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A study on the inclusion of forest canopy morphology data in numerical 

simulations for the purpose of wind resource assessment  

 

Abstract 

A series of numerical simulations of the flow over a forest stand have been conducted using two 

different turbulence closure models along with various levels of canopy morphology data. 

Simulations have been validated against Stereoscopic Particle Image Velocimetry measurements 

from a wind tunnel study using one hundred architectural model trees, the porosities of which have 

been assessed using a photographic technique. 

It has been found that an accurate assessment of the porosity of the canopy, and specifically the 

variability with height, improves simulation quality regardless of the turbulence closure model used 

or the level of canopy geometry included. The observed flow field and recovery of the wake is in line 

with characteristic canopy flows published in the literature and it was found that the Shear Stress 

Transport turbulence model was best able to capture this detail numerically. 

1 Introduction  

The numerical theory describing flow through forest canopies has been developed over a number of 

years. This process has been driven by a need for robust wind resource assessment and also for 

agricultural applications such as modelling wind loads on isolated forest stands and optimisation of 

the spraying of pesticides.   

A wide variety of Computational Fluid Dynamics (CFD) approaches have been employed with, for 

example, Yang el al. (2006) favouring the use of Large Eddy Simulation (LES) in order to fully 

appreciate the turbulent structures which develop across forest edges. LES simulations were also 

used by Dupont et al. (2010) to investigate the importance of transient effects such as the waving of 

leaves and branches. 

However, for most practical applications, it has been suggested that simpler two equation 

turbulence models suffice when considering canopy flows (Belcher et al., 2012). This is due to the 

fact that, although highly turbulent, the flows in these regions are not dominated by the effects of 

viscosity. This matter will be given further consideration in Section 2.6.   

There has been considerable activity investigating how best to implement the effect of canopies in 

two equation turbulence models and a state of the art has emerged following contributions by 

Svensson and Haggkvist (1990), Liu et al. (1998), Sanz (2003) and Lopes da Costa (2007). More 

recently, these two equation canopy models have been modified to include buoyancy effects due to 

atmosphere stability (Sogachecv et al., 2012) and so it is likely that they will continue to be of use to 

industry for some time to come. 



In addition, the ability to assess the structure of canopies has also progressed. From the collecting 

and counting of leaves to the use of various photographic and high density Light Detection And 

Ranging  (LiDAR) techniques, a review of these developments can be found in Jonckheere et al. 

(2004) and Seidel et al. (2012). In Omasa et al. (2006), a high level of canopy structural detail was 

acquired using a method which combined GPS, airborne and terrestrial LiDAR as shown in Fig. 1. 

These data were then combined with temperature and chlorophyll fluorescence measurements in 

order to allow detailed modelling of the plant physiology. 

 

Fig. 1. Capturing canopy structural data. From Omasa et al. (2006). 

Various authors have suggested that these parallel advances in numerical theory and the ability to 

capture morphology data could be used in combination to reduce the uncertainty associated with 

modelling canopy flows.  

In Endalew et al. (2009a) it was noted that much work has been carried out in accurately capturing 

the structural detail of forest canopies, but little effort had been expended to implement this in CFD 

modelling. These authors used an extremely high level of canopy detail to conduct CFD modelling of 

flow around a pair of model trees using LES. Individual branches were explicitly modelled and the 

effect of the leaves was introduced within tight fitting porous sub-domains around each branch. 

Simulations were validated using wind tunnel data and it was found that this high level of canopy 

detail improved the quality of the CFD results albeit at a considerable computational expense. 

More recently, Burns et al. (2011) pointed to the importance of canopy morphology based on 

investigations of data from five forested sites and suggested that the required structural data would 

be best captured using high density LiDAR systems. In Dupont et al. (2012), a number of LES 

simulations were conducted based on forested site data and in Lee and Lee (2012), the flow around 

a bank of real fir trees was investigated by use of Stereoscopic Particle Image Velocimetry (stereo-

PIV) in a wind tunnel. Again, both Dupont et al. (2012) and Lee and Lee (2012) concluded that an 

understanding of the actual morphology is vital when modelling canopy flows. 

Whilst a body of opinion clearly exists that CFD simulations will benefit from the incorporation of 

morphology data, it is important to note that the work mentioned above is concerned with aspects 

of canopy flow such as wind loading on individual trees and turbulent structures within canopies. 



