�−1′λ̂�−1.

1.3 Proof of Theorem 3

First, the following lemma is needed.

Lemma 1 Let v be a p-vector, with p ≥ 1. Let V be a p× p positive definite matrix. For
all m ≥ 1, Km(V ; v) = Km(V − vv′; v).

Proof : We start by showing using induction that Km(V ; v) ⊆ Km(V − vv′; v). First,
V v ∈ span {v, (V − vv′)v}, since V v = vv′v + (V − vv′)v = (v′v)v + (V − vv′)v.

Let us now assume that the claim holds at rank m: there exist linear coefficients
a0, a1 . . . , am such that V mv =

∑m
i=0 ai(V − vv′)iv. Then,

V m+1v = ((V − vv′) + vv′)
m∑
i=0

ai(V − vv′)iv,

=
m∑
i=0

ai(V − vv′)i+1v + v
m∑
i=0

aiv
′(V − vv′)iv,

=
m∑
i=0

ai(V − vv′)i+1v + (V − vv′)0v
m∑
i=0

bi,

where bi = aiv
′(V − vv′)iv ∈ R. Consequently, the claim still holds at rank m+ 1.

We now show by induction that Km(V ; v) ⊇ Km(V −vv′; v). First, (V −vv′)v ∈ span{v, V v}
since (V − vv′)v = V v − vv′v = V v − (v′v)v.

Let us assume that the claim holds at rankm: there exist linear coefficients a0, a1 . . . , am
such that (V − vv′)mv =

∑m
i=0 aiV

iv. Then,

(V − vv′)m+1v = (V − vv′)
m∑
i=0

aiV
iv,

=
m∑
i=0

aiV
i+1v − v

m∑
i=0

aiv
′V iv,

=
m∑
i=0

aiV
i+1v − V 0v

m∑
i=0

bi,
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where bi = aiv
′V iv ∈ R. Consequently, the claim still holds at rank m + 1. Finally,

Km(V ; v) = Km(V − vv′; v).

We now give a proof for the main result. First, it is deduced from Lemma 1 that
Km(D−1s SxD

−1
s ;D−1s sxy) = Km(Ĉ = D−1s SD−1s ;D−1s sxy). Therefore, there exist linear coef-

ficients b1, . . . , bm, such that β̂PLS,m can be expressed as follows:

β̂PLS,m =
m∑
i=1

biĈ
i−1D−1s sxy,

The corresponding PLS prediction score is deduced:

LPLS(X;m) ≡ (X − X̄)′D−1s β̂PLS,m,

≡ (X − X̄)′D−1s

( m∑
i=1

biĈ
i−1
)
D−1s sxy. (2)

Introducing the eigendecomposition of Ĉ leads to:

LPLS(X;m) ≡ (X − X̄)′D−1s ÛDbÛ
′D−1s sxy,

≡ Ẑ ′Dbγ̂,

where Db is the p × p diagonal matrix whose diagonal entries are the coordinates of the
p-vector hb = (

∑m
i=1 biλ̂

i−1
1 , . . . ,

∑m
i=1 biλ̂

i−1
m , 0, . . . , 0)′. Finally, up to a scaling factor,

LPLS(X;m) belongs to L:

LPLS(Ẑ;m) ≡ hb
′ξ(Ẑ).

In the special case where m = 1, expression (2) simplifies:

LPLS(X;m) ≡ (X − X̄)′D−1s D−1s sxy,

≡ LN(Ẑ).

1.4 Proof of Theorem 4

For all j = 1, . . . , p, the jth coordinate Ẑj γ̂j of the vector ξ(Ẑ), where � stands for the
term-by-term product of two vectors with equal dimension, has the following conditional
expectation:

E[Ẑj γ̂j | Y, S, sxy, X̄] = γ̂jE[Ẑj | Y, S, sxy, X̄],

= γ̂jE[Û ′jD
−1
s (X − X̄) | Y, S, sxy, X̄]

= γ̂jÛ
′
jD
−1
s (µx − X̄)− Y−µy

σ2
y
γ̂jÛ

′
jD
−1
s σxy.

Hence,

E[ξ(Ẑ) | Y, S, sxy, X̄] = Dγ̂Û
′D−1s (µx − X̄)− Y − µy

σ2
y

Dγ̂Û
′D−1s σxy, (3)
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where Dγ̂ is the p × p diagonal matrix which diagonal entries are the coordinates of γ̂.
Then,

E[ξ(Ẑ) | S, sxy, X̄] = Dγ̂Û
′D−1s (µx − X̄). (4)

Since X̄ is independent of both S and sxy, the conditioning can be reduced to S and sxy:

E[ξ(Ẑ) | S, sxy] = 0.

We finally get E[ξ(Ẑ)] = 0.

Similarly, the vector ξ(Ẑ) has the following conditional variance:

Var(ξ(Ẑ) | Y, S, sxy, X̄) = Dγ̂Û
′D−1s ΣD−1s ÛDγ̂. (5)

It is deduced from expressions (3) and (5) that:

Var(ξ(Ẑ) | S, sxy, X̄) = E[Var(ξ(Ẑ) | Y, S, sxy, X̄)] + Var[E(ξ(Ẑ) | Y, S, sxy, X̄)],

= Dγ̂Û
′D−1s ΣxD

−1
s ÛDγ̂. (6)

Similarly, it is deduced from expressions (4) and (6) that:

Var(ξ(Ẑ) | S, sxy) =
n+ 1

n
Dγ̂Û

′D−1s ΣxD
−1
s ÛDγ̂,

=
n+ 1

n
Û ′D−1s ΣxD

−1
s Û � (γ̂γ̂′). (7)

Since Var(ξ(Ẑ) | S) = E[Var(ξ(Ẑ) | S, sxy) | S] + Var(E[ξ(Ẑ) | S, sxy] | S) and, as shown

previously, E[ξ(Ẑ) | S, sxy] = 0, then it can be deduced from expression (7) that:

Var(ξ(Ẑ) | S) = n+1
n
Û ′D−1s ΣxD

−1
s Û � E[γ̂γ̂′ | S].

Now,
E[γ̂γ̂′ | S] = E[Û ′D−1s sxys

′
xyD

−1
s Û | S]

= Û ′D−1s E[sxys
′
xy | S]D−1s Û

= Û ′D−1s E[sxys
′
xy]D

−1
s Û

= Û ′D−1s (Var(sxy) + σxyσ
′
xy)D

−1
s Û .

It is now recalled (Christensen, 2015) that Var(sxy) = (σ2
yΣx + σxyσ

′
xy)/(n − 1). Conse-

quently:
E[γ̂γ̂′ | S] = 1

n−1σ
2
yÛ
′D−1s ΣxD

−1
s Û + n

n−1 Û
′D−1s σxyσ

′
xyD

−1
s Û .

The final expression for Var(ξ(Ẑ)) is obtained by noticing that, since E[ξ(Ẑ) | S] = 0:

Var(ξ(Ẑ)) = E[Var(ξ(Ẑ)) | S].

Finally, since Cov(ξ(Ẑ), Y | Y, S, sxy, X̄) = 0, it is deduced from expression (4) that:

Cov(ξ(Ẑ), Y | S, sxy, X̄) = E[Cov(ξ(Ẑ), Y | S, sxy, X̄)] +

Cov[E(ξ(Ẑ) | S, sxy, X̄), E(Y | S, sxy, X̄)],

= Dγ̂Û
′D−1s σxy.
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Consequently,
Cov(ξ(Ẑ), Y | S, sxy) = Dγ̂Û

′D−1s σxy.

Similarly, since E[Y | S, sxy] = µy, then Cov[E(ξ(Ẑ) | S, sxy), E(Y | S, sxy)] = 0 and:

Cov(ξ(Ẑ), Y | S) = E[Dγ̂

(
Û ′D−1s σxy

)
| S]

=
(
Û ′D−1s σxy

)�2
.

The final expression for Cov(ξ(Ẑ), Y ) is obtained by noticing that E[ξ(Ẑ) | S] = 0:

Cov(ξ(Ẑ), Y ) = E[Cov(ξ(Z), Y | S)].

2 Simple comparative study in Witten and Tibshirani

(2009)’s simulation setup

Witten and Tibshirani (2009) introduce a toy simulation setup to demonstrate the estima-
tion accuracy of linear regression model parameters by the scout method. A similar setting
is used hereafter to compare the prediction performance of five prediction scores within
L: the OLS, Naive, Ridge, PLS prediction scores and the proposed adaptive regression
method. Additionally, two alternative methods are introduced in the comparative study:
scout(1,1), with `1-penalized estimation of both the partial correlation matrix and the
regression coefficients, as in Witten and Tibshirani (2009) for the same simulation setting,
and Principal Component Regression (PCR), identified in Section 3 of the main document
as being out of L. When needed, hyperparameters (Ridge, PLS, PCR, Scout and proposed
method) are optimized using a 10-fold cross validation procedure. The PLS and PCR meth-
ods are implemented using the R package pls (Mevik et al., 2020), the Ridge method using
the R package glmnet (Friedman et al., 2010) and the Scout method using the R package
scout (Witten and Tibshirani, 2015). The proposed Adaptive method is implemented
using the R package AdaptiveRegression, available at https://github.com/fhebert.

All simulated datasets have n = 20 observations on p = 19 normally distributed ex-
planatory variables with mean 0 and standard deviations 1. The first 10 variables have
correlation 0.9 with each other (in Witten and Tibshirani (2009) this equicorrelation pa-
rameter is 0.5); the rest are uncorrelated. The response variable Y is generated under the
model Y = Xβ + ε, where:

• βj = j for j ≤ 10 and βj = 0 for j > 10 (scenario 1 as in Witten and Tibshirani
(2009)),

• βj = 0 for j ≤ 10 and βj = p− j for j > 10 (scenario 2),

and where ε ∼ N (0; 25). In addition, β is multiplied by a constant so that the asymptotic
squared correlation between the response and the prediction score is 0.8 (arbitrarily chosen).

For each simulation scenario, 1,000 training datasets are randomly generated. For
each training dataset, a test dataset with 1,000 individuals is generated following the same

6
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Table 1: Simulation study results: mean squared correlations between the response ob-
served on the test dataset and seven prediction scores under each scenario (values between
parentheses are the corresponding standard deviations)

Scenario 1 Scenario 2
Within L OLS 0.30 (0.17) 0.28 (0.17)

Naive 0.79 (0.01) 0.23 (0.18)
Ridge 0.73 (0.08) 0.55 (0.15)
PLS 0.66 (0.30) 0.22 (0.27)

Adaptive 0.76 (0.08) 0.52 (0.16)
Out of L Scout 0.76 (0.05) 0.54 (0.13)

PCR 0.68 (0.27) 0.21 (0.25)

simulation scheme. Table 1 reproduces the mean squared correlations between the response
observed on the test dataset and the seven prediction scores.

In the first scenario, the seven prediction methods can be grouped as follows, regard-
ing their prediction performance: a first group composed of Naive, Adaptive and Scout

showing the best prediction performance (0.76 ≤ R2 ≤ 0.79), Ridge (with R2 = 0.73), a
group composed of PCR and PLS showing markedly lower prediction performance (0.66 ≤
R2 ≤ 0.68) and OLS being clearly outperformed.

In the second scenario, the composition of the groups of methods regarding their pre-
diction performance is changed: a group composed of Ridge, Scout and Adaptive showing
the best prediction performance (0.52 ≤ R2 ≤ 0.55) and a group composed of OLS, Naive,
PLS and PCR with poor prediction performance (0.21 ≤ R2 ≤ 0.28).

This simple example, with a limited simulation setup, demonstrates that, with the same
dependence across explanatory variables, some prediction methods can show very different
prediction performance, here Naive, PLS, PCR, depending on the pattern of association
with the response variable. Others, including Adaptive and Scout remain among the best
methods in the two scenarios.

The simulation study above is completed in Section 5 of the main document by more
intensive simulations and a comparison using two public datasets.

3 Data-driven simulation study in Section 5.1

Detailed results of the data-driven simulation study introduced in Section 5.1 of the main
paper are given below. Tables 2 to 5 give the average MSEP of the nine prediction meth-
ods over 1,000 generations of training and test datasets in each of the sixteen simulation
scenario (four marginal distributions of explanatory variables and conditional distributions
of response and four vectors of regression parameters).
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Table 2: Average MSEP of each method for each distribution under scenario 1 over 1,000
simulations (with corresponding standard deviations in brackets). Values in bold indicate
the best prediction performance.

Normal T5 χ2
5 F10,10

Within L

OLS
42.90 63.21 37.36 158.85
[11.88] [22.29] [10.22] [251.58]

Naive
342.1 370.08 385.2 572.87
[27.80] [41.79] [40.75] [192.03]

Ridge
142.16 176.48 188.79 329.81
[12.12] [17.92] [20.91] [80.33]

PLS
14.18 32.41 22.09 68.97
[1.89] [9.81] [4.72] [45.77]

Adaptive
12.02 20.60 16.28 38.19
[2.62] [7.67] [4.24] [20.38]

Out of L

Lasso
28.21 33.99 27.47 58.46
[5.32] [10.32] [7.68] [42.57]

PCR
15.21 33.87 23.88 70.79
[2.82] [10.12] [5.15] [37.58]

SLM
30.36 62.19 57.81 175.3
[3.80] [12.70] [9.87] [77.34]

Scout
29.76 50.17 45.79 98.30
[3.73] [8.97] [8.18] [39.59]
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Table 3: Average MSEP of each method for each distribution under scenario 2 over 1,000
simulations (with corresponding standard deviations in brackets). Values in bold indicate
the best prediction performance.

Normal T5 χ2
5 F10,10

Within L

OLS
45.33 63.27 36.80 102.53
[13.64] [24.90] [9.62] [51.67]

Naive
111.81 137.58 132.12 199.59
[5.98] [12.70] [7.29] [23.15]

Ridge
73.78 94.32 87.94 139.57
[4.79] [8.03] [6.37] [16.26]

PLS
9.96 18.27 14.40 29.12
[1.26] [4.30] [3.38] [10.86]

Adaptive
12.14 19.10 15.62 27.27
[2.21] [5.80] [3.54] [8.74]

Out of L

Lasso
25.31 41.16 38.67 78.51
[2.70] [8.26] [3.89] [14.74]

PCR
10.44 18.67 14.71 28.70
[1.28] [4.08] [2.48] [10.04]

SLM
13.83 28.94 25.67 65.26
[1.23] [5.56] [3.73] [17.28]

Scout
15.12 27.86 25.03 48.01
[1.48] [4.09] [2.90] [9.41]
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Table 4: Average MSEP of each method for each distribution under scenario 3 over 1,000
simulations (with corresponding standard deviations in brackets). Values in bold indicate
the best prediction performance.

Normal T5 χ2
5 F10,10

Within L

OLS
219.97 305.29 177.09 486.53
[74.81] [100.33] [53.37] [313.82]

Naive
519.34 551.6 578.52 765.47
[23.85] [33.63] [35.96] [243.59]

Ridge
362.49 397.27 405.23 529.62
[19.66] [29.29] [29.21] [118.93]

PLS
40.28 56.45 48.69 72.42
[4.35] [19.67] [8.66] [21.28]

Adaptive
33.11 37.16 35.48 38.97
[6.5] [9.28] [6.43] [10.14]

Out of L

Lasso
26.34 26.70 26.44 26.68
[1.07] [1.51] [1.37] [2.26]

PCR
41.85 57.11 51.43 72.79
[5.15] [15.33] [11.09] [21.48]

SLM
49.01 77.11 69.89 153.51
[6.04] [24.38] [16.64] [74.05]

Scout
34.57 34.94 34.67 37.67
[4.16] [4.46] [5.44] [12.20]
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Table 5: Average MSEP of each method for each distribution under scenario 4 over 1,000
simulations (with corresponding standard deviations in brackets). Values in bold indicate
the best prediction performance.

Normal T5 χ2
5 F10,10

Within L

OLS
121.89 216.65 126.39 124.95
[40.82] [75.46] [33.61] [71.22]

Naive
841.64 1080.69 1142.36 499.88
[37.88] [98.60] [51.27] [85.45]

Ridge
482.81 708.57 787.11 385.22
[27.93] [56.82] [44.30] [68.95]

PLS
44.57 119.84 76.06 52.59
[8.62] [35.92] [14.51] [19.95]

Adaptive
47.54 110.49 80.89 53.67
[11.01] [31.35] [16.92] [16.67]

Out of L

Lasso
87.14 189.41 149.99 84.85
[13.01] [33.04] [21.09] [18.09]

PCR
47.49 121.43 80.69 55.06
[9.29] [30.00] [16.28] [14.96]

SLM
86.97 223.57 190.66 137.13
[9.49] [45.27] [33.19] [44.18]

Scout
80.10 183.38 152.6 82.13
[8.31] [36.19] [18.32] [16.02]
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4 Additional simulation study with synthetic depen-

dence patterns

A complementary simulation study is conducted in order to compare the prediction perfor-
mance of the same nine methods as introduced in Section 5.1. of the main paper, in a wide
scope of situations regarding the dimension of the regression parameter (n/p), the vector
of regression coefficients and various synthetic patterns of dependence across explanatory
variables. Six scenarios are considered, with a single response variable, normally distributed
with mean x′β and standard deviation 1. The p–profile x of explanatory variables is nor-
mally distributed with mean 0 and variance-covariance matrix Σx with all diagonal entries
equal to one. For each scenario, the training sample size n and the nonzero entries in β
and Σx are given below:

• Scenario 1: n = 25, p = 500 (n/p = 0.05)

◦ For j = 1, . . . , 20, βj = −j (sparsity rate: 0.96).

◦ For i, j = 1, . . . , 250, i 6= j,
[
Σx

]
ij

= 0.9. For i, j = 251, . . . , 400, i 6= j,[
Σx

]
ij

= 0.5.

• Scenario 2: n = 25, p = 300 (n/p = 0.08)

◦ For j = 131, . . . , 170, βj = 1. (sparsity rate: 0.87)

◦ Let B stand for the p × 5 matrix whose nonzero coefficients are as follows: for
i = 1, . . . , 100, Bi1 = 1, for i = 51, . . . , 150, Bi2 = −1, for i = 101, . . . , 200,
Bi3 = 1, for i = 151, . . . , 250, Bi4 = −1, for i = 201, . . . , 300, Bi5 = 1. Σx

is obtained by scaling rows and columns of 0.01Ip + BB′, so that the diagonal
entries of Σx are all equal to one.

• Scenario 3: n = 75, p = 100 (n/p = 0.75)

◦ For j = 1, . . . , 50, βj = 1, for j = 51, . . . , 100, βj = −1 (sparsity rate: 0)

◦ For i, j = 1, . . . , 100,
[
Σx

]
ij

= 0.9|i−j|.

• Scenario 4: n = 100, p = 200 (n/p = 0.50)

◦ For j = 1, . . . , 50, βj = j − 1, for j = 51, . . . , 100, βj = 101 − j (sparsity rate:
0.50)

◦ Let Σ1 denote the following 5×5 matrix: for i, j = 1, . . . , 5,
[
Σ1

]
ij

= 0.9|i−j|. Let

Σ2 denote the following 40× 40 matrix: for i, j = 1, . . . , 40, i 6= j,
[
Σ2

]
ij

= 0.5

and for all i = 1, . . . , 40,
[
Σ2

]
ii

= 1. Then, Σx = Σ1 ⊗ Σ2, where ⊗ stands for
the Kronecker product of matrices.

• Scenario 5: n = 25, p = 300 (n/p = 0.08)

◦ For j = 121, . . . , 180, βj = j − 120 (sparsity rate: 0.80)
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Figure 1: Simulation scenario 1: image plot of the variance-covariance matrix of the ex-
planatory variables (left plot) and vector of regression coefficients (right plot).

◦ Let Σ1 denote the following 15×15 matrix: for i, j = 1, . . . , 15,
[
Σ1

]
ij

= 0.95|i−j|.

Let Σ2 denote the following 20× 20 matrix: for i, j = 1, . . . , 20, i 6= j,
[
Σ2

]
ij

=

0.9 and for all i = 1, . . . , 20,
[
Σ2

]
ii

= 1. Then, Σx = Σ1 ⊗ Σ2.

• Scenario 6: n = 25, p = 400 (n/p = 0.06)

◦ For j = 1, . . . , 75, βj = 1 (sparsity rate: 0.81)

◦ Let B stand for the p × 5 matrix whose nonzero coefficients are as follows: for
i = 1, . . . , 150, Bi1 = 1, for i = 51, . . . , 200, Bi2 = −1, for i = 101, . . . , 250,
Bi3 = 2, for i = 151, . . . , 300, Bi4 = −2, for i = 301, . . . , 400, Bi5 = 3. Σx

is obtained by scaling rows and columns of 0.1Ip + BB′, so that the diagonal
entries of Σx are all equal to one.

Furthermore, all vectors of regression coefficients are scaled so that the ratio β′Σxβ/σ
2
y

between the variance of E(Y | X) and the variance of Y is 0.8.

Figures 1 to 6 display for each scenario an image plot of Σx and a plot of β.

For each scenario, a large dataset of 100,000 profiles of explanatory variables and cor-
responding response variable are generated. Training datasets are obtained by randomly
choosing n profiles within this population and for each training dataset, a test dataset is
obtained by randomly choosing 10,000 profiles in the rest of the population. Table 6 gives
the average MSEP of all methods over 1,000 simulations.

Similarly as in the data-driven simulation study reported in Section 5.1 of the main pa-
per, the proposed adaptive prediction method shows either the best prediction performance
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Figure 2: Simulation scenario 2: image plot of the variance-covariance matrix of the ex-
planatory variables (left plot) and vector of regression coefficients (right plot).

Figure 3: Simulation scenario 3: image plot of the variance-covariance matrix of the ex-
planatory variables (left plot) and vector of regression coefficients (right plot).
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Figure 4: Simulation scenario 4: image plot of the variance-covariance matrix of the ex-
planatory variables (left plot) and vector of regression coefficients (right plot).

Figure 5: Simulation scenario 5: image plot of the variance-covariance matrix of the ex-
planatory variables (left plot) and vector of regression coefficients (right plot).
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Figure 6: Simulation scenario 6: image plot of the variance-covariance matrix of the ex-
planatory variables (left plot) and vector of regression coefficients (right plot).

over the nine methods or is close to the best performance, depending on the simulation
scenario. In scenario 1, with a very sparse vector of regression coefficients and two large
independent blocks of equicorrelated explanatory variables, the adaptive regression method
and the naive prediction score outperform all the other methods. Surprisingly, OLS, Ridge
and PCR show better prediction performance than the `1–penalized Scout and Lasso meth-
ods and even more clearly outperform the double-shrinkage estimation procedure SLM.

In scenario 2, where the vector of regression coefficient is also sparse, Scout, Lasso and
Ridge have the best prediction performance (with 1.26 ≤ MSEP ≤ 1.29). The OLS and
the adaptive regression method also show good prediction performance (with 1.31 ≤MSEP
≤ 1.32), much better than the rank-reduced regression methods PLS and PCR (with 2.01 ≤
MSEP ≤ 2.03).

In scenario 3, where the explanatory variables are strongly autocorrelated and the vector
of regression coefficient is dense (only nonzero coefficients), the PLS, naive and adaptive
regression methods outperform the other method. Among the regression methods based
on penalized estimation, the Scout method does clearly better that Ridge and Lasso.

In scenarios 4, 5 and 6, with moderately sparse vectors of regression coefficients and
dependent blocks of correlated explanatory variables, either obtained by a 5-factor model
(scenario 6), or Kronecker products of within-block equi- and auto-correlation variance-
covariance matrices (scenarios 4 and 5), the prediction performance of Ridge and the adap-
tive regression methods are the best. The doubly-penalized estimation method Scout also
shows a good prediction performance in scenarios 4 whereas the OLS method also reaches
the best prediction performance in scenario 6. The PLS and SLM methods are clearly
outperformed in scenarios 5 and 6.

As observed in the data-driven simulation study presented in Section 5.1 of the main
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Table 6: Average MSEP of each method for each scenarios over 1,000 simulations (values
between brackets are the corresponding standard deviations). Values in bold indicate the
best prediction performance.

Simulation scenario
1 2 3 4 5 6

Within L

OLS
1.19 1.31 3.28 2.12 1.54 1.34
[0.13] [0.21] [0.73] [0.25] [0.23] [0.22]

Naive
1.15 1.69 1.28 1.32 1.46 2.25
[0.11] [0.44] [0.15] [0.04] [0.13] [0.51]

Ridge
1.21 1.29 1.43 1.16 1.33 1.34
[0.14] [0.19] [0.13] [0.05] [0.16] [0.22]

PLS
1.41 2.03 1.27 1.28 1.91 2.43
[1.04] [1.21] [0.14] [0.10] [1.23] [1.22]

Adaptive
1.15 1.32 1.28 1.16 1.37 1.36
[0.11] [0.21] [0.15] [0.14] [0.20] [0.27]

Out of L

Lasso
1.41 1.29 1.45 1.27 1.49 1.53
[0.25] [0.21] [0.14] [0.09] [0.30] [0.29]

PCR
1.18 2.01 1.32 1.15 1.48 2.33
[0.15] [0.94] [0.19] [0.14] [0.15] [1.08]

SLM
1.99 1.81 1.38 1.79 2.18 1.94
[0.44] [0.45] [0.11] [0.16] [0.43] [0.45]

Scout
1.27 1.26 1.30 1.22 1.44 1.46
[0.17] [0.22] [0.13] [0.09] [0.33] [0.27]

paper, the relative performance of the prediction methods are highly variable depending
on the patterns of regression coefficients and dependence across the explanatory variables.
Indeed, even under assumption of a sparse regression model, penalized methods can show
poor prediction performance. Also, for strong dependence patterns across explanatory
variables, with block or factor structure, rank-reduced methods can also be outperformed.
Over the scenarios considered in the present simulation study, the adaptive regression
method turns out to show stable and among the best prediction performance, whereas all
other methods are, at least in one scenario, clearly outperformed.
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