## SUPPLEMENTARY MATERIALS

# Abietic, Maleopimaric and Quinopimaric Dipeptide Ugi-4CR Derivatives and Their Potency against Influenza A and SARS-CoV-2 

Elena V. Tretyakova ${ }^{\text {a,1, },}$, Xinyuan Ma ${ }^{\text {b,c, }, ~ O x a n a ~ B . ~ K a z a k o v a ~}{ }^{\text {a }}$, Anna A. Shtro ${ }^{\text {d }}$,<br>Galina D. Petukhova ${ }^{\text {d }}$, Anna A. Smirnova, ${ }^{\text {a }}$ Huan Xu ${ }^{\text {b }}$, Sulong Xiao ${ }^{\text {b }}$<br>${ }^{a}$ Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation<br>${ }^{b}$ State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China<br>${ }^{\text {c Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China }}$<br>${ }^{d}$ Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova St., St. Petersburg 197376, Russian Federation


#### Abstract

A set of 12 abietane diterpene derivatives have been synthesized by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and $\mathrm{IC}_{50}$ values from 2 to $32 \mu \mathrm{M}$ against influenza virus. Compound $\mathbf{1 1}$ was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with $\mathrm{EC}_{50}$ value of 80.96 $\mu \mathrm{M}$. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.


Keywords: Ugi-4CR; Diterpenes; Abietic acid; Maleopimaric acid;
Dihydroquinopimaric acid; Influenza A; SARS-CoV-2

[^0]
## 3. Experimental

## Chemistry

## General

The spectra were recorded at the Center for the Collective Use "Chemistry" of the Ufa Institute of Chemistry of the UFRC RAS and RCCU "Agidel" of the UFRC RAS. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a "Bruker AM-500" (Bruker, Billerica, MA, USA, 500 and 125.5 MHz respectively, $\delta, \mathrm{ppm}, \mathrm{Hz}$ ) in $\mathrm{CDCl}_{3}$, internal standard tetramethylsilane. Melting points were detected on a micro table "Rapido PHMK05" (Nagema, Dresden, Germany). Optical rotations were measured on a polarimeter "Perkin-Elmer 241 MC" (Perkin Elmer, Waltham, MA, USA) in a tube length of 1 dm . Elemental analysis was performed on a Euro EA-3000 CHNS analyzer (Eurovector, Milan, Italy); the main standard is acetanilide. Thin-layer chromatography analyses were performed on Sorbfil plates (Sorbpolimer, Krasnodar, Russian Federation), using the solvent system petroleum ester - ethyl acetate, 1:1. Substances were detected by $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ with subsequent heating to $100-120{ }^{\circ} \mathrm{C}$ for $2-3 \mathrm{~min}$. Abietic 1, dihydroquinopimaric 2 and maleopimaric 3 acids were synthesized according (Harris et al. 1952), (Herz et al. 1969), (Zalkov et al. 1962).

## General procedure for UGI reactions (GP)

Paraformaldehyde ( 1 mmol ) was suspended in $10-20 \mathrm{~mL}$ dry methanol, followed by the addition of amine ( 1.2 mmol ). The suspension was stirred for 2 h at room temperature. The diterpenic acid ( 1 mmol ) and the 2,6-dimethoxyphenylisocyanide ( 1 mmol ) were added, and the solution was stirred for additional 5-7 days. The reaction mixture was poured into aqueous $\mathrm{HCl}(2 \mathrm{M})$ and the precipitate formed was filtered off, washed until neutral, and dried in air. The residue was purified by column chromatography using petroleum ether: ethyl acetate as eluent.

## N-butyl-N-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-(18-oxoabieta-7,13-dien-18-

yl)carboxamide (4). Compound 4 was prepared according to GP by reaction of abietic acid $\mathbf{1}$ ( $0.30 \mathrm{~g}, 1 \mathrm{mmol}$ ), paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), $n$-butylamine ( $0.09 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether lethyl acetate, $7: 1$ ) afforded compound $4(0.34 \mathrm{~g}, 66 \%)$ as a white solid; $\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum ether / ethyl acetate, 1:1); $\mathrm{mp}=93-96^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-103^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ ( $500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 0.93 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$ ), $1.06\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15\right), 1.07\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H}-16$ ), 1.12-1.31 (m, 4H, H-1, H-3), 1.39 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-4$ '), 1.43 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$ ), 1.55-2.12 (m, 13H, H-2, H-5, H-6, H-11, H-12, H-2', H-3'), 2.18 ( $\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-10^{\prime}, \mathrm{H}-10^{\prime}{ }^{\prime}$ ), 2.28-240 (m, 2H, H-9, H-14), 3.61-3.67 (m, 2H, H-1'), 4.11-4.19 (m, 2H, H-5'), 5.37 (br. s., 1H, H-7), 5.79 (br. s., 1H,
$\mathrm{H}-17$ ), 6.89-7.18 (m, 3H, H-8', H-8'’, H-9'), 8.33 (br. s., $1 \mathrm{H}, \mathrm{NH}$ ); $\delta_{\mathrm{C}}$ ( $125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 14.10 (C4'), 14.56 (C18), 18.47 (C2), 18.59 (C12', C12’’), 20.32 (C3'), 21.03 (C19), 21.55 (C15, C16), 22.51 (C11), 25.91 (C6), 27.45 (C12), 29.70 (C2’), 34.91 (C14), 36.41 (C3), 37.65 (C1), 45.29 ( C 1 '), 46.70 (C4), 51.34 (C9), 53.48 (C5), 53.74 (C10), 54.20 (C5'), 120.57 (C7),
 145.73 (C13), 168.99 (C21), 179.50 (C20). Analysis calculated for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2}$ (518.98): C 78.72, H 9.71, N 5.40; found: C 78.75; H 9.70; N 5.38.

## Methyl $\quad \mathrm{N}$-\{2-[(2,6-dimethylphenyl)amino]-2-oxoethyl\}-N-(18-oxoabieta-7,13-dien-18-

 $\mathbf{y l}) \mathbf{g l y c i n a t e}$ (5). Compound $\mathbf{5}$ was prepared according to GP by reaction of abietic acid $\mathbf{1}$ ( 0.30 $\mathrm{g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), glycine methyl ester hydrochloride ( $0.15 \mathrm{~g}, 1.2$ mmol ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether / ethyl acetate, 7:1) afforded compound $5(0.37 \mathrm{~g}, 70 \%)$ as a white solid; $\mathrm{R}_{\mathrm{f}}=$ 0.60 (petroleum ether /ethyl acetate, $1: 1$ ); $\mathrm{mp}=112-114^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-37^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ ( $500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 0.93 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$ ), $1.06\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15\right), 1.07\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H}-16$ ), 1.12-1.31 (m, 4H, H-1, H-3), 1.43 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$ ), 1.55-2.12 (m, 9H, H-2, H-5, H-6, H11, H-12),-2.17 (s, 6H, H-12', H-12''), 2.28-2.39 (m, 2H, H-9, H-14), 3.75-3.77 (m, 2H, H-1'), 3.78 (s, 3H, H-23), 4.32-4.39 (m, 2H, H-2'), 5.37 (br. s., 1H, H-7), 5.77 (br. s., 1H, H-17), 7.047.14 (m, 3H, H-5', H-5', H-6'), 8.85 (br. s., $1 \mathrm{H}, \mathrm{NH}$ ); $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) 14.56 (C18), 18.47 (C2), 18.53 (C12', C12’'), 21.03 (C19), 21.55 (C15, C16), 22.51 (C11), 25.91 (C6), 27.45 (C12), 34.91 (C14), 36.41 (C3), 37.65 (C1), 45.29 (C1'), 46.70 (C4), 51.26 (C9), 53.50 (C5), 54.97 (C23), 55.29 (C10), 55.32 (C2'), 120.60 (C7), 122.45 (C17), 126.95 (C6'), 127.43 (C5'), 128.28 (C5' ), 133.51 (C3'), 135.28 (C9'), 135.32 (C9' '), 135.39 (C8), 145.10 (C13), 167.48 (C22), 171.23 (C21), 179.36 (C20). Analysis calculated for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4}$ (534.74): C 74.12, H 8.67, N 5.24; found: C 74.23; H 8.65; N 5.28.
## Methyl $\quad \mathrm{N}$-\{2-[(2,6-dimethylphenyl)amino]-2-oxoethyl\}-N-(18-oxoabieta-7,13-dien-18-

 $\mathbf{y l}$ )phenylalaninate (6). Compound $\mathbf{6}$ was prepared according to GP by reaction of abietic acid $\mathbf{1}$ $(0.30 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde $(0.03 \mathrm{~g}, 1 \mathrm{mmol})$, $L$-phenylalanine methyl ester hydrochloride ( $0.26 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether / ethyl acetate, 5:1) afforded compound 4 ( 0.51 g , $82 \%$ ) as a white solid; $\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum ether / ethyl acetate, $1: 1$ ); $\mathrm{mp}=118-120^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=$ $-27^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18), 1.06\left(\mathrm{~d},{ }^{2} \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{H}-15), 1.07\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-16\right), 1.12-1.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 1.43$ (s, 3H, H-19), 1.552.12 (m, 9H, H-2, H-5, H-6, H-11, H-12), 2.19 ( $\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-12$ ', H-12''), 2.24-2.32 (m, 2H, H-9, H14), 3.44-3.48 (m, 2H, H-2'), 3.74-3.76 (m, 1H, H-1'), 3.84 (s, 3H, H-23), 4.42-4.46 (m, 2H, H-7'), 5.45 (br. s., 1H, H-7), ), 5.85 (br. s., 1H, H-17), 7.06-7.31 (m, 8H, H-4', H-4'’, H-5', H-5'’, H-6', H-10', H-10'’, H-11'), 9.65 (br. s., 1H, NH); $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) 14.46 (C18), 18.14 (C2), 18.79 (C12', C12’’), 21.03 (C19), 21.55 (C15, C16), 22.51 (C11), 25.91 (C6), 27.45 (C12), 34.81 (C2'), 34.91 (C14),-36.41 (C3), 37.65 (C1), 46.35 (C4), 51.53 (C9), 53.17 (C5, C23), 53.52 ( C 10 ), 55.53 ( C 7 ’), 67.74 ( $\mathrm{Cl}^{\prime}$ ), 120.57 ( C 7 ), 122.46 ( C 17 ), 127.26 ( $\mathrm{C} 11^{\prime}$ ), 127.40 ( $\mathrm{C}^{\prime}$ ), 128.41 (C5', C5'’), 129.05 (C10', C10'’), 129.34 (C4', C4' '), 133.63 (C8'), 135.10 (C9', C9'’), 135.82 (C8), 137.29 (C3'), 145.14 (C13), 167.25 (C22), 172.41 (C21), 178.07 (C20). Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4}$ (624.87): C 76.89, H 8.39, N 4.48; found: C 76.83; H 8.35; N 4.50 .

## Methyl $\quad \mathbf{N}$-\{2-[(2,6-dimethylphenyl)amino]-2-oxoethyl\}-N-(18-oxoabieta-7,13-dien-18-

 yl)tyrosinate (7). Compound $\mathbf{7}$ was prepared according to GP by reaction of abietic acid $\mathbf{1}$ ( 0.30 $\mathrm{g}, 1 \mathrm{mmol}$ ), paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), $L$-tyrosine methyl ester hydrochloride ( 0.28 g , 1.2 mmol ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether / ethyl acetate, 5:1) afforded compound $7(0.51 \mathrm{~g}, 80 \%)$ as a white solid; $\mathrm{R}_{\mathrm{f}}$ $=0.60$ (petroleum ether / ethyl acetate, $1: 1$ ); $\mathrm{mp}=133-135^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-69^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18), 1.06\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15\right),-1.07\left(\mathrm{~d},{ }^{2} J=6.8\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}-16$ ), 1.12-1.31 (m, 4H, H-1, H-3), 1.45 (s, 3H, H-19), 1.59-2.10 (m, 9H, H-2, H-5, H6, H-11, H-12), 2.15 (s, 6H, H-12', H-12''), 2.24-2.40 (m, 2H, H-9, H-14), 3.38-3.42 (m, 2H, H2'), 3.67-3.73 (m, 1H, H-1'), 3.82 (s, 3H, H-23), 4.43-4.47 (m, 2H, H-7'), 5.41 (br. s., 1H, H-7), 5.82 (br. s., 1H, H-17), 6.64-7.28 (m, 7H, H-4', H-4', H-5', H-5', H-10', H-10', H-11'), 9.74 (br. s., 2H, OH, NH); $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) 14.21 (C18), 18.17 (C2), 18.78 (C12', C12’’), 20.99 (C19), 21.48 (C15), 21.52 (C16), 22.52 (C11), 25.85 (C6), 27.42 (C12), 33.49 (C14), 34.83 (C2'), 34.91 (C3), 36.89 (C1), 37.67 (C4), 45.21 (C9), 46.24 (C10), 51.46 (C5, C23), 53.13 (C7'), 60.61 (C1'), 116.01 (C5', C5'’), 120.60 (C7), 122.52 (C17), 127.56 (C11'), 127.98 (C3'), 128.47 (C10', C10'’), 130.24 (C4', C4'’), 133.42 (C8'), 135.08 (C8), 135.69 (C9', C9'’), 145.04 (C13), 155.76 (C6'), 168.15 (C22), 172.67 (C21), 178.31 (C20). Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{5}$ (640.87): C 74.97, H 8.18, N 4.37; found: C 74.95; H 8.15; N 4.38.N-butyl-N-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-7-carboxamide (8). Compound 8 was prepared according to GP by reaction of dihydroquinopimaric acid $2(0.41 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), butylamine $(0.09 \mathrm{~g}, 1.2 \mathrm{mmol})$ and 2,6-dimethylphenylisocyanide $(0.13 \mathrm{~g}, 1 \mathrm{mmol})$. Column chromatography (silica gel, petroleum ether / ethyl acetate, 5:1) afforded compound $\mathbf{8}(0.47 \mathrm{~g}$, $75 \%$ ) as a colorless solid; $\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether / ethyl acetate, $1: 1$ ); $\mathrm{mp}=107-109{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=-19^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18), 0.85-0.98(\mathrm{~m}, 2 \mathrm{H}$,

H-6), $\left.0.94\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-16\right), 0.97\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-17\right), 1.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 1.26(\mathrm{~s}$, 3H, H-19), 1.18-1.69 (m, 16H, H-5, H-6b, H-8, H-9, H-10, H-10b, H-11, H-2', H-3'), 2.18 (s, $6 \mathrm{H}, \mathrm{H}-10$ ', H-10''), 2.39 (t, ${ }^{2} J 6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ ), 2.40-2.58 (m, 4H, H-2, H-3), 2.85 (br. s, 1H, H-12), 3.22 (d, ${ }^{2}$ J $2.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$ ), 3.07-3.11 (m, 1H, H4a), 3.55-3.58 (m, 2H, H-1'), 4.064.20 (s, 2H, H-5'), 5.54 (br. s., 1H, H-14), 7.03 (br. s., 3H, H-8', H-8'’, H-9'), 8.25 (br. s., 1H, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.85$ (C4’), 14.07 (C17), 15.91 (C16), 17.25 (C18), 18.55 (C12’, C12'), 18.91 (C9), 19.56 (C6), 20.18 (C3'), 20.57 (C19), 21.44 (C2'), 29.49 (C11), 32.12 (C15), 35.87 (C5), 38.04 (C8), 40.82 (C4b), 44.61 (C10), 46.73 (C10a), 47.24 (C12), 49.65 (C7), 50.94 (C1’), 53.89 (C5’), 54.58 (C6b), 56.46 (C10b), 58.94 (C1a), 61.21 (C2), 67.67 (C3), 70.47 (C4a), 125.65 (C14), 125.75 (C9'), 127.15 (C7', C7’’), 133.75 (C8', C8’’), 135.19 (C6'), 149.55 (C13), 168.83 (C21), 180.02 (C20), 205.64 (C4), 212.96 (C1). Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{4}$ (628.90): C 76.39, H 8.98, N 4.45; found: C 76.33; H 8.96; N 4.45.

Methyl N -(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-7-carbonyl)glycinate (9). Compound 9 was prepared according to GP by reaction of dihydroquinopimaric acid $2(0.41 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), glycine methyl ester hydrochloride ( $0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1$ mmol). Column chromatography (silica gel, petroleum ether / ethyl acetate, 5:1) afforded compound $9(0.51 \mathrm{~g}, 79 \%)$ as a colorless solid; $\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether / ethyl acetate, 1:1); $\mathrm{mp}=170-172{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+59^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18)$, $0.85-0.98$ (m, 2H, H-6), $0.94\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-16\right), 0.97\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-17\right), 1.26$ (s, 3H, H-19), 1.18-1.69 (m, 12H, H-5, H-6b, H-8, H-9, H-10, H-10b, H-11), 2.19 (s, 6H, H-12', H12 ''), 2.39 (t, ${ }^{2} J 6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ ), 2.40-2.58 (m, 4H, H-2, H-3), 2.85 (br. s, 1H, H-12), 3.22 (d, $\left.{ }^{2} J 2.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}\right), 3.07-3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4 \mathrm{a}), 3.74-3.79$ (m, 2H, H-1'); 3.81 (s, 3H, H-23), 4.16-4.20 (m, 2H, H-2'), 5.56 (br. s., 1H, H-14), 7.07-7.11 (m, 3H, H-5', H-5'’, H-6'), 8.75 (br. s., $1 \mathrm{H}, \mathrm{NH}$ ); $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) 14.07 (C17), 15.91 (C16), 17.25 (C18), 18.56 (C12’, C12'’), 18.91 (C9), 19.56 (C6), 20.57 (C19), 29.49 (C11), 32.12 (C15), 35.87 (C5), 38.04 (C8), 40.82 (C4b), 44.66 (C10), 46.54 (C1’), 46.73 (C10a), 47.30 (C12), 49.81 (C7), 54.58 (C6b), 54.91 (C23), 55.29 (C2'),-56.46 (C10b), 58.94 (C1a), 59.02 (C2), 60.60 (C3), 66.39 (C4a), 125.61 (C14), 127.49 (C6'), 128.36 (C5', C5’'), 133.46 (C3'), 135.24 (C9', C9’'), 149.57 (C13), 167.24 (C22), 170.65 (C21), 179.51 (C20), 208.91 (C4), 209.82 (C1). Analysis calculated for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{6}$ (644.85): C 72.64, H 8.13, N 4.34; found: C 72.61; H 8.15; N 4.35.

Methyl N-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-(13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-

7-carbonyl)phenylalaninate (10). Compound 10 was prepared according to GP by reaction of dihydroquinopimaric acid $2(0.41 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), Lphenylalanine methyl ester hydrochloride ( $0.26 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide $(0.13 \mathrm{~g}, 1 \mathrm{mmol})$. Column chromatography (silica gel, petroleum ether / ethyl acetate, 3:1) afforded compound $10(0.59 \mathrm{~g}, 80 \%)$ as a colorless solid; $\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether / ethyl acetate, $1: 1) ; \mathrm{mp}=101-103{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-23^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.55$ (s, 3H, H-18), 0.81-0.98 (m, 2H, H-6), $0.95\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-16\right), 0.97\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, H-17), 1.20 (s, 3H, H-19), 1.10-1.69 (m, 12H, H-5, H-6b, H-8, H-9, H-10, H-10b, H-11), 2.17 (s, 3H, H-12'), 2.23 (s, 3H, H-12''), 2.39-2.58 (m, 5H, H-2, H-3, H-15), 2.80 (br. s, 1H, H-12), 3.07-3.11 (m, 1H, H4a), 3.20 (d, $\left.{ }^{2} J 2.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}\right), 3.44-3.48$ (m, 2H, H-2'), 3.51-3.53 (m, $1 \mathrm{H}, \mathrm{H}-1$ '), 3.82 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-23$ ), 4.38-4.46 (m, 2H, H-7'), 5.53 (br. s., 1H, H-14), 7.01-7.28 (m, 8H, H-4', H-4', H-5', H-5', H-6', H-10', H-10'’, H-11'), 9.41 (br. s., 1H, NH). $\delta_{\mathrm{C}}$ (125.76 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 14.08 (C17), 16.79 (C12', C12'’), 16.83 (C16), 17.25 (C18), 17.91 (C9), 19.91 (C6), 20.78 (C19), 21.79 (C11), 27.79 (C15), 32.89 (C2'), 34.69 (C5), 36.65 (C8), 37.71 (C4b), 37.87 (C10), 38.29 (C10a), 38.48 (C12), 38.93 (C7), 38.96 (C6b), 41.27 (C10b), 46.75 (C1a), 49.09 (C2), 53.52 (C23), 54.88 (C3), 55.91 (C4a, C7’), 60.46 (C1'), 125.48 (C14), 127.46 (C11'), 127.60 (C6'), 128.12 (C5', C5''), 128.41 (C10', C10''), 129.03 (C4', C4'), 129.29 (C8'), 135.07 (C9', C9’'), 135.21 (C3'), 149.48 (C13), 160.11 (C22), 166.31 (C21), 183.87 (C20), 209.03 (C4), 210.22 (C1). Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{6}$ (734.98): C 75.17, H 7.95, N 3.81; found: C 75.20; H 7.95; N 3.28 .

Methyl $\mathbf{N}$-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-(13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-

7-carbonyl)tyrosinate (11). Compound 11 was prepared according to GP by reaction of dihydroquinopimaric acid $2(0.41 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde $(0.03 \mathrm{~g}, 1 \mathrm{mmol}), L$-tyrosine methyl ester hydrochloride ( $0.28 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1$ mmol ). Column chromatography (silica gel, petroleum ether / ethyl acetate, 2:1) afforded compound $11(0.64 \mathrm{~g}, 85 \%)$ as a colorless solid; $\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether / ethyl acetate, 1:1); $\mathrm{mp}=147-149{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-18^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18)$, $0.81-0.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 0.95\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-16\right), 0.97\left(\mathrm{~d},{ }^{2} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-17\right), 1.23$ (s, 3H, H-19), 1.18-1.69 (m, 12H, H-5, H-6b, H-8, H-9, H-10, H-10b, H-11), 2.19 (s, 6H, H-12', H12' '), 2.39-2.60 (m, 5H, H-2, H-3, H-15), 2.80 (d, $\left.{ }^{2} J 2.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}\right), 3.18-3.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4 \mathrm{a}$, H-12), 3.33-3.35 (m, 2H, H-2'), 3.65-3.74 (m, 1H, H-1'), 3.79 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-23$ ), 4.43-4.50 (m, 2H, H-7'), 5.53 (br. s., 1H, H-14), 6.75-6.77 (m, 2H, H-5', H-5''), 6.97-7.07 (m, 5H, H-4', H-4', H10', H-10'’, H-11'), 9.69 (br. s., 2H, OH, NH); $\delta_{\mathrm{C}}$ ( $125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 16.11 (C17), 17.94 (C16), 17.97 (C18), 18.43 (C12', C12'’), 18.75 (C9), 19.93 (C6), 20.78 (C19), 20.81 (C11),
21.87 (C15), 27.58 (C5), 32.89 (C8), 33.42 (C4b), 34.79 (C2'), 34.02 (C10), 37.30 (C10a), 38.51 (C12), 38.89 (C7), 41.32 (C6b), 41.37 (C10b), 46.60 (C1a), 49.34 (C2), 53.19 (C23), 54.97 (C3), 56.19 (C4a), 60.51 (C7'), 67.57 (C1'), 116.14 (C5', C5’'), 125.64 (C14), 127.51 (C11'), 125.64
 135.01 (C9''), 149.49 (C13), 155.81 (C6'), 167.77 (C22), 172.69 (C21), 178.48 (C20), 209.27 (C4), 210.59 (C1). Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{7}$ (750.98): C 73.57, H 7.79, N 3.73; found: C 73.55; H 7.80; N 3.75.

## N-butyl-N-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-

 c]furan-6-carboxamide (12). Compound 12 was prepared according to GP by reaction of maleopimaric acid $3(0.40 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), butylamine ( 0.09 g , 1.2 mmol ) and 2,6-dimethylphenylisocyanide $(0.13 \mathrm{~g}, 1 \mathrm{mmol})$. Column chromatography (silica gel, petroleum ether / ethyl acetate, 5:1) afforded compound $12(0.44 \mathrm{~g}, 72 \%)$ as a white solid; $\mathrm{R}_{\mathrm{f}}$ $=0.50$ (petroleum ether / ethyl acetate, 1:1); $\mathrm{mp}=117-119{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-48^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.65-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1_{\mathrm{ax}}, \mathrm{H}-2\right), 0.93\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H}-18), 0.98$ (d, $\left.{ }^{2} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-19\right), 1.17$ (s, 3H, H-21), 1.01 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-\mathrm{H}^{\prime}$ ), 1.20-1.81 (m, $15 \mathrm{H}, \mathrm{H}-1_{\mathrm{eq}}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-9, \mathrm{H}-11, \mathrm{H}-2$ ', H-3'), 2.03 ( $\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-10$ ', H-10''), 2.25 (d, ${ }^{2} \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17), 2.43\left(\mathrm{dt},{ }^{2} J=3.0,{ }^{3} J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16\right), 2.69\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 15), 3.08 (d, ${ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ ), $3.59-3.63$ (m, 2H, H-1'), 4.06-4.23 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-5$ '), 5.53 (s, $1 \mathrm{H}, \mathrm{H}-14$ ), 7.06 (br. s., $3 \mathrm{H}, \mathrm{H}-8^{\prime}, \mathrm{H}-8^{\prime}$, H-9'), 8.22 (br. s., $1 \mathrm{H}, \mathrm{NH}$ ); $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) 14.71 (C4'), 15.73 (C20), 16.74 (C21), 17.07 (C2), 18.55 (C12', C12'), 19.96 (C18), 20.14 (C3'), 20.56 (C19), 21.65 (C6), 22.09 (C2’), 27.11 (C11), 30.42 (C17), 32.75 (C7), 34.73 (C12), 35.65 (C3), 35.97 (C1), 36.75 (C10), 40.41 (C8), 45.65 (C15), 46.64 (C4), 49.03 (C5), 50.79 (C1’), 52.97 (C16), 53.60 (C9), 60.38 (C5'), 125.11 (C9'), 125.29 (C14), 127.23 (C7’, C7’’), 133.78 (C6'), 135.26 (C8', C8’’), 148.08 (C13), 168.69 (C25), 171.00 (C24), 177.87 (C23), 179.78 (C22); Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{5}$ (616.84): C 73.99, H 8.50, N 4.54; found: C 74.00; H 8.52; N 4.51.
## Methyl N -(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-(12-isopropyl-6,9a-dimethyl-1,3-

 dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carbonyl)glycinate (13). Compound $\mathbf{1 3}$ was prepared according to GP by reaction of maleopimaric acid $3(0.40 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), glycine methyl ester hydrochloride ( $0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether / ethyl acetate, 5:1) afforded compound $\mathbf{1 3}(0.48 \mathrm{~g}$, $76 \%$ ) as a white solid; $\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum ether / ethyl acetate, $1: 1$ ); $\mathrm{mp}=121-123{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-$$15^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.75-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1_{\mathrm{ax}}\right.$, $\mathrm{H}-2), 0.93\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-18\right), 0.98\left(\mathrm{~d},{ }^{2} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-19\right), 1.28$ (s, 3H, H-21), 1.201.81 ( $\mathrm{m}, 11 \mathrm{H}, \mathrm{H}-1_{\text {eq }}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-9, \mathrm{H}-11$ ), 1.97 (d, ${ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17$ ), 2.18 (s, $6 \mathrm{H}, \mathrm{H}-12$ ', H-12''), 2.25 (dt, ${ }^{2} J=3.0,{ }^{3} J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16$ ), 2.47 (d, ${ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ ), 2.72 (d, ${ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ ), 3.06-3.09 (m, 2H, H-1'); 3.79 (s, $3 \mathrm{H}, \mathrm{H}-26$ ), 4.14-4.18 (m, 2H, H-2'), 5.53 (s, 1H, H-14), 7.05-7.11 (m, 3H, H-5', H-5', H-6'), 8.62 (br. s., 1H, NH); $\delta_{\mathrm{C}}(125.76$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 15.73 (C20), 16.74 (C21), 17.07 (C2), 19.81 ( $\mathrm{C} 12{ }^{\prime}, \mathrm{C} 12$ ''), 19.99 ( C 18 ), 20.61 (C19), 21.88 (C6), 27.07 ( C 11 ), 32.76 (C17), 34.70 (C7), 35.64 (C12), 36.52 (C3), 37.45 (C1), 37.97 (C10), 40.38 (C8), 45.67 (C15, C1'), 46.35 (C4), 9.89 (C5), 52.75 (C16), 53.03 (C9), 53.52 (C26), 55.01 (C2'),-125.29 (C6'), 127.49 (C14), 128.35 ( $\mathrm{C}^{\prime}$ ', C5'), 133.47 (C3'), 135.26 (C9', C9''), 148.11 (C13), 167.18 (C27), 171.06 (C24), 171.23 (C25), 172.89 (C23), 179.59 (C22); Analysis calculated for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7}$ (632.80): C 70.23, H 7.65, N 4.43; found: C 70.20; H 7.66; N 4.45.

Methyl $\mathbf{N}$-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-(12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carbonyl)phenylalaninate (14). Compound 14 was prepared according to GP by reaction of maleopimaric acid $3(0.40 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde ( $0.03 \mathrm{~g}, 1 \mathrm{mmol}$ ), $L$ phenylalanine methyl ester hydrochloride ( $0.26 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide ( $0.13 \mathrm{~g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether / ethyl acetate, 3:1) afforded compound $\mathbf{1 4}(0.61 \mathrm{~g}, 85 \%)$ as a white solid; $\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum ether / ethyl acetate, $1: 1) ; \mathrm{mp}=125-127^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-28^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.59(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-20), 0.65-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1_{\mathrm{ax}}, \mathrm{H}-2\right), 0.93\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-18\right), 0.98\left(\mathrm{~d},{ }^{2} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{H}-19$ ), 1.23 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-21$ ), $1.20-1.81$ ( $\mathrm{m}, 11 \mathrm{H}, \mathrm{H}-1_{\text {eq }}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-9, \mathrm{H}-11$ ), 2.23 ( s , $6 \mathrm{H}, \mathrm{H}-12$ ', H-12'’), $2.25\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17\right), 2.43\left(\mathrm{dt},{ }^{2} J=3.0,{ }^{3} J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16\right)$, $2.69\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15\right), 3.08\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12\right), 3.05-3.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ ) , 3.513.53 (m, 1H, H-1'), 3.85 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-26$ ), 4.38-4.46 (m, 2H, H-7'), 5.53 (s, 1H, H-14), 7.05-7.32 (m, 8H, H-4', H-4', H-5', H-5'', H-6', H-10', H-10', H-11'), 9.52 (br. s., 1H, NH); $\delta_{\mathrm{C}}$ ( 125.76 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 15.73 (C20), 16.74 (C21), 16.80 ( C 12 ', $\mathrm{C} 12^{\prime \prime}$ ), 20.00 (C2), 20.62 (C18), 21.60 (C19), 21.81 (C6), 27.00 (C11), 27.16 (C17), 32.75 (C7), 32.77 (C2'), 34.77 ( C 12 ), 35.63 ( C 3 ), 36.43 (C1), 37.97 (C10), 40.43 (C8), 45.65 (C15), 46.70 (C4), 49.06 (C5), 49.61 (C16), 53.02 (C9), 53.21 (C26), 53.67 (C7'), 67.41 (C1'), 125.13 (C11'), 125.31 ( C 14 ), 127.46 ( $\mathrm{C}^{\prime}$ ) ), 128.19 (C5', C5''), 128.45 (C10', C10' '), 129.35 (C8'), 129.03 (C4', C4' '), 135.03 (C9', C9'’), 137.13 (C3'), 148.11 (C13), 167.23 (C25), 171.14 (C24), 172.37 (C27), 172.84 (C23), 178.61 (C22); Analysis calculated for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{7}$ (722.92): C 73.10, H 7.53, N 3.88; found: C 73.13; H 7.55; N 3.90 .

Methyl $\mathbf{N}$-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N-(12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carbonyl)tyrosinate (15). Compound 15 was prepared according to GP by reaction of maleopimaric acid $3(0.40 \mathrm{~g}, 1 \mathrm{mmol}),(0.30 \mathrm{~g}, 1 \mathrm{mmol})$, paraformaldehyde $(0.03 \mathrm{~g}, 1 \mathrm{mmol}), L$ tyrosine methyl ester hydrochloride ( $0.28 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) and 2,6-dimethylphenylisocyanide ( 0.13 $\mathrm{g}, 1 \mathrm{mmol}$ ). Column chromatography (silica gel, petroleum ether /ethyl acetate, 2:1) afforded compound $15(0.62 \mathrm{~g}, 84 \%)$ as a white solid; $\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum ether /ethyl acetate, $1: 1$ ); mp $=162-164{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-64^{\circ}\left(\mathrm{c}=0.001, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20)$, $0.65-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1_{\mathrm{ax}}, \mathrm{H}-2\right), 1.02\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-18\right), 1.04\left(\mathrm{~d},{ }^{2} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-19\right)$, 1.17 (s, 3H, H-21), 1.20-1.81 (m, 11H, H-1 $1_{\text {eq }}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-9, \mathrm{H}-11$ ), 2.18 ( $\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-$ 12 ', H-12''), $2.27\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17\right), 2.67\left(\mathrm{dt},{ }^{2} J=3.0,{ }^{3} J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16\right), 2.69$ (d, ${ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ ), 3.08 (br.s., $1 \mathrm{H}, \mathrm{H}-12$ ), $3.30-3.38$ (m, 2H, H-2'), 3.69-3.74 (m, 1H, H$1^{\prime}$ ), 3.84 (s, 3H, H-26), 4.43-4.50 (m, 2H, H-7'), $5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14), 6.70-6.71$ (m, 2H, H-5', H5' '), 6.98-7.12 (m, 5H, H-4', H-4', H-10', H-10', H-11'), 9.72 (br. s., 2H, OH, NH); $\delta_{\mathrm{C}}$ ( 125.76 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 15.98 (C20), 16.75 (C21), 17.71 (C2), 18.77 (C12', C12'’), 20.58 (C18), 20.61 (C19), 21.59 (C6), 21.78 (C11), 26.98 (C17), 32.77 (C7), 34.73 (C12), 34.75 (C2’), 35.62 (C3), 37.33 (C1), 37.93 (C10), 40.41 (C8), 45.67 (C15), 46.34 (C4), 49.51 (C5), 53.21 (C16), 53.27

 (C9''), 148.16 (C13), 155.73 (C6'), 167.85 (C25), 171.30 (C27), 172.56 (C24), 172.90 (C23), 178.62 (C22); Analysis calculated for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{8}$ (738.92): C 71.52, H 7.37, N 3.79; found: C 71.55; H 7.35; N 3.78.

## Biological assays

## Antiviral activity against influenza virus A

## Viruses and cells

The A/Puerto Rico/8/34 (H1N1) influenza virus was obtained from the Smorodintsev Research Institute of Influenza viral collection. Being prepared to the experiments, virus was propagated in the allantoic cavities of $9-11$ day old chicken embryos for 48 h at $36^{\circ} \mathrm{C}$. MDCK (Madin-Darby canine kidney) cells were obtained from Smorodintsev Research Institute of Influenza cell collection. 293T cell line was purchased from Stem Cell Bank, Chinese Academy of Sciences (China). Human ACE2-overexpressed baby hamster kidney cells (BHK-21-hACE2 cells) secrete Gaussia luciferase (Gluc) were provided by State Key Laboratory of Virology, Wuhan

University (China). 293T cells were cultured in DMEM (Gibco) supplemented with $10 \%$ fetal bovine serum (FBS) (Gibco) at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. BHK-21-hACE2 cells were cultured in the above medium supplemented with $1 \mu \mathrm{~g} / \mathrm{mL}$ puromycin (Beijing leagene biotech, Cat. CA0070) under the same conditions.

## Virus inhibition assay

The compounds were dissolved in 0.1 mL DMSO to prepare stock solutions, and final solutions were prepared by adding MEM with $1 \mu \mathrm{~g} / \mathrm{mL}$ trypsin. Compounds were incubated with MDCK cells for 1 h at $36^{\circ} \mathrm{C}$. The cell culture was then infected with influenza virus $\mathrm{A} /$ Puerto Rico/8/34 ( H 1 N 1 ) (MOI 0.01 ) for 24 h at $36^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$. A virus titer in the supernatant was determined by hemagglutination assay after cultivating of the virus in MDCK cells for 48 h at $36^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$. Oseltamivir was used as a reference drug. For calculations, virus titer was expressed as per cent of the titer in control wells without compounds. The $50 \%$ inhibiting concentrations ( $\mathrm{IC}_{50}$ ) and the selectivity index (SI, the ratio of $\mathrm{CC}_{50}$ to $\mathrm{IC}_{50}$ ) were calculated from the data obtained.

## Cytotoxicity assay

The MTT-test and CCK-8-test was used to study the cytotoxicity of the compounds.
For CCK-8-test, cell-counting kit (cck-8, Topscience) containing a highly watersoluble tetrazolium salt (WST-8) [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)2 H -tetrazolium, monosodium salt] was used to evaluate the vitality of BHK-21-ACE2. After seeding 96-well plates and culturing overnight, the BHK-21-ACE2 cells were incubated with twofold serial dilutions of compounds (final concentrations ranging from 0 to $200 \mu \mathrm{M}$ and diluted with culture media) for 24 hs before being washed with PBS. Following incubation, $10 \mu \mathrm{l}$ CCK-8 reagent was added to each well, followed by further incubation at $37^{\circ} \mathrm{C}$ for $1-4 \mathrm{hs}$. Absorbance values at 450 nm were measured using a microplate reader (TECAN, Spark®). GraphPad Prism 8 was used to determine the $\mathrm{CC}_{50}$ values.

For MTT-test, series of threefold dilutions of each compound in DMEM were prepared. MDCK cells were incubated for 48 hs at $36^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ in the presence of the dissolved substances. The cells were washed twice with phosphate-buffered saline (PBS), and a solution of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide ( $0.5 \mu \mathrm{~g} / \mathrm{mL}$ ) in PBS was added to the wells. After 1 h incubation, the wells were washed and the formazan residue was dissolved in DMSO ( 0.1 mL per well). The optical density in the wells was then measured on a multifunctional reader at wavelength of 535 nm and plotted against the concentration of
compounds. The $50 \%$ cytotoxic concentration $\left(\mathrm{CC}_{50}\right)$ of each compound was calculated from the data obtained.

## Time-of-addition experiments

Compounds were added at different time points before, after or simultaneously with the introduction of the virus. The time of addition of the compound was counted from point 0 - the time of entry of the virus into the cell. During the period (-1) - 0 , the cells together with the virus were incubated at $4{ }^{\circ} \mathrm{C}$. All other experiments were carried out at $37^{\circ} \mathrm{C}$. Virus was added to the cells at a time that was conventionally designated as point -1 , after which the cells were kept for an hour at a temperature of $4^{\circ} \mathrm{C}$. Then, at point 0 , the virus was unbound. The cells were transferred to a thermostat at $37^{\circ} \mathrm{C}$, where they were incubated for 10 hours. After this period, the medium was taken from each well and a series of ten-fold dilutions were made on a fresh cell culture and incubated for 3 days. For each compound, 2 repetitions were made by different operators. The virus titer was estimated by standart haemagglutination assay. The compounds were added at the following times relative to the addition of the virus: point -2 - the compound was introduced one hour before cell infection (prophylactic regimen). point 0 - at the moment of temperature change, point $1,2,4,6,24$ - after $1,2,4,6$ and 24 hours after the temperature change, respectively. In the wells marked (-2) - (10), the compound was kept throughout the experiment, starting from point -2 and until the end of the experiment -10 hours. No compound was added to the control wells; instead, a similar volume of medium was added.

## Primary Screening against SARS-CoV-2 pseudovirus protocol

## Pseudovirus propagation

293 T cells were seeded at $30 \%$ density in 150 mm dish at $12-15 \mathrm{hs}$ before transfection. Cells were then transfected with $225 \mu \mathrm{~g}$ of polyethylenimine (PEI) Max 40,000 (Polysciences) in complex with $15 \mu \mathrm{~g}$ of plasmid encoding a coronavirus spike protein, $15 \mu \mathrm{~g}$ of plasmid encoding murine leukemia virus (MLV) Gag and Pol proteins, and $45 \mu \mathrm{~g}$ of a pQCXIP based EGFP/Firefly luciferase reporter plasmid. 8 hs after transfection, cell culture medium was refreshed and changed to growth medium (Opti-MEM, Gibco). Cell culture supernatants were collected at $36-48$ hs post transfection, spun down at $3,000 \times \mathrm{g}$ for 10 min , and filtered through $0.45 \mu \mathrm{~m}$ filter units to remove cell debris. Coronavirus spike pseudotyped viruses were then concentrated 10 times at $2,000 \times \mathrm{g}$ using 10 kDa Vivaspin ${ }^{\circledR}$ Turbo 15 (MWCO PES, VS15T02).

## Anti-SARS-CoV-2 pseudovirus assay

For compounds screening, BHK-21-hACE2 cells ( $5 \times 10^{4} /$ well) were seeded into 96 -well white opaque plate (Corning) in DMEM with 10\% FBS. After culturing 24 hs , cells in each well were added with $1 \mu \mathrm{~L}$ of compounds (dissolved in dimethyl sulfoxide at a stock concentration of 20 mM ) with the final concentration of $20 \mu \mathrm{M}$, then infected with $10 \mu \mathrm{~L}$ of SARS-CoV-2 pseudovirus $(10 \times$ concentrated). 48 hs after infection, images of infected cells with EGFP expression were acquired with the Opera Phenix ${ }^{\circledR}$ Plus High Content Screening System and the values of EGFP (which reflect relative inhibition) were calculated with the same instrument.

For the determine of $\mathrm{EC}_{50}$, BHK-21-hACE2 cells ( $5 \times 10^{4} /$ well) were seeded into 96 -well white opaque plate (Corning) in DMEM with $10 \%$ FBS. After culturing 24 hs , cells in each well were incubated with threefold serial dilutions of compounds (final concentrations ranging from 0 to $80 \mu \mathrm{M}$ and diluted with culture media), then infected with $10 \mu \mathrm{~L}$ of SARS-CoV-2 pseudovirus ( $10 \times$ concentrated, express Firefly luciferase). 48 hs after infection, Firefly luciferase expression were measured using a microplate reader (TECAN, Spark ${ }^{\circledR}$ ). GraphPad Prism 8.0 was used to determine the $\mathrm{EC}_{50}$ values.

## Luciferase luminescence flash assay.

For compounds screening, the cell viability of BHK-21-hACE2 cells after incubation with the tested compounds for 48 h was measured by Gaussia luciferase (Gluc) reporter assay to evaluate their cytotoxicity. To measure Gaussia luciferase expression secreted by cells (which reflect relative cell viability), $20 \mu \mathrm{~L}$ of cell culture supernatant of each well of 96 -well plate and $100 \mu \mathrm{~L}$ of assay buffer containing $4 \mu \mathrm{M}$ coelenterazine native (Biosynth Chemistry \& Biology) were added to one well of a new 96 -well white opaque assay plate (Corning), and measured with the Tristar 5 multimode microplate reader (Berthold Technologies) for 0.1 second/well.

To measure Firefly luciferase expression, the growth medium was carefully removed from 96-well plate, after a rinse with PBS, cells were lysed with $100 \mu \mathrm{~L}$ passive lysis and $20 \mu \mathrm{~L}$ of cell lysates transferred to a 96-well white opaque assay plate (Corning). Dispense $100 \mu \mathrm{~L}$ Luciferase assay buffer containing Firefly luciferase substrate and measure with the Tristar 5 multimode microplate reader (Berthold Technologies) for 10 second/well.

## References

Harris GC, Sanderson TF. 1952. Abietic acid. Org. Syn. 32:1-4. https://doi.org/10.15227/orgsyn.032.0001

Herz W, Nair MG. 1969. Resin acids. XIX. Structure and Stereochemistry of Adducts of Levopimaric Acid with Cyclopentenone and 1 -Cyclopentene-3,5-dione. Favorskii Reaction of an Enedione Epoxide. J. Org. Chem. 34:4016-4023

Zalkov LU, Ford RA, Cutney JP. 1962. Oxidation of maleopimaric acid with alkaline permanganate. J. Org. Chem. 27:3535-3539

## ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S1.Compound 4.



Figure S2.Compound 5.


Figure S3.Compound 6.


Figure S4.Compound 7.


Figure S5.Compound 8.


Figure S6.Compound 9.



Figure S7. Compound 10.



Figure S8. Compound 11.
(


Figure S9. Compound 12.


Figure S10. Compound 13.


Figure S11. Compound 14.



Figure S12. Compound 15.


Figure S13. Results of time-of-addition experiments of compound 11


Figure S14. Cytotoxicity and antiviral activity of compound 7 against SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. (A): Antiviral activity of compound 7 against SARS-CoV-2 by Firefly luciferase assay. (B): Cytotoxicity of compound 7 in BHK-21-hACE2 cells was determined by CCK-8 Assay.



[^0]:    ${ }^{1}$ These authors contributed equally to this work.

    * Corresponding author

    E-mail address: tretyakovaelv@gmail.com (Elena V. Tretyakova)