Whilst of interest, these factors may not be directly applicable to the concerns of the wind energy 

industry. In this paper, we will focus on elements of the flow above and around canopies of direct 

relevance to the resource assessment community. These are the modulus of the mean wind speed, 

|𝑈| , and mean Turbulent Kinetic Energy (k).  

In order to provide an extensive validation database, experiments have been conducted in an 

atmospheric boundary layer wind tunnel to investigate the wake around a stand of 100 architectural 

model trees. Subsequently, canopy morphology data were captured using photographic analysis 

software and a series of CFD simulations were conducted in which increasing levels of detail were 

gradually introduced. By analysing the quality of these simulations, we have investigated whether a 

detailed understanding of the canopy structure is beneficial when modelling flow around a forest 

canopy for the purpose of wind resource assessment. 

2 Experimental data 

2.1 Tunnel description 

Experiments were conducted in the Lucien Malavard wind tunnel which is located in the Laboratoire 
Prisme, University of Orléans, France.  As can be seen from Fig. 2, this is a close-return wind tunnel 
in which two sections are available for testing. Experiments for this study were conducted in the 5m 
wide × 5m high × 12m long secondary test section which utilises a turbulence grid, turbulence spires 
and a rough metallic floor plate to generate a scaled atmospheric boundary layer to a maximum 
wind speed of 10 m/s. 
 

 

Fig. 2. Schematic view of the wind tunnel in University of Orléans. 

 
Measurements were performed using stereo-PIV (Schröder and Willert, 2008). The flow  was seeded 
with a fine mist of olive oil (1μm in diameter). The area of interest was illuminated by use of an Nd-
YAG twin laser (model CFR PIV 190, manufactured by Big Sky Laser, 200 mJ/pulse) to generate a laser 
light sheet. In order to acquire the required images, two POWERVIEW Plus 4M cameras (model 
630059, 2048 × 2048 pixel resolution) were positioned to capture a stereoscopic view of the 
illuminated flow field. Both cameras and lasers were synchronised by use of a LASERPULSE module 
(model 610035) with a sampling frequency of 7 Hz, the maximum allowable by the equipment. 
Signal acquisition and processing of raw data were then performed using Insight software, provided 
by TSI, to produce a three dimensional flow field for the plane under investigation.   
 
The setting of the stereo-PIV was performed by using the TSI Dual Plane/Dual Sided calibration 
target.  A total of 2000 images were captured for each of a series of concatenated 360mm wide x 
350mm high measurement planes. An overlap of 60 mm was used between planes in order to 
improve the merging of data through linear interpolation.   



 
An adaptive interrogation window was used, starting from 64x64 pixels to a final 32x32 pixels 
window. The interrogation window overlap was 25% and the analysis was based on FFT Correlation 
algorithm and the Gaussian peak fitting technique. Analysis of these data allowed both mean and 
variances to be deduced for the three main instantaneous wind speed components U, V, W.  
In order to automate the measurement process, both the cameras and laser equipment were placed 
on an ISEL traverse system. The configuration used in the tunnel can be seen in Fig.3. 
 

 
Fig. 3. View upstream in the Lucien Malavard wind tunnel. 

 

It is difficult to quantify the experimental error associated with the stereo-PIV measurement 
technique. A discussion on potential error sources and a suggested uncertainty analysis 
methodology can be found in Zhang et al., (2003). However, in this paper the data produced by the 
stereo-PIV system will be taken as the “true values” for the canopy flow field.   
 
2.2 Boundary layer simulation 

A boundary layer representative of moderately rough open terrain with low vegetation in neutral 
stability was simulated at a scale of 1:300 during the course of these experiments in accordance with 
VDI - guideline 3783/12 (2000). The vertical profile of the fully developed inlet wind speed is 
described by the power law: 
 

 
𝑈(𝑧)
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Where, 𝑈(𝑧) in m/s is the average stream-wise wind speed at height z. 𝑈𝑟𝑒𝑓=4.28 m/s is the 

reference wind speed measured at the reference height 𝑧𝑟𝑒𝑓=0.2m, 𝑑0=0m is the zero plane 

displacement height and 𝛼=0.154 is the shear exponent.  Close to the ground, the velocity is 

approximated by: 

 
𝑈(𝑧)

𝑢∗
= 
1

𝜅
 ln (
𝑧− 𝑑0
𝑧0
) 

Big Sky Laser 

Model Forest 

Turbulence Grid 

and Spires 

ISEL Traverse 

Powerview Cameras 



(2) 

 
Where, 𝑢∗=0.199 m/s is the friction velocity, 𝜅=0.4 is the dimensionless von Kármán constant 

and  𝑧0=4.25×10
−5m is the aerodynamic roughness length, which is equivalent to 1.28×10−2m 

at full scale. Graphs of the experimental windspeed and Turbulent Kinetic Energy profiles are given 
in Section 3.3 where they are compared with the inlet profiles used for the CFD simulations.  
 
2.3 Model trees 

A wide variety of materials have been used to simulate the effect of forest canopies in wind tunnel 

studies. These include blocks of foam rubber (Rodrigo et al., 2007), Lego™ bricks , Meccano™ wheels 

(Stacy et al., 1994), wooden pegs, wire mesh (Aubrun and Leitl, 2004), miniature fir trees (Lee and 

Lee, 2012), bottle brushes (Liang et al., 2005), 3D printed fractal models (Bai et al., 2012), 

automotive bulbs (Böhm et al., 2013) and architectural model trees (Meroney, 1968, Endalew et al., 

2009b and Ruck et al., 2012). Each of these materials have their own merits and allow various 

aspects of canopy flows to be investigated faster, cheaper and in greater detail than a full-scale 

experimental campaign.  

In order to validate the CFD simulations against these experiments, it is necessary to quantify the 

canopy structure in some way. This is often achieved by tuning the CFD to identify the correct 

porosity for the experimental model, however, other options exist. In the case of Liang et al. (2005), 

the shadow of an individual brush was examined as a proxy for the vertical structure of the tree 

canopy. In Bai et al. (2012), the actual geometry file used for the 3D printing was utilised whilst in 

Endalew et al. (2009 b) and Lee and Lee (2012), photographic techniques were used to capture the 

required canopy structural data. 

In this paper, we have chosen to use architectural replica trees similar to those used by Endalew et 

al. (2009b). These models, which were sourced from the 4D Modelshop Ltd. (London, UK), are 

composed of etched brass wire with rough ground silicon to simulate foliage, Fig. 4. These model 

trees allow a high level of structural data to be captured using photographic techniques, which will 

be discussed in Section 2.5, whilst also allowing for repeatability of the experiments that could not 

be achieved using live specimens. 

 

Fig. 4. Architectural model tree of the type used during the experiments. 

However, these model trees have a number of limitations. For instance, the artificial leaves are 

stationary and are thus unable to interact with the wind, which may be an important factor in forest 

flows (Finnigan, 2010). Similarly, the ridged branches are unable to streamline to the incident flow 



which results in a coefficient of drag which is independent of the magnitude of the incident wind 

speed which is not the case in actual canopies (Molina-Aiz et al. 2006).  

Also, as discussed in Böhm et al. (2013), the use of scale models of vegetation in wind tunnels may 

result in the flow being dominated by viscous drag which will not be representative of full-scale 

flows. However, the use of non-bluff bodies to represent forest canopies in wind tunnels is not 

without precedent (Meroney, 1968, Liang et al., 2005, Endalew et al., 2009 b, Lee and Lee, 2012 and 

Ruck et al., 2012). These limitations aside and given that the focus of this study is the role that 

detailed canopy morphology can play in improving simulations, these model trees were deemed to 

be the best candidate for experimentation. 

2.4 The forest set-up 

The miniature forest used in the Orléans experiments was comprised of 100 architectural model 

trees of the type discussed in Section 2.3. A range of tree types were selected to ensure that the 

vertical structure of the canopy was strongly heterogeneous, as would be expected for a mixed 

forest containing a variety of tree species. In addition, advice was taken (Dr. Jonathan Millet, 

Geography dept, Loughborough University, personal communication, May 1, 2012) as to the range 

of heights that would be expected in a mixed forest. The distribution used is shown in Fig. 5 where 

the mean canopy height Hc = 76 mm.  

 

Fig. 5. Height distribution of the model forest.  

Based on author’s own measurements. 

 

Within the tunnel, the trees were placed randomly with an approximately equal spacing in an area of 

675mm × 675mm. The placement of the trees was carefully recorded in order to allow accurate 

replication of the experiment using the CFD code. These various steps ensured that the canopy was 

heterogeneous in order to allow realistic 3D flow patterns to develop.  

Given the relatively small footprint of the forest, approximately 10 × 10 trees, it is possible that the 

flow will not be fully adjusted to the increased roughness that it introduces. In Belcher et al., (2003) 

and elsewhere, the canopy adjustment length Lc is calculated as: 

 𝐿𝑐=1(𝐶𝑑∗𝐵𝑢𝑙𝑘⁄ ) 

 (3) 

Where, Bulk = 8.34 m-1 is an averaged value of the Leaf Area Density which describes the bulk 

structure of the canopy as shown in Fig. 6. Using a value for the drag coefficient Cd = 0.25, as 



recommended in Endalew et al. (2009b) for similar model trees, Lc is calculated as 479mm. This 

would indicate that, as the total canopy length is 675mm, the flow over the model forest will be fully 

adjusted to the canopy roughness.  

The average spacing between the trees is 0.95Hc and the plan roughness density 𝜆𝑝=Σ𝐴𝑝/ 𝐴 = 

0.341, where Σ𝐴𝑝 is the sum of the maximum plan area of each tree and A is the total plan area 

covered by the forest. These values are characteristic of a sparse canopy and so there will be some 

residual drag effect from the underlying roughness of the wind tunnel floor.  

2.5 Determining the morphology 

In this study, canopy morphology is taken to be comprised of LAD data and also geometry data such 

as the canopy height, crown diameter and location of individual trees. These geometry data have 

been obtained by recording the placement of each tree within the forest and by taking detailed 

measurements of each individual tree using a digital calliper. The required LAD data were acquired 

using the method discussed below. 

The LAD is a convenient metric for describing canopy density which is commonly used in the forestry 

community. It is calculated within a horizontal section through the forest at some height and is 

defined as the total one-sided leaf area within that section divided by its volume. By taking a series 

of horizontal sections at a number of different heights, a height-varying LAD profile can be defined 

which gives an appreciation of the vertical canopy structure.  

As discussed in the introduction, there are a number of different methods of determining this LAD 

profile for forest canopies. In this study, we have used a method which required eight photographs 

to be taken of each model tree using a digital camera. These images were then converted into black 

and white bitmaps which were used by the software Tree Analyser (Phattaralerphong and Sinoquet, 

2005) to compute the LAD profile. 

The finest accuracy settings were used for the analysis which resulted in each profile taking 

approximately six hours to produce using the Tree Analyser software. This was in order that the 

results were of a sufficient level of detail to be analogous to a full LiDAR survey of an actual canopy 

where a resolution of 30mm is recommended (Seidel et al., 2012). A full explanation of the 

calculations performed by the software can be found in Phattaralerphong and Sinoquet (2005). 

As Tree Analyser is designed for use on full scale canopies, it was necessary to make modifications to 

analyse the scale models. These adjustments did not cause a problem when analysing larger 175mm 

trees (Endalew et al. 2009b and Desmond and Watson, 2011), however it was noticed that the LAD 

profile was overestimated for smaller 80mm trees (Desmond and Watson, 2012).  

In order to investigate the extent of this discrepancy, data from a series of wind tunnel experiments 

examining the flow around single 80mm conifers of various porosities were used for CFD validation. 

The magnitude of the LAD profile as calculated using Tree Analyser was gradually reduced in a series 

of CFD simulations in order to identify the appropriate reduction. This value was found to be 75% 

regardless of the porosity of the model canopy under investigation. This reduction was applied to all 

profiles calculated for the 100 model trees which comprised the miniature forest used in the Orléans 

experiments.  The resulting adjusted average profile for the entire canopy is shown in Fig. 6. 



It is possible that the overestimation of the effect of the canopy using the LAD profiles determined 

using Tree Analyser is in part due to the value of Cd used. This value was determined in Endalew et 

al., (2009b) for 175mm model trees and a reduced value may be more appropriate for the smaller 

models.  It is unclear whether an adjustment should be made to the LAD profile values, the value of 

Cd or a combination of both for the smaller scale trees. However, as the product of Cd and LAD is 

always used in the CFD calculations, Eqs. 9-12, the effect of reducing the LAD alone is sufficient.  

The LAD profile which describes the vertical structure of the miniature forest is shown in Fig.  6 in 

which Hc = 0.076 m is the average canopy height and HT = 0.019 m is the average trunk height. Bulk = 

8.34 m-1 is the average of the LAD profile between these limits as per Andersen et al., (2005). The 

average value for the entire profile shown in Fig. 6 is LAD = 5.75 m-1. Dimensions have been 

normalised to Hc in order to facilitate comparison with other graphs in this paper. 

 

Fig. 6. LAD profile for the entire forest canopy.  

The Bulk LAD is the average of this profile between Hc and HT 

 

2.6 Reynolds number dependence 

The dimensionless Reynolds number, Re, which relates the relative importance of viscous and 

inertial forces, is an important consideration when assessing the relevance of wind tunnel 

experiments, particularly given the concerns raised in Böhm et al. (2013) relating to the use of non-

bluff bodies to represent forest canopies at wind tunnel scale. This quantity is defined as: 

 𝑅𝑒=
𝑙 𝑈𝜌

𝜇
 

(4) 

Where, l  in m is the characteristic length scale, 𝜌 in kg/m3 is the density of air and 𝜇 in kg/m.s is the 

dynamic viscosity.  

The selection of a characteristic length scale when considering flows within the atmospheric 

boundary layer is a non-trivial task and the value used often varies depending on the preference of 

the author (Petersen, 2013). Given the complexity of the canopy used in this study, a variety of 



possible values exist from the diameter of an average branch to the height of the boundary layer 

itself.  

Thus, in order to investigate the Reynolds number dependence of the flow around the model trees, 

an experiment has been conducted at a separate wind tunnel facility.  

2.6.1 Tunnel description 

An experiment investigating the Reynolds number dependence of the flow around the model trees 

was conducted in the EnFlo atmospheric boundary layer tunnel located at the University of Surrey, 

UK. This is a twin-fan suck-through facility with an operational section of 1.5m high × 3.5m wide × 

20m long. The tunnel is one of the few atmospheric boundary layer facilities available for research 

purposes that can be thermally stratified; however, it was run using neutral stratification during this 

experiment.    

The flow around a 175mm conifer and an 80mm conifer of similar LAD was investigated by use of 

Laser Doppler Anemometry (LDA) for a free-steam wind speed 𝑈ref = 2.5 m/s. An aerodynamic 

roughness length of zo = 3 x 10-5 m for the tunnel floor was used during the experiment. Due to time 

limitations, it was not possible to set up rural boundary layers with appropriate scaling for each of 

the model trees individually. 

Measurements were taken to produce a series of mean horizontal wind speed 𝑈  and k profiles at 

nine distances from 0.5 - 15Hc behind each of the model trees. Results were then normalised to the 

respective Hc in order to investigate the Reynolds number dependence of the flow. Results are 

presented in Section 2.6.2 for the profiles measure at 2Hc and 5Hc behind each of the model trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.6.2 Results 

 

  

  
(a) Normalised profiles at   

2HC. 
(b) Normalised profiles at 

5HC. 

Fig. 7. Normalised profiles for k and 𝑼 at Hc and 5Hc behind trees of 80mm and 175mm. 

The normalised velocity profiles in Fig. 7 show a good collapse of the normalised data which would 

suggest that the flow around the architectural model tress is not heavily dependent on the Reynolds 

number. This matter will be given further consideration in Section 5, where we will compare the 

observed flow field around the miniature forest to data for full-scale canopy flows.   

3 Simulations 

3.1 Description of the CFD model 

The commercially available CFD software ANSYS CFX 14.0 was used for this study. CFX contains a 
coupled solver for mass and momentum which allows the Reynolds Averaged Navier Stokes (RANS) 
forms of the governing equations to be solved for a user defined node-centred grid using an 
algebraic multi-grid algorithm for convergence acceleration. This is a generalised numerical fluid 
dynamics solver and requires user modification in order to simulate flows within the atmospheric 
boundary layer.  
 

The inlet velocity profile for the neutrally stratified boundary layer is described by Eqs. 1 and 2. The 

aerodynamic roughness length zo is converted to the equivalent sand grain roughness length, εs, 

using  Eq. 5 (McCormick et al., 2012): 

 𝜀𝑠= 𝑧0∗exp (8.48𝜅) 



     (5) 

This value is then applied to the floor of the CFD model domain. The Turbulent Kinetic Energy k, and 

its dissipation rate, ε, in a fully developed neutral atmospheric boundary layer are defined by Eqs. 6 

and 7 respectively (Richards and Hoxey, 1993): 

𝑘= 
𝑢∗
2

√𝐶𝜇
 

      (6) 

𝜀(𝑧)= 
𝑢∗
3

𝜅(𝑧+ 𝑧0)
 

(7) 

 

Where Cμ = 0.09 is a modelling constant.  In order to provide a comparison, both the standard k-ε 

(Launder and Spalding, 1972) and Shear Stress Transport (SST) (Menter, 1993) turbulence models 

have been used for closure of the RANS equations in this study.  

The limitations associated with using  the standard k-ε model for investigations within the 

atmospheric boundary layer are well documented (Franke et al., 2007). Some of these limitations 

can be circumvented by adopting modified forms of the standard k-ε equations, such as the 

realizable or RNG models, which along with the standard k-ε  model are a popular choice for those 

conducting simulations for the purpose of resource assessment (Bechmann et al., 2011). As the 

standard k-ε  model is the most widely used turbulence scheme in wind engineering and remains an 

important reference in the boundary layer meteorology community (Sogachev et al., 2012) it will be 

used here as a benchmark for the more advanced SST model. 

The SST model is a hybrid of the k-ε and the k-𝜔 turbulence closures.  The k-𝜔 model was developed 

by Wilcox (1998) in order to deal with some of the problems associated with the  k-ε model when 

considering flow close to surface elements due to a singularity in the governing equations. The k-𝜔 

model overcomes this problem by introducing a slight modification whereby the turbulent eddy 

frequency, ω, is considered rather than the dissipation rate, ε. The equation for Turbulent Eddy 

Frequency is: 

 𝜔=  
𝜀

𝑘
 

  (8) 

3.2 CFD simulation of canopy flows 

In order to represent a forest canopy within the CFD model, a porous sub-domain is introduced. By 

including production terms for Turbulent Kinetic Energy k, Turbulent Eddy Frequency, ω, and 

Turbulent Eddy Dissipation, ε, within this sub-domain, the effect of a forest canopy can be simulated. 

This is achieved by the addition of source terms in the governing equations for momentum and 

turbulent transport. In the momentum equation, a drag term is introduced: 

𝐹𝑖=−𝜌𝐶𝑑𝐴(𝑧)|𝑈|𝑈𝑖 



(9) 

Where, Fi in kg/m2.s2, is the drag force per unit volume in the i-direction, A(z) in m-1 is the LAD at height 

z. The term |𝑈| in m/s refers to the modulus of the windspeed and 𝑈𝑖 also in m/s is the wind speed in 

the i-direction. The source term for k is: 

 𝑆𝑘= 𝜌𝐶𝑑𝐴(𝑧)|𝑈|[𝛽𝑝|𝑈|
2−𝛽𝑑𝑘] 

(10) 

Where, 𝛽𝑝 and 𝛽𝑑 are constants, the values of which are given in Table 1. The source term for 

Turbulent Eddy Dissipation, ε, is given by: 

𝑆𝜀= 𝜌𝐶𝑑𝐴(𝑧)|𝑈|𝜀[
𝐶𝜀4𝛽𝑝|𝑈|

2

𝑘
−𝐶𝜀5 𝛽𝑑] 

(11) 

Where, 𝐶𝜀4 and 𝐶𝜀5 are constants, the values of which are also given in Table 1. The source term for 

Turbulent Eddy Frequency, ω, is given by: 

 𝑆𝜔= 𝜌𝐶𝑑𝐴(𝑧)|𝑈|𝜔[
(𝐶𝜀4−1)𝛽𝑝|𝑈|

2

𝑘
−(𝐶𝜀5−1) 𝛽𝑑] 

(12) 

A discussion on the formulation of these equations can be found in Lopes da Costa (2007) and 

Sogachev (2009). 

It will be noted that the source and sink terms for turbulent transport equations, Eqs. 10-12 are 

themselves functions of k, ɤ and 𝜀. This can cause convergence problems for the solver as a 

feedback loop will exist between the magnitude of the variable and how it is affected by the canopy. 

In order to assess the sensitivity of simulations to the values of k, ɤ and 𝜀 within Eq. 10-12, both 

inlet and local values have been used.   

In order to avoid unjustified tuning of the CFD simulations, prescribed values were employed for all 

variables and constants. The LAD profile obtained by the method described in Section 2.5 was used 

along with the value of Cd = 0.25. A range of values have been suggested by various authors for the 

required modelling constants. In the absence of any prevailing consensus we have opted to use 

those recommended in Lopes da Costa (2007) which are summarised in Table 1. 

Table 1. Momentum and turbulence equation constants used for simulating the forest canopy. 

Constant Value 

𝐶𝜇 0.09 

𝛽𝑝 0.17 

𝛽𝑑 3.37 

𝐶𝜀4 0.9 

𝐶𝜀5 0.9 

 

 



3.3 The CFD model set-up 

The boundary layer within the CFD model was configured to match the fully developed boundary of 

the wind tunnel which was measured upstream of the forest. The resulting non-normalised profiles 

are compared in Fig. 8. Due to the high density of data available, profiles are presented as a 

continuous series. Measurements lower than 20mm are not available for the wind tunnel due to 

problems with reflections from the metallic mesh on the floor.  

 

 

 

  
(a) Velocity  (b) Turbulent kinetic energy  

Fig. 8. Inlet profiles from the CFD model and the wind tunnel. Profiles are measured at a distance of 5Hc 

upstream of the forest in both the CFD and the wind tunnel in order to coincide with the start of the stereo-PIV 

measurement plane. 

As can be seen in Fig. 8, there is good agreement between the CFD model results and the wind 

tunnel measurements for 𝑈, however, the values for k from the CFD model are slightly lower. It is 

possible to remove this discrepancy by adjusting the value of 𝑢∗ used in Eq. 6 to determine the 

profile within the CFD model. However, this modification causes instability and thus undesirable 

development of the boundary layer within the domain.  

 

It is also possible to simply use the k profile as measured in the wind tunnel for the relevant 

boundary conditions in the CFD. However, this was also found to cause excessive problems with 

horizontal heterogeneity within the domain. A discussion on the implications of such conditions can 

be found in (Juretić and Kozmar, 2013). As the magnitude of the error is low, approximately 0.08 

m2/s2, the profiles in Fig. 8 were considered satisfactory for all simulations. 

 

The CFD model domain used for this analysis was 5.7m long × 2.3m wide × 1m high.   

 

A mesh sensitivity study was conducted in which three different unstructured tetrahedral meshes 

were investigated. Each mesh was refined in two zones. The first, Zone 1, coincided with the volume 

of the porous sub domain representing the forest. The second, Zone 2, extended to 40Hc behind, 7Hc 

in front, 4Hc above and 3Hc to either side of the forest.  A constant cell size  was used  in Zone 1 

whilst a geometric growth rate of 2 was used in Zone 2. Details of the maximum element size applied 

to these zones for each mesh can be found in Table 2. 

 



For all meshes, a five cell inflation layer of hexahedral elements was defined at the lower boundary 

of the domain which represented the floor of the tunnel. The first cell was set at 2.4mm with a 

geometric growth rate of 1.2. 

Simulations for both the mesh sensitivity study and the main body of this paper were conducted on 

the Loughborough University research High Performance Computing (HPC) cluster which consists of 

161 nodes, each having two six-core Intel Westmere Xeon X5650 CPUs and 24GB of memory. Each 

simulation was divided among twelve cores in order to avoid problems which may occur from 

segmenting the domain into an excessive number of parallel computations. 

Descriptions of the three meshes used for the sensitivity study are presented in Table 2 along with 

the time in minutes required for each simulation to converge. All simulations for the mesh sensitivity 

study were conducted using the standard k-𝜀 turbulence model and canopy representation B2 as 

described in Section 3.4. 

Table 2. Details of the meshes used in the mesh sensitivity study.  

Mesh Maximum element size 
Zone 1               Zone 2 

Elements Nodes Time 

Coarse 15 mm 20 mm 2,600,616 502,962 29 min 

Medium 7.5 mm 10 mm 16,774,974 3,064,868 167 min 

Fine 5 mm 7.5 mm 33,601,429 6,035,206 727 min 

 

In order to compare results for the Coarse, Medium and Fine meshes, values for |𝑈| and k were 

extracted  from the converged solutions for a  profile centred on the forest and located a distance of 

2Hc in the lee of the obstruction. These profiles are presented in Fig. 9. 

 

 

 

 

  
(a) Velocity  (b) Turbulent kinetic energy  

Fig. 9. Results of the mesh sensitivity study using the standard k-ε turbulence model for  

a profile located at 2Hc behind the forest. 

 

As can be seen in Fig. 9 (a), a minimal alteration to the simulated  mean velocity values is obtained 

by refining the mesh. The effect of a finer resolution is observed to a greater degree in the turbulent 

kinetic energy profiles presented in Fig. 9 (b) where there is a difference in the magnitude of the 



peak simulated value of 0.06 m2/s2 between results achieved using the Coarse and Medium meshes. 

This reduces to a difference of just 0.02 m2/s2  when we compare values achieved using  the Medium 

and Fine meshes which show strong agreement away from these peak values.. 

 

In order to set the findings of this mesh sensitivity study in context, we will also examine the quality 

of the three simulations using same methodology as for the results in the main body of this paper as 

presented in Section 4. To this end, data for both |𝑈| and k were extracted from each converged 

solution for the plane of investigation relevant to this work as described in Fig. 14. Values for the 

Normalised Percentage Error (NPE), defined in Section 4.1, were then calculated in order to compare 

results achieved using the Coarse and Fine meshes with those achieved using the Medium mesh. The 

results of these comparisons are presented as contour plots in Fig. 10. The scales used in Fig. 10 are 

identical to those used in Fig. 15 and Fig. 16 in order to set the results of the mesh sensitivity study 

in context.  
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                                          (a) Velocity                                                                        (b)Turbulent kinetic energy 

Fig. 10. Results of the mesh sensitivity study using the standard k-ε turbulence model for the plane of 

investigation as detailed in Fig. 14 

 

A s can be seen from Fig. 10  the results achieved using the Fine mesh vary only very slightly from 

those achieved using the Medium mesh. This alteration is particularly pronounced in Fig. 10 (b) for 

the simulation of k, however, the magnitude of this discrepancy is considerably lower than the 

results presented for the main body of this paper in Fig. 15 and Fig. 16. Thus, we have opted to use 

the Medium mesh for all simulations as this arrangement provides a balance of accuracy and 

computational expense which is more applicable to the industrial flow calculations which this paper 

aims to influence. 

 

The maximum observed skewness for the Medium mesh was 0.84 with a mean value of 0.2 and a 

standard deviation of 0.11. Generally, a skewness of <0.95 is taken as being acceptable and <0.25 

deemed excellent (ANSYS Inc., personal communication, November, 2010). 

 

3.4 Representation of the canopy in the CFD model 

The effect of the forest canopy was simulated within the CFD model domain using varying levels of 

detail in order to ascertain the role that canopy morphology data can play in improving numerical 

simulations.  These are described below: 

B1 - The geometry of the canopy was modelled as a porous regular cuboid of 675mm × 675mm and 

height equal to the average canopy height of 76mm, as shown in Fig. 11. A constant LAD = 5.75m-1 

Key:  (%) (%) Key:  



was applied throughout the cuboid. This value was obtained by averaging the values calculated using 

the method described in Section 2.5 in the x-streamwise, y-lateral and z-vertical dimensions. This 

homogenous description of forest canopies is commonly used both in industry and academic 

research (Lee, 2000 and Ross and Baker, 2013). 

B2 - The canopy was again modelled as a porous regular cuboid, however, a greater level of canopy 

detail was introduced by allowing the leaf area density to vary in z to reflect the actual porosity as 

shown in Fig. 6. This is a subtle method of increasing canopy detail previously used by Wylie and 

Watson (2010) and Sogachev et al., (2009).  

 

 

Fig. 11. Canopy geometry for B1 and B2.  

The U-arrow indicates the main component of the wind. 

 

V1 - As the x,y coordinates of each model tree were recorded during the experiments, it was 

possible to accurately model the variation in canopy height throughout the forest. This was achieved 

by introducing a surface into the CFD model domain which followed the x, y, z coordinates of the 

highest point of each of the 100 trees. This then served as the top surface for a porous block 

representing the canopy, as shown in Fig. 12. In this model the single value of LAD = 5.75m-1 was 

used.  

V2 - As V1, but the LAD profile was averaged in x, y and allowed to vary in z as shown in Fig.6. 

 

 

Fig. 12. Geometry used for V1 and V2.  

The U-arrow indicates the main component of the wind. 
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C1 - This model was inspired by the work of (Yue, 2007) who advocated the use of a plant scale 

approach when considering canopy flows. Each tree was modelled as an individual cylinder of height 

and diameter equal to the height and maximum diameter of the actual tree represented, as shown 

in Fig. 13. An average value of LAD = 32.5 m-1 was applied throughout each cylinder. This larger value 

is due to the fact that the volume used to calculate the LAD is the annular volume of the individual 

tree rