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Abstract—Coronavirus disease 2019 (COVID-19) generated a 

global public health emergency since December 2019, causing 

huge economic losses. To help radiologists strengthen their 

recognition of COVID-19 cases, we developed a computer-aided 

diagnosis system based on deep learning to automatically classify 

chest computed tomography-based COVID-19, Tuberculosis, and 

healthy control subjects. Our novel classification model AdaD-

FNN sequentially transfers the trained knowledge of an FNN 

estimator to the next FNN estimator while updating the weights of 

the samples in the training set with a decaying learning rate. This 

model inhibits the network from remembering the noisy 

information and improves the learning of complex patterns in the 

hard-to-identify samples. Moreover, we designed a novel image 

preprocessing model F-U2MNet-C by enhancing the image 

features using fuzzy stacking and eliminating the interference 

factors using U2MNet segmentation. Extensive experiments are 

conducted on four publicly available datasets namely, TLDCA, 

UCSD-Al4H, SARS-CoV-2, TCIA, and the obtained classification 

accuracies are 99.52%, 92.96%, 97.86%, 91.97%. Our novel 

system gives out compelling performance for assisting COVID-19 

detection when compared with 22 state-of-the-art methods. We 

hope to help link together biomedical research and artificial 

intelligence and to assist the diagnosis of doctors, radiologists, and 

inspectors at each epidemic prevention site in the real world. 
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Index Terms—deep learning; ensemble models; convolutional 

neural network; COVID-19; fractional pooling; transfer learning 

I. INTRODUCTION 

ORONAVIRUS disease 2019 (COVID-19) is an 

ongoing pandemic disease caused by the SARS-CoV-2 

virus. It rapidly swept worldwide, generating a global 

public health emergency within merely one month [1, 

2]. According to the statistical data from World Health 

Organization, as of December 23, 2021, a total of 276,436,619 

COVID-19 cases have been confirmed, resulting in 5,374,744 

deaths. As the outbreak spread, many countries were affected, 

and a great deal of effort was devoted to the anti-epidemic 

project. However, many cases have been spread in communities 

with no history of travel to the outbreak area or contact with 

infected people. In such cases, health care workers need the 

highly sensitive COVID-19 diagnostic tool to ensure that every 

case is not missed, especially in those with false-negative 
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reverse transcriptase-polymerase chain reaction (RT-PCR) [3]. 

Chest computed tomography (CCT) examination is regarded 

as a useful mainstream auxiliary technique for the diagnosis of 

viral pneumonia cases associated with COVID-19 and was 

included in the national diagnostic treatment protocol (7th 

edition) of China [4]. When compared to those biomedical-

based methods such as nucleic acid testing using real-time RT-

PCR, CCT owns many outstanding advantages: (i) Normal 

nucleic acid testing process can take days to get results [5], 

while CCT approaches can quickly report back in minutes. (ii) 

Although nucleic acid testing is considered the ‘gold standard’ 

for clinical diagnosis, the problem of false-negative has been 

persistent [6]. This limitation can be supplemented with the 

reported high sensitivity of CCT in diagnosing COVID-19 [7, 

8]. (iii) From an environmental point of view, CCT approaches 

reduce the consumption of materials, like swabs, paper boxes, 

plastic bags, etc., which to some degree relieve the possible 

pollution problems. In addition, CCT allows more precise 

visualization of extremely small nodules in the lung area 

compared with other chest imaging approaches such as chest X-

ray and chest ultrasound approaches [9].  

In the epidemic situation, the problem of labor intensity, work 

efficiency, and emotional fluctuation of radiologists are all 

significant factors that need consideration. A limitation of CCT 

is it may share certain similar imaging features between 

COVID-19 and other categories of chest diseases, thus making 

it difficult for radiologists to differentiate [8]. Besides, the 

presence of faintly ground glass in the early lung lesions may 

lead to missed diagnosis by radiologists [10], especially in the 

follow-up work of COVID-19 detection that requires a large 

number of slides reading. To help relieve this problem and 

strengthen the radiologists’ recognition of the lesion features, 

we proposed a diagnostic system based on deep learning, which 

has made remarkable progress for automated diagnosis in the 

real world to automatically screen lesions, analyze and generate 

reports [11] Radiologists can utilize the rapidly generated 

information to make more credible judgments based on the 

overall screening, improving the detection rate of lesions, work 

efficiency, and reducing the possibility of missed diagnosis 

[12]. 

Our study intends to improve the recognition performance of 
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COVID-19 infection in CCT images by developing a novel 

deep neural network ‘Adaboosting-Decay Fractional max-

pooling Neural Network (AdaD-FNN)’ for classification and a 

novel image preprocessing model ‘Fuzzy stacking 

enhancement U2MNet for CCT images (F-U2MNet-C)’. Our 

contributions and findings entail the following five angles:  

(i) Inspired by the architecture of U2-Net, an advanced version 

U2MNet is proposed. Although the U2-Net architecture 

provides rich information when the training set is sufficient, the 

boundary ambiguity problem about the regions of interest may 

exist when encountering a size-limited dataset. This paper 

demonstrates that the incorporation of maximum entropy 

threshold segmentation and erosion&dilation refining approach 

can effectively minimize this loss of boundary information. 

(ii) A novel CCT image preprocessing model, F-U2MNet-C is 

designed by using the fuzzy stacking method for the feature 

enhancement and the redesigned U2MNet for the interference 

factors elimination. Compared with traditional preprocessing 

models, this model shows stronger universality by relieving the 

block effect at the boundary of sub-images, the difference in 

enhancement levels shown in adjacent areas, and the boundary 

ambiguity problem brought by the size-limited dataset. 

(iii) A novel AdaD-FNN model is proposed for multi-class 

classification. The performance is evaluated on four public 

datasets with 22 state-of-the-art methods. 

(iv) In the base estimator of AdaD-FNN, we used fractional 

max-pooling to replace max-pooling and average-pooling to 

further improve the network recognition capability. 

(v) The proposed AdaD-FNN consists of the multi-learning-

mode base estimators. Instead of simply introducing the 

decaying learning rate in a single estimator, we incorporated a 

lrdecay module inside the AdaBoosting structure to further help 

optimization and generalization. 

These five improvements can help enrich the performance of 

our model specially built for COVID-19 detection. Sections II–

V will introduce the related work, methodology, discussions of 

experimental results, and the conclusions of our study. 

II. RELATED WORK 

Modern machine learning and deep learning technology have 

achieved a plethora of contributions when dealing with 

COVID-19 classification tasks from analyzing CCT images. 

Among these studies, research direction can be divided into 

single model-based classification models, ensemble learning-

based classification models and image preprocessing models. 

A. single model-based classification models: Yu, et al. [13] 

gave the first attempt to integrate graph convolutional neural 

(GCN) network into COVID-19 detection. They constructed a 

graph based on the Euclidean distance between features 

extracted by the proposed ResNet101-C and then encoded the 

graphs with the features to output the final predicted results. 

The Laplacian smoothing in graph convolution can aggregate 

the features of nearest neighbour nodes and make the features 

of nodes from the same class similar, which is suitable for 

classification problems. However, when encountering a size-

limited dataset, deep GCNs are prone to the phenomenon of 

over-smoothing, which makes the output features of nodes 

excessively smooth and difficult to be distinguished. To make 

better use of the information in a size-limited dataset, Scarpiniti, 

et al. [14] trained a deep denoising convolutional autoencoder 

and created a robust statistical representation by evaluating the 

histogram of the hidden features. Transfer learning-based 

approaches [15, 16] are also good choices for small datasets. 

[17-21] fine-tuned the pre-trained models to extract distinct 

features from images, and further fed the resulting feature maps 

into appropriate classifiers. These rapid frameworks usually 

achieved promising results. But when the source task and target 

task are not sufficiently correlated, or the transfer learning does 

not make good use of the relationship between the source task 

and target task, a negative transfer phenomenon will occur, 

resulting in performance degradation. Thus transfer learning-

based works perform not well on the heterogeneous dataset. To 

develop a network tailored for COVID-19 detection, Wang, et 

al. [22] presented COVID-Net by introducing a lightweight 

projection-expansion-projection-extension design, which 

enables enhanced representation capacity while reducing 

computational complexity. In its redesign study [23], a joint 

learning framework was proposed through conducting separate 

feature normalization and constructing the contrastive 

objective. However, previous works on other joint learning 

applications [24, 25] have observed that straight-forward joint 

learning brings limited improvement with heterogeneous 

datasets and may underperform when trained on a single 

dataset. 

B. ensemble learning-based classification models: Ensemble 

learning is a training concept of constructing multiple basic 

classifiers and ensembling them into a more powerful classifier 

to make the final decision [26, 27], which is widely used in 

classification tasks. One mode of ensemble learning is to 

generate the prediction function in parallel. Abdar, et al. [28] 

proposed a two-branches ensemble learning model. The first 

branch has five convolutional blocks, and the second branch is 

a transfer learning network based on VGG16. A fusion layer 

then concatenates the third, fourth, and fifth convolutional 

layers’ output with the VGG16’s output. Lu, et al. [29] 

employed ResNet-18 and ResNet-50 as backbone networks and 

fused the output by discriminant correlation analysis to obtain 

the refined features. Three randomized neural networks were 

trained using these refined features, and the predictions were 

ensembled. Khan, et al. [30] extracted features from AlexNet 

and VGG16 models and implemented an entropy-controlled 

Firefly optimization algorithm for the robust feature selection. 

Akram, et al. [31] first applied discrete wavelet transform and 

extended segmentation-based fractal texture analysis methods 

for feature extraction. Then an entropy controlled genetic 

algorithm was applied for feature selection. Another mode of 

ensembling is to generate each prediction function in order, as 

the latter model needs the weight of the previous model. 

Taherkhani, et al. [32] utilized the Adaboosting to construct a 

strong classifier by combining a group of weak classifiers. The 

final prediction result was obtained by multiplying the 

predicted value and weight of the weak classifiers. In all, 

ensemble learning-based models usually outperform single 

models when trained on a single dataset and are not easy to 

overfit. But they have high computational costs and redundant 

features may exist after feature selection and feature fusion. 

C. image preprocessing models: Many studies incorporate the 

image preprocessing session in their classification system to 

improve the follow-up feature learning and extraction process. 
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Khan, et al. [30] proposed a new hybrid contrast enhancement 

approach by sequentially employing linear filters to improve 

the visual quality of images. The framework in [33] generates 

lung masks using maximum entropy segmentation to let the 

subsequent training of the model focus more on the lung 

regions. 

Through summarizing the previous studies, we conclude an 

overview: (i) The ensemble learning models usually consume 

high computational costs. (ii) Most of these previous works are 

sensitive to noise and may have a performance drop in the 

absence of high-quality and abundant datasets. To overcome 

these limitations, (i) we adopted the strategy of training using 

the multi-learning-mode base estimators, which can reduce the 

number of iterations as much as possible while maintaining 

high performance. (ii) F-U2MNet-C preprocessing model was 

proposed to enhance the image’s visual quality and eliminate 

the interference factors. In the experimental section, the related 

works [34] and the state-of-the-art methods in the field of 

medical image multi-classification [35-37] will be further 

explored and compared with our framework. 

III. METHODOLOGY 

Section A, B, C give the basics of the novel F-U2MNet-C. 

Section D, E, F give the basics of the novel AdaD-FNN. Section 

G shows the implementation and measure indicators. 

A. Preprocessing using proposed F-U2MNet-C 

Preprocessing has already shown its success in many COVID-

19 applications. Assume the raw dataset 𝑇𝑅  contained 𝑛  2D 

slice images be set as: 𝑇𝑅 = {𝑡𝑅(1), … , 𝑡𝑅(𝑖), … , 𝑡𝑅(𝑛)}. The 

size of each raw image was 𝑠𝑖𝑧𝑒[𝑡𝑅(𝑖)] = ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ ×
𝑐ℎ𝑎𝑛𝑛𝑒𝑙. Fig 1 displays the schematic graph of F-U2MNet-C. 

First, the three-channel color CCT images were converted 

into grayscale images by retaining the luminance channel. The 

newly created grayscale dataset is: 𝑇𝐺 = 𝐹𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒(𝑇𝑅) =

{𝑡𝐺(1), … ,𝑡𝐺(𝑖), … , 𝑡𝐺(𝑛)}. 
Fuzzy enhancement technique was then employed on 𝑡𝐺(𝑖) to 

enhance the features in the grayscale image, which is discussed 

in Section B. The newly reconstructed fuzzy enhanced dataset: 

𝑇𝐹 = 𝐹𝐹𝑢𝑧𝑧𝑦(𝑇𝐺) = {𝑡𝐹(1), … , 𝑡𝐹(𝑖), … , 𝑡𝐹(𝑛)} , where 𝐹𝐹𝑢𝑧𝑧𝑦 

represents the fuzzy enhancement process. 

Third, to minimize the interference in 𝑡𝐹(𝑖), we stacked the 

raw image 𝑡𝑅(𝑖) on 𝑡𝐹(𝑖) in terms of the enhanced correlation 

coefficient (ECC) criterion [38]. The fuzzy stacked dataset 𝑇𝑆𝑇  

is set as: 𝑇𝑆𝑇 = 𝐹𝑆𝑡𝑎𝑐𝑘(𝑇𝐹) = {𝑡𝑆𝑇(1), … , 𝑡𝑆𝑇(𝑖),  … , 𝑡𝑆𝑇(𝑛)} , 

where 𝐹𝑆𝑡𝑎𝑐𝑘 represents the image stacking process. 

Fourth, to suit the input dimension of deep neural networks, 

each image in 𝑇𝑆𝑇  was resized to a smaller size of [𝑎, 𝑏] , 

obtaining a downsampled dataset 𝑇𝐷  as: 𝑇𝐷 = 𝐹𝐷𝑆(𝑇𝑆𝑇) =
{𝑡𝐷(1), 𝑡𝐷(2), 𝑡𝐷(3)… , 𝑡𝐷(𝑖), … 𝑡𝐷(𝑛)} , where 𝐹𝐷𝑆  represents 

the downsampling (DS) process. a=b=224 for AdaD-FNN. 

After the above preprocessing procedures, assume the input 

image size as 1024×1024×3, each image will only cost about 

1.60% of its original storage according to the byte compression 

ratio calculation: 
224×224×1

1024×1024×3
=0.01595. 

Fifth, to remove the background interference factors such as 

the regions of the heart, ribs, and thoracic vertebrae, we 

implemented U2MNet segmentation on 𝑇𝐷 . An element-wise 

multiplication was conducted between the obtained finishing 

segmentation mask set 𝑀𝐸𝐷  and 𝑇𝐷  to output 𝑇𝑆𝐸 : 𝑇𝑆𝐸 =
𝑇𝐷⨀ 𝑀𝐸𝐷 = {𝑡𝑆𝐸(1), … , 𝑡𝑆𝐸(𝑖), … 𝑡𝑆𝐸(𝑛)}, where ⨀ represents 

element-wise multiplication. Details are discussed in Section C. 

 

 
Fig 1. The schematic graph of F-U2MNet-C, which enhances 

the image features using fuzzy stacking and eliminates the 

interference factors using the U2MNet segmentation. 

 

B. Improvement I: Using the fuzzy stacking enhancement 

A partition is often built to divide the image into statistically 

uniform sub-images for image enhancement. However, classic 

partition often meets a block effect at the border of sub-images. 

To avoid this, we employed fuzzy partition in the enhancement 

stage of F-U2MNet-C. The logic behind the fuzzy partition is 

1) Separate the input image into fuzzy windows. 2) Calculate 

the membership degree of each pixel according to the distance 

between the window and the pixel. 3) Obtain the fuzzy mean 

and the fuzzy variance within the window. 4) Summarize the 

weights of the images of each fuzzy window in a weight way to 

generate the output image [39, 40]. Here, the weight values used 

are membership degrees, which define the fuzzy partition. 

Without loss of generality, the rectangle 𝒮 = [𝑥0, 𝑥1] ×
[𝑦0, 𝑦1]  can be considered as image support. Let a fuzzy 

partition 𝑃  of the image support 𝒮  be: 𝑃 = {𝕎𝑘𝑙|(𝑘, 𝑙) ∈
[0,𝑚] × [0, 𝑛]}, where 𝕎𝑘𝑙  represents the fuzzy window. 

The space of gray levels is set as 𝐸 = (−1, 1). For each 𝑡𝐹(𝑖) 
heaving the support 𝒮, the membership degrees 𝜔𝑘𝑙  of a point 

(𝑥, 𝑦) ∈ 𝒮 to the fuzzy window 𝕎𝑘𝑙  is defined according to: 

 

          

{
  
 

  
 𝑝𝑘𝑙(𝑥, 𝑦) =

𝑚!

𝑘!(𝑚−𝑘)!
(
(𝑥−𝑥0)

𝑘(𝑥1−𝑥)
𝑚−𝑘

(𝑥1−𝑥0)
𝑚 )

.
𝑛!

𝑙!(𝑛−𝑙)!
(
(𝑦−𝑦0)

𝑙(𝑦1−𝑦)
𝑛−𝑙

(𝑦1−𝑦0)
𝑛 )

𝜔𝑘𝑙(𝑥, 𝑦) =
(𝑝𝑘𝑙(𝑥,𝑦))

𝛿

∑ ∑ (𝑝𝑘𝑙(𝑥,𝑦))
𝛿𝑚

𝑘=0
𝑛
𝑙=0

s.t. (𝑘, 𝑙) ∈ [0,𝑚] × [0, 𝑛]. 𝛿 ∈ (0,∞), 𝒮 → [0, 1]

,     (1) 
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where (𝑥, 𝑦)  refers to the coordinates of a pixel within the 

support 𝒮 ; 𝛿  works as a tuning parameter that controls the 

fuzzification-defuzzification degree of the partition 𝑃. 

For each window defined by Eq. (1) the fuzzy cardinality can 

be computed according to: 𝑓𝑐𝑎𝑟𝑑(𝕎𝑘𝑙) = ∑ 𝜔𝑘𝑙(𝑥, 𝑦)(𝑥,𝑦)∈𝒮 . 

Further on, fuzzy statistics of a gray level image 𝑡𝐺(𝑖) are 

employed in relation to the fuzzy window 𝕎𝑘𝑙 . The fuzzy mean 

μ(𝑡𝐺(𝑖),𝕎𝑘𝑙)  and the fuzzy variance σ2(𝑡𝐺(𝑖),𝕎𝑘𝑙)  within 

the window 𝕎𝑘𝑙  are thus defined as: 

 

 {
μ(𝑡𝐺(𝑖),𝕎𝑘𝑙) = 〈+〉(𝑥,𝑦)∈𝒮 (

𝜔𝑘𝑙(𝑥,𝑦)

𝑓𝑐𝑎𝑟𝑑(𝕎𝑘𝑙)
〈×〉𝑡𝐺(𝑖)(𝑥, 𝑦))

σ2(𝑡𝐺(𝑖),𝕎𝑘𝑙) = ∑
𝜔𝑘𝑙(𝑥,𝑦)‖𝑡𝐺(𝑖)(𝑥,𝑦)〈−〉𝜇(𝑡𝐺(𝑖),𝕎𝑘𝑙)‖𝐸

2

𝑓
𝑐𝑎𝑟𝑑

(𝕎𝑘𝑙)
(𝑥,𝑦)∈𝒮

, (2) 

 

where 〈+〉 is the addition; 〈×〉 is the scalar multiplication; 〈−〉 
is the subtraction; ‖ . ‖𝐸  is the norm; 𝑓𝑐𝑎𝑟𝑑(𝕎𝑘𝑙) is the fuzzy 

cardinality for each window 𝕎𝑘𝑙 . 

On support fuzzification, the function that transforms the 

pixels belonging to the fuzzy window 𝕎𝑘𝑙  is defined as: 

 

 𝒯𝑘𝑙(𝑡𝐺(𝑖)) =
𝜎𝑢

𝜎(𝑡𝐺(𝑖),𝕎𝑘𝑙)
〈×〉(𝑡𝐺(𝑖)〈−〉𝜇(𝑡𝐺(𝑖),𝕎𝑘𝑙)),(3) 

 

where 𝒯𝑘𝑙 represents the affine transform; 𝜎𝑢
2 is set to 

1

3
 in the 

experiment design. 

Finally, the transform 𝒯𝑒𝑛ℎ  is built as a sum of the affine 

transforms 𝒯𝑘𝑙, weighted according to the membership degree 

𝜔𝑘𝑙 , to achieve the enhanced image 𝑡𝐹(𝑖): 
 

 𝑡𝐹(𝑖) = 𝒯𝑒𝑛ℎ(𝑡𝐺(𝑖)) = ∑ ∑ 𝜔𝑘𝑙〈×〉
𝑚
𝑘=0

𝑛
𝑙=0 𝒯𝑘𝑙(𝑡𝐺(𝑖)). (4) 

 

Significantly, as the transform is different depending on the 

brightness and contrast of each fuzzy window, the enhancement 

level shown in adjacent areas might be slightly different. To 

further improve the fuzzy enhancement, inspired by the work 

of [41], we stacked the raw image 𝑡𝑅(𝑖) on 𝑡𝐹(𝑖) in terms of the 

ECC criterion, which is a similarity measure for estimating the 

parameters of motion, and successfully solved this problem. 

Reasons for using ECC staking are: (i) Unlike the traditional 

similarity measure, ECC is variant to photometric distortions in 

brightness and contrast. (ii) ECC solves the optimization 

problem in a simple linear iterative strategy, which has a light 

computational cost. In all, compared with other enhancement 

methods, fuzzy stacking efficiently avoids the block effect and 

the adjacent area difference problem by supplying fuzzy 

partitions and enhanced correlation coefficient stacking. 

C. Improvement II: A novel U2MNet 

Due to the limited size of the dataset, the preliminary masks 

obtained from traditional U2Net will possibly encounter a 

boundary ambiguity problem as revealed in Fig 1, which 

hinders the ideal segmentation effect of completely removing 

the interference factors. Inspired by the work of U2Net [42], we 

presented an advanced version named U2MNet that can deal 

with relatively small datasets through applying a Maximum 

entropy threshold segmentation-based [43, 44] approach to the 

preliminary masks 𝑀𝑓𝑢𝑠𝑒. 

Given an estimated probability density function 𝜌(𝑔) in the 

digital image, the entropy in the downsampled image 𝑡𝐷(𝑖) can 

be defined as: 

 

 𝐻(𝑡𝐷(𝑖)) = ∑ 𝜌(𝑡𝐷(𝑖)(𝑢, 𝑣))𝑢,𝑣
⋅ log {

1

𝜌(𝑡𝐷(𝑖)(𝑢,𝑣))
} 

                                    = −∑ 𝜌(𝑔)𝑢,𝑣 ⋅ log(𝜌(𝑔)), (5) 

 

where H represents the cumulative histogram corresponding to 

the cumulative probability. 𝑔 is the grayscale level (with the 

abscissa and ordinate value of 𝑡𝐷(𝑖) as u and v).` 
Given a specific threshold 𝜃 ∈ [0, 𝐶 − 1], C stands for the 

limited range of pixel value (e.g., 256). For the two image 

regions 𝑌0  and 𝑌1  segmented by this threshold, the estimated 

probability density function can be expressed as: 

 

{
 
 

 
 𝑌0: (

𝜌(0)

𝑃0(𝜃)
 
𝜌(1)

𝑃0(𝜃)
… 

𝜌(𝜃)

𝑃0(𝜃)
 0 0… 0)

𝑌1: (0 0…0 
𝜌(𝜃+1)

𝑃1(𝜃)
 
𝜌(𝜃+2)

𝑃1(𝜃)
… 

𝜌(𝐶−1)

𝑃1(𝜃)
)

s.t. {
𝑃0(𝜃) = ∑ 𝜌(𝑟)𝜃

𝑟=0 = 𝑃(𝜃)

𝑃1(𝜃) = ∑ 𝜌(𝑟)𝐶−1
𝑟=𝜃+1

 ,         (6) 

 

where 𝑃0(𝜃) and 𝑃1(𝜃) represent the cumulative probability of 

background and foreground pixels segmented by the threshold 

𝜃 respectively, and the sum of them is 1.  

The corresponding entropy of background 𝐻0(𝜃), foreground 

𝐻1(𝜃) and the total entropy of the image 𝑡𝐷(𝑖) are defined as: 

 

 

{
 
 

 
 𝐻0(𝑡𝐷(𝑖)|𝜃) = −∑

𝜌(𝑟)

𝑃0(𝜃)
log (

𝜌(𝑟)

𝑃0(𝜃)
)θ

𝑟=0

𝐻1(𝑡𝐷(𝑖)|𝜃) = −∑
𝜌(𝑟)

𝑃1(𝜃)
log (

𝜌(𝑟)

𝑃1(𝜃)
)𝐶−1

𝑟=𝜃+1

𝐻01(𝑡𝐷(𝑖)|𝜃) = 𝐻0(𝜃) + 𝐻1(𝜃)

.     (7) 

 

Through calculating the total entropy of the image under all 

the segmentation thresholds, we determined the final threshold 

by the segmentation threshold corresponding to the maximum 

entropy. The segmentation mask set 𝑀𝑀𝐸𝑇𝑆  was obtained by 

considering the pixel in the image whose gray value is larger 

than this threshold as the foreground, and the pixel whose gray 

value is smaller than the threshold as the background. 

To avoid a circumstance that some lesion regions be 

eliminated together with the interference factors, a refining 

module ED was added into U2Mnet to create a finishing mask 

𝑀𝐸𝐷 by utilizing the erosion&dilation processing approach [45-

47]. This approach depends solely on relative ordering, rather 

than the numerical values of the pixel values, thus is especially 

suited to the processing of the binary image. 

D. Classification using proposed AdaD-FNN 

An overview of our novel high-sensitivity deep learning 

framework AdaD-FNN for COVID 19 diagnosis is illustrated 

in part A of Fig 2. AdaD is an ensembled algorithm where a 

sequence of base estimators 𝐸 is trained by a data weight vector 

𝑊 = {𝑤𝑖}, 𝑖 = 1, 2, … , 𝑛  to construct a strong classifier with 

higher classification ability. In our study, each estimator is set 

as a deep fractional max-pooling neural network (FNN). 

Suppose the training dataset is set as: {(𝜅1, 𝑒1), … , (𝜅𝑛, 𝑒𝑛)}, 
s. t. 𝑒𝑖 ∈ (1, 2, … , 𝐿) , where 𝜅𝑖  is an input vector, 𝑒𝑖  is the 
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corresponding output of 𝜅𝑖 , 𝑛  is the number of training 

samples, 𝐿 is the total number of classes. 

The first estimator 𝐸𝑘=1 ( 𝜅 ), where 𝑘  is the index of 

estimators, is trained on all the training samples with the same 

weight of an initialized 𝑊1 = 
1

𝑛
 and the learning rate 𝜂1. 

The output vector for an input sample 𝜅𝑖  is defined as: 

𝑂𝑃(𝜅𝑖) = [𝑜𝑙(𝜅𝑖)], s. t. 𝑙 ∈ (1, 2, … , 𝐿) , where 𝑂𝑃  stands for 

the probabilities that the applied input belongs to the 𝐿 classes. 

𝑂𝑃𝑘(𝜅𝑖) is then used to update the data weights 𝑊 = {𝑤𝑖} 
by: 

 

𝑤𝑖
𝑘+1 = 𝑤𝑖

𝑘 exp (−𝜂𝑘
𝐿−1

𝐿
𝒵𝑖
𝑇 log(𝑂𝑃𝑘(𝜅𝑖))) , 𝑖 = 1,… , 𝑛  (8) 

 

where 𝑤𝑖
𝑘+1 is the weight of the 𝑖th training sample utilized by 

the 𝑘th estimator, 𝑂𝑃𝑘(𝜅𝑖) refers to the output vector of the 𝑘th 

estimator in response to the 𝑖th training sample, 𝜂𝑘 stands for 

the learning rate of the 𝑘th  estimator, 𝒵𝑖  refers to the label 

vector corresponding to the 𝑖th training sample. 

This weight updating concept helps the training sample focus 

more on the hard-to-identify samples by increasing the weights 

for the misclassified samples in further learning. The 

construction of a strong classifier is completed when the 

expected error rate is reached. After the training of K  base 

estimators, the output class 𝐸(𝜅) is predicted through: 

 

{
𝐸(𝜅) = argmax𝑙 ∑ 𝑞𝑙

𝑘(𝜅)K
𝑘=1

s.t. 𝑞𝑙
𝑘(𝜅) = (𝐿 − 1) (log(𝑜𝑙

𝑘(𝜅)) −
1

𝐿
∑ log(𝑜𝑙

𝑘(𝜅))𝐿
𝑙=1 )

,     (9) 

 

where 𝑜𝑙
𝑘(𝜅) stands for the 𝑙th element of the output vector of 

the 𝑘th estimator when 𝜅 is applied as its input. 

 

 
Fig 2. The overview of proposed AdaD-FNN framework, which sequentially transfers the trained knowledge of an FNN estimator 

to the next one while updating the weights of the samples in the training set with a decaying learning rate. This framework inhibits 

the network from remembering the noisy information and improves the learning of complex patterns in the hard-to-identify 

samples. 

 

The structure of the proposed 10-layer FNN is demonstrated 

in part B of Fig 2, within which 2D Conv Blocks (CBs), 

Fractional max-pooling Layers (FPs), and Dense Blocks (DBs) 

are utilized as the main building elements. In each CB block, 

the convolutional layer (CL) outputs are fed into a batch 

normalization layer to avoid the covariate shift, which will 

probably cause gradient divergency during backpropagation. 

E. Improvement III: Using FP to replace MP and AP 

To avoid the rapid loss of surrounding information, Graham 

[48] formulated a fractional version of max-pooling (MP) 

named fractional max-pooling (FP) by giving allowance for the 

multiplicative factor 𝛼 to be a non-integer value. For instance, 

if 𝑁𝑖𝑛/𝑁𝑜𝑢𝑡 ≈ √2
𝑛

, then the reduction rate of feature 

information will be 𝑛 times slower. From another perspective, 

a non-integer 𝛼 gives chances for more pooling layers to be 

used in the backbone of the neural network. For instance, if 

pooling in the neural network structure is to reduce the size of 

FM by a factor of √2, then twice as many layers of pooling 

could be used when compared with a factor of 2. Every time of 

pooling can be considered as an opportunity to view the input 

image at a different scale, and viewing the image at the ‘correct’ 

scale would help recognise the ‘distinct’ features that could 

identify subjects belonging to a particular class, thus we 

replaced MP and average pooling (AP) with FP to improve the 

recognition capability of our proposed network [48, 49]. 

In this study, we conducted comparative experiments on the 

disjointed FP and the overlapped FP, which will be discussed 

in Section IV. For each FP operation {FP-1, FP-2, FP-3, FP-4, 

FP-5, FP-6, FP-7}, 𝛼 is set as {1.6, 1.6, 1.6, 1.6, 1.25, 1.6, 1.25} 
based on [48] and the TensorFlow documentation. An 

illustration graph for the FP results with 𝛼 = 1.25, 1.6 and the 

traditional MP results with 𝛼 = 2 is shown in Fig 3. 

 

   
𝛼 = 1.25 𝛼 = 1.6 𝛼 = 2 

Fig 3. An illustration of the FP and MP results. 

 

F. Improvement IV: Incorporate a IrDecay inside the AdaD 

In the traditional AdaBoosting (Ada) structure, when the 

prescribed number of iterations is reached, the training of 

samples will stop without finding the expected error rate. 

However, simply setting a large iteration number for searching 

the expected error rate would bring huge computation costs and 

make the whole system long time lasting. Therefore, we 
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adopted the idea of incorporating a learning rate decay 

(lrDecay) module into the structure to help every classifier find 

the global minimum of error function of neural networks and 

achieve better performance. This new version of Ada structure 

substitutes the traditional format of base estimator with multi-

learning-mode base estimator and is named as AdaD structure. 

A toy illustration is shown in Fig 4, where 𝐸K(𝜅) represents the 

Kth  estimator when 𝜅  is applied as its input; 𝑊 = {𝑤𝑖} 
represents the data weights. 

 

 
Fig 4. A toy illustration for AdaD structure. 

 

In the lrDecay module, the learning rate 𝜂 is scheduled to be 

reduced after the 𝔇1
th, 𝔇2

th,…, 𝔇ℎ
th estimator according to 

 

 𝜂𝑘 = {

𝜂 ∙ 𝜚0,          𝑘 < 𝔇1                 

𝜂 ∙ 𝜚1,          𝔇1 < 𝑘 < 𝔇2     
…

𝜂 ∙ 𝜚ℎ−1,      𝔇ℎ−1 < 𝑘 < 𝔇ℎ

 ,            (10) 

 

where 𝑘  represents the index of estimator, 𝜂𝑘  represents the 

learning rate of the 𝑘th estimator, ∙ stands for a multiplication 

process, 𝜚 is a drop factor belonging to (0, 1). 
Through introducing this module, the initially large 𝜂  will 

inhibit the network from remembering the noisy information of 

the dataset, while the subsequent decaying 𝜂  will gradually 

improve the learning of complex patterns in the image[50]. The 

final determination of parameter setting in our study is 𝜂1=0.05, 

𝜚=0.6, {𝔇1, 𝔇2, 𝔇3, 𝔇4, 𝔇5, 𝔇6} = {2, 3, 4, 5, 6, 7}, K=10. 

G. Implementation and measures 

The pseudocode for the implementation of our proposed F-

U2MNet-C and AdaD-FNN is listed in Algorithm 1. The 

learning rate was initialized with 0.05 and the drop factor was 

set as 0.6. For our proposed method and all the comparison 

methods, we totally trained 80 epochs with a batch size as 10. 

To make complete use of the dataset information, a five-fold 

cross-validation was implemented, and we would have five 

times of running. In each running, images were split into 80% 

for training and 20% for testing. The F-U2MNet-C was used on 

the training set of five-fold cross-validation. Four performance 

metrics (accuracy, precision, sensitivity and F1 score) are 

introduced to comprehensively evaluate our framework. 

 
Algorithm 1. Pseudocode of our proposed framework 

Input: Original Image set 𝑇𝑅 and its ground truth label 𝐺𝑡 

Phase I: Preprocessing 

Separate the input image into fuzzy windows. 

Calculate the membership degree of each pixel, see Eq. (1). 

Obtain the image mean and variance, see Eq. (2) 

Generate 𝑇𝐹 by summing up the images of every fuzzy window in a 

weight way, see Eqs. (3)(4). 

Generate 𝑇𝑆𝑇 through stacking fuzzy enhanced dataset and raw dataset. 

Segment the images utilizing U2MNet and get 𝑇𝑆𝐸, see Eqs. (5)(6)(7). 
 

Phase II: Five-fold cross-validation on the Training set 

Split 𝑇𝑆𝐸 into training set and testing set: 𝑇𝑆𝐸 → {𝑇𝑆𝐸
𝑡𝑟𝑎𝑖𝑛 , 𝑇𝑆𝐸

𝑡𝑒𝑠𝑡} 

for i = 1:5   % 𝑇𝑆𝐸
𝑡𝑟𝑎𝑖𝑛,𝑖

 is the training set, 𝑇𝑆𝐸
𝑡𝑒𝑠𝑡,𝑖

 is the testing set. 

Initialize the data sample weight 𝑊1 =  1/𝑛, n is the total number  

of training samples. 

for 𝑘=1 to K: 

if 𝑘 == 1: 

    Train the first FNN using the initial sample weights. 

else: 

Transfer the learning parameters of the previous FNN  

to the 𝑘th FNN. 

Train the 𝑘th FNN using the sample weight vector 𝑊𝑘  

and the learning rate 𝜂𝑘. 

end 

Obtain the output of the 𝑘th FNN. 

Update the data sample weight 𝑊𝑘, see Eq. (8). 

Re-normalize the updated data sample weight 𝑊𝑘. 

Update the learning rate 𝜂𝑘, see Eq. (10). 

Save the 𝑘th FNN. 

end 

end 
 

Phase III: Report the test performance of our proposed framework 

The Training set is 𝑇𝑆𝐸
𝑡𝑟𝑎𝑖𝑛 and its labels 𝐺𝑡(𝑇𝑆𝐸

𝑡𝑟𝑎𝑖𝑛) 
The Testing set is 𝑇𝑆𝐸

𝑡𝑒𝑠𝑡 and its labels 𝐺𝑡(𝑇𝑆𝐸
𝑡𝑒𝑠𝑡) 

for i = 1:5 

Prediction: 𝑃𝑟𝑒𝑑(𝑖) = predict(𝐴𝑑𝑎𝐷𝐹𝑁𝑁𝑖, 𝑇𝑆𝐸
𝑡𝑒𝑠𝑡,𝑖

), see Eq. (9). 

Calculate Indicators: accuracy, precision, sensitivity, F1 score. 

end 
 

Output: The test performances. 

IV. EXPERIMENTS, RESULTS, AND DISCUSSIONS 

The experiments were written using the language of Python 

3.7.10 and the programming platform of Matlab R2021b. The 

programs ran with NVIDIA TESLA P100 GPUs. The 

performances are reported over the test sets with five runs. 

A. Datasets and Statistical results 

The proposed framework is evaluated on three public datasets 

with 2D slices of CT volumes TLDCA [29], UCSD-Al4H [16], 

SARS-CoV-2 [51], and one with entire CT volumes TCIA [52]. 

Among these datasets, TLDCA (denoted as Site A) consists of 

1260 images, in which 420 are positive in COVID-19, 420 are 

healthy control (HC) and 420 are tuberculosis (TB). The 

resolution of each image is 1024×1024. UCSD-Al4H (denoted 

as Site B) includes 349 COVID-19 images and 190 HCs. The 

spatial sizes of images range from 102×137 to 1853×1485. 

SARS-CoV-2 (denoted as Site C) includes 2482 images from 

120 patients, in which 1252 are positive in COVID-19 and 1230 

are HCs. The spatial sizes of these images range from 119×104 

to 416×512. The NIfTI dataset TCIA (denoted as Site D) 

consists of unenhanced chest CTs from 661 patients. We used 

974 images, including 473 with COVID-19 infections and 501 

HCs. The resolution of these slices is 512×512. 

Our experiment conducted five-fold cross-validation on each 

dataset. We report the results in form of average and standard 

deviation in TABLE I, and the results of ROC curves over four 

data sites in Fig 5. Through analyzing the misclassification 

cases in 10 runs, we made two-fold conclusions: (i) Many of 

these misclassifications are abnormal samples. The patterns of 

these samples are different from the same category samples 

input in the training set. They may obtain high weight in AdaD 

iteration and affect the prediction accuracy of the final strong 

classifier. (ii) There exists inconsistency in data. In other words, 
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images collected from different machines in hospitals may not 

have the exact same resolution. Besides, in a few cases, there 

exist foreign objects or texts in the images. As a consequence, 

these issues impacted the model and led to misclassifications. 

 

TABLE I 

STATISTICAL RESULTS ON PUBLIC DATASETS 

 
Dataset Acc (%) Prc (%) Sen (%) F1 (%) 

Site A 99.52±0.52 99.54±0.50 99.52±0.52 99.52±0.52 

Site B 92.96±2.49 93.00±2.49 92.96±2.49 92.91±2.53 

Site C 97.86±1.16 97.88±1.16 97.86±1.16 97.86±1.16 

Site D 91.97±1.52  92.23±1.48  91.97±1.52  91.97±1.52  

(Acc=Accuracy. Prc=Precision. Sen=Sensitivity. F1=F1 score.) 

 

    
(a) Site A (b) Site B (c) Site C (d) Site D 

Fig 5. ROC curves over Site A, B, C, D. 

 

To further explore the robustness of our framework, we 

artificially lower the image quality by separately introducing 

‘Gaussian-distributed additive noise’ (var=0.01), ‘Poisson-

distributed noise’ and ‘salt&pepper noise’ (amount=0.05) into 

four datasets. Through analyzing the accuracy drop in TABLE 

II, we concluded that all the drops are within 5%, thus our 

framework is robust to different categories of noise. 

 

TABLE II  

ACCURACY DROP (%) UNDER DIFFERENT NOISE SCENARIOS 

 
Noise Site A Site B Site C Site D 

gaussian -0.23  -2.34 -2.25 -2.68  

poisson -0.15 -2.22  -2.09  -1.44  
s&p  -1.27  -3.49 -2.98  -3.16  

 

B. Ablation study 

The experiments were conducted on site A to further explore 

the effectiveness of each component in the final results. 

(1) Effectiveness of F-U2MNet-C: Assume the datasets be 

preprocessed at four stages, including ‘Stage I: raw dataset’. 

‘Stage II: Stage I + fuzzy enhanced’, ‘Stage III: Stage II + ECC 

stacking’, ‘Stage IV: Stage III + U2MNet segmentation’. After 

being trained using AdaD-FNN, the results in TABLE III 

demonstrate that each stage outperforms its previous stage, 

which represents the ‘enhanced’, ‘stacking’ and ‘segmentation’ 

components incorporated in F-U2MNet-C are all effective. The 

whole preprocessing model not only helps improve all the 

metrics with a nearly 2% increase but also enhances the stability 

of the system. These improvements are consistent with our 

expectation that the F-U2MNet-C can optimize the training 

process because it enhances the features and removes the 

interference factors in the grayscale image. 

 

TABLE III  

COMPARISON AGAINST DIFFERENT STAGES IN F-U2MNET-C 

 

Stage Acc (%) Prc (%) Sen (%) F1 (%) 

I 97.62±2.79  97.91±2.33  97.62±2.79  97.63±2.78  

II 98.73±1.39  98.77±1.33  98.73±1.39  98.74±1.38  

III 98.81±0.97  98.87±0.75  98.81±0.97  98.81±0.97  

IV 99.52±0.52 99.54±0.50 99.52±0.52 99.52±0.52 

(In TABLE III-VII, the best results are shown in bold.) 

(2) Effectiveness of AdaD: Assume ‘FNN’ as ‘single FNN 

without prediction ensemble technique’, ‘Ada-FNN’ as ‘FNN 

trained using traditional AdaBoosting ensemble technique’, and 

‘AdaD-FNN’ as ‘FNN trained using proposed AdaD ensemble 

technique’. As can be observed in TABLE IV, AdaD-FNN 

outperforms FNN on all the evaluated metrics with 3.96% in 

accuracy, 3.67% in precision, 3.96% in sensitivity, 4.09% in F1 

score and around 3% in stability. When compared with the Ada-

FNN, AdaD-FNN also has nearly 2% improvements on all 

metrics. There are two reasons for this improvement. First, the 

weight updating concept in the AdaD structure could help the 

training sample focus more on the hard-to-identify samples by 

increasing the weights for the misclassified samples in further 

learning. Second, the lrDecay module inside the AdaD structure 

can offer help in inhibiting the network from remembering the 

noisy information in the dataset and improving the learning of 

complex patterns in the hard-to-identify samples. 

 

TABLE IV 

COMPARISON AGAINST DIFFERENT STRUCTURES 

 
Model Acc (%) Prc (%) Sen (%) F1 (%) 

FNN 95.56±3.90 95.86±3.48 95.56±3.90 95.43±4.12 

Ada-FNN 97.62±1.40 97.72±1.25 97.62±1.40 97.61±1.43 

AdaD-FNN 99.52±0.65 99.53±0.64 99.52±0.65 99.52±0.66 

 

(3) Drop factor comparison: We then tried different settings 

of drop factor 𝜚  in our lrDecay module inside the AdaD 

structure to determine the optimal value of 𝜚. As displayed in 

TABLE V, our framework gives the best classification results 

with 𝜚 = 0.6 . Training with 𝜚 = 1  gives the worst 

performance, further proving that incorporating the lrDecay 

module into AdaD structure could bring improvement in 

performance. In all, the proposed lrDecay in AdaD structure is 

effective. The optimal value for 𝜚  can be varied for another 

dataset. 

 

TABLE V 

COMPARISON AGAINST DIFFERENT DROP FACTORS 𝜚 

 
𝜚 Acc (%) Prc (%) Sen (%) F1 (%) 

1.0 97.62±1.40 97.72±1.25 97.62±1.40 97.61±1.43 

0.8 98.65±0.82 98.67±0.81 98.65±0.82 98.65±0.83 

0.6 99.52±0.52 99.54±0.50 99.52±0.52 99.52±0.52 

0.4 99.13±0.71 99.14±0.70 99.13±0.71 99.13±0.71 

0.2 98.89±0.81 98.91±0.79 98.89±0.81 98.89±0.81 

 

(4) Effectiveness of FNN: We compared the results between 

the disjointed FNN, overlapped FNN, standard CNN using MP 

and standard CNN using AP under the training of AdaD 

structure. The results in TABLE VI clearly reveal that the 

disjointed type of AdaD-FNN outperforms other pooling 

methods, which validates the effectiveness of our proposed 

FNN. This is because the utilization of FP could avoid the rapid 

loss of surrounding information and meanwhile allow more 
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times of viewing the input image at a different scale when 

compared with traditional MP and AP. 

 

TABLE VI 

COMPARISON AGAINST DIFFERENT POOLING METHODS 

 
AdaD- Acc (%) Prc (%) Sen (%) F1 (%) 

FNN-disjoint 99.52±0.52 99.54±0.50 99.52±0.52 99.52±0.52 

FNN-overlap 98.89±0.81 98.91±0.79 98.89±0.81 98.89±0.81 

CNN (MP) 98.97±1.47 99.00±1.41 98.97±1.47 98.97±1.47 

CNN (AP) 98.33±1.30 98.39±1.28 98.33±1.30 98.33±1.30 

 

C. Comparison to the state-of-the-art approaches 

We compared our approach with state-of-the-art COVID-19 

classification methods, as shown in TABLE VII. To conclude, 

our framework outperforms the most of methods among four 

public datasets, indicating the superiority of our framework to 

exploit more robust features from heterogeneous datasets. On 

Site C, our framework shows a lower precision when compared 

with xDNN [34], but the sensitivity of ours is 2.33% higher than 

theirs. In real life, a high-sensitivity diagnosis system would 

offer significant help for the management of COVID-19 due to 

the false-negative problem of RT-PCR. 

 

TABLE VII 

COMPARISON AGAINST STATE-OF-THE-ART APPROACHES 

 
Site Approach Acc (%) Prc (%) Sen (%) F1 (%) 

A 

DNS [17] 89.21±11.65 91.71±8.67 89.21±11.65 88.43±12.59 

RDE [29] 96.35±1.97 97.38±3.98 97.86±1.50 97.62±2.18 

6L-CNN [35] 93.97±1.74 94.33±1.49 93.97±1.74 93.99±1.66 

COVNet [18] 97.94±2.42 98.07±2.18 97.94±2.42 97.90±2.51 

CovidAID [15] 96.83±2.00 97.04±1.84 96.83±2.00 96.80±2.03 

CLCnet [36] 96.11±1.72 96.44±1.45 96.11±1.72 96.13±1.70 

BSN [19] 97.22±1.51 97.27±1.51 97.22±1.51 97.22±1.52 

CSGBBNet [33] 98.01±1.12 98.02±1.13 98.01±1.12 98.01±1.13 

AdaBoost-CNN [32] 98.97±1.47 99.00±1.41 98.97±1.47 98.97±1.47 

Ensemble DCNN [27] 97.14±2.05  97.32±1.78  97.14±2.05  97.14±2.07  

UFN [28] 96.59±0.72  96.67±0.63  96.59±0.72  96.57±0.73  

CUIEM-Covid [26] 98.49±0.76  98.54±0.74  98.49±0.76  98.49±0.76  

Ours 99.52±0.52 99.54±0.50 99.52±0.52 99.52±0.52 

B 

COVID-Net [22] 63.12±2.09 64.03±3.91 57.73±2.94 61.09±1.28 

COVID-Net-R [23] 77.07±1.92 79.48±0.96 74.69±3.91 77.04±2.17 

Series Adapter [24] 70.01±3.82 63.04±4.87 74.91±1.89 67.08±3.09 

Parallel Adapter [25] 74.93±1.83 79.84±1.75 71.81±2.47 73.46±1.68 

MS-Net [37] 76.23±1.81 79.29±1.48 74.07±1.29 76.54±1.73 

SNC [23] 78.69±1.54 78.02±1.34 79.71±1.42 78.83±1.43 

ResNet-50 [21] 82.57±5.81 82.79±5.77 82.57±5.81 82.62±5.79 

DNC [16] 89.1 - - 89.6 

AdaBoost-CNN [32] 92.03±1.53  92.37±1.52  92.03±1.53  91.95±1.48  

CUIEM-Covid [26] 88.86±4.47  89.22±4.55  88.86±4.47  88.90±4.45  

UFN [28] 89.60±2.86  89.69±2.81  89.60±2.86  89.58±2.80  

Ensemble DCNN [27] 84.97±2.30  85.54±2.52  84.97±2.30  85.03±2.35  

Ours 92.96±2.49 93.00±2.49 92.96±2.49 92.91±2.53 

C 

COVID-Net [22] 77.12±0.98 80.04±2.87 70.97±2.37 76.03±1.13 

COVID-Net-R [23] 89.09±1.08 94.58±2.07 83.78±0.62 88.97±0.91 

Series Adapter [24] 85.73±0.71 90.08±0.79 81.91±2.61 86.19±1.65 

Parallel Adapter [25] 82.13±1.91 83.51±1.87 80.02±2.47 82.39±1.78 

MS-Net [37] 87.98±1.31 93.78±2.76 84.91±2.83 88.73±1.20 

SNC [23] 90.83±0.93 95.75±0.43 85.89±1.05 90.87±1.29 

xDNN [34] 97.38 99.16 95.53 97.31 

AdaBoost-CNN [32] 95.16 93.63 96.71 95.14 

CUIEM-Covid [26] 93.59±1.19  93.62±1.16  93.59±1.19  93.59±1.18  

UFN [28] 95.81±0.22 95.85±0.23 95.81±0.22 95.81±0.22 

Ensemble DCNN [27] 95.57±0.51  95.59±0.52  95.57±0.51  95.57±0.51  

Ours 97.86±1.16 97.88±1.16 97.86±1.16 97.86±1.16 

D 

3D AI-based [53] 90.8 79.4 84.0 81.6 

AdaBoost-CNN [32] 89.32±2.51  90.22±1.41  89.32±2.51  89.25±2.59  

CUIEM-Covid [26] 81.98±1.18 82.42±0.90 81.98±1.18 81.83±1.37 

UFN [28] 85.78±2.61 85.97±2.52 85.78±2.61 85.78±2.60 

Ensemble DCNN [27] 83.738±2.23  83.848±2.21  83.738±2.23  83.698±2.21  

Ours 91.97±1.52  92.23±1.48  91.97±1.52  91.97±1.52  

(‘DNS’ refers to ‘DenseNet-201-SVM’; ‘RDE’ refers to ‘ResNets-DCA-EN’; 
‘UFN’ refers to ‘UncertaintyFuseNet’; ‘BSN’ refers to ‘Bayes-SqueezeNet’; 

‘COVID-Net-R’ refers to ‘COVID-Net (Redesign)’; ‘SNC’ refers to 

‘SepNorm + Contrastive’; ‘DNC’ refers to ‘DenseNet-169-CSSL’.) 

 

The reasons behind the good results are: First, preprocessing 

using F-U2MNet-C can help AdaD-FNN better capture the 

semantic representations and facilitate a smooth training 

process by eliminating the interference factors. Second, the 

weight updating concept helps the training sample focus more 

on the hard-to-identify samples. Thirdly, with the incorporation 

of lrDecay module, the proposed network was inhibited from 

remembering the noisy information, and its learning ability of 

complex patterns was improved. Fourth, FP layers provide 

more opportunities to view the input image at a different scale, 

which improves the recognition capability of the network. 

D. Explainability 

To understand the manner of the framework, gradient-CAM 

[54] was applied on some randomly chosen sample images. For 

each category, the generated attention heatmaps and the 

corresponding manual delineations are shown in Fig 6.  

 

      
COVID    TB   HC   COVID    TB    HC 

Fig 6. Heatmaps (left three) and delineations (right three) of 

COVID-19, TB and HC samples. 

 

The results demonstrate that for COVID-19 and TB images, 

our framework focuses more on lesion areas (circled in red) and 

less on non-lesion areas. For HC images, the model's attention 

is not focused on any specific area, since there are no lesion 

areas in the HC group. In all, these heatmaps show how our 

framework predicts COVID-19, TB, and HC images in a clear 

and understandable manner. The concerns of our framework are 

highly consistent with the standard already approved in the 

medical community, which adds confidence that it can assist the 

diagnosis of radiologists in the real world. 

V. CONCLUSION 

In this study, we proposed a novel image preprocessing model 

F-U2MNet-C and a novel classification model AdaD-FNN, 

which entails five improvements: (i) proposed F-U2MNet-C 

with the usage of fuzzy partitions and ECC stacking, (ii) 

proposed U2MNet (iii) novel AdaD-FNN model (iv) usage of 

fractional max-pooling in proposed FNN, (v) novel lrDecay 

module. Through the help of these improvements, we created 

an explainable system for COVID-19 detection that shows 

advantages in diagnostic rate and stability not only on the public 

datasets but also when compared with other state-of-the-art 

deep learning approaches. It achieved an accuracy of 99.52% 

on TLDCA, 92.96% on UCSD-Al4H, 97.86% on SARS-CoV-
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2 and 91.97% on TCIA. Although the good performance is 

achieved, the limitation of our framework still exists. In our 

framework, the network is sensitive to abnormal samples, 

which may obtain high weight in iteration and affect the 

prediction accuracy of the final strong classifier. Future works 

will mainly focus on the incorporation of more advanced, rapid 

deep learning techniques into our system. Besides, we are 

interested in pretraining our framework on more large-scale 

datasets, which contain more classes of chest diseases, such as 

community-acquired pneumonia. 
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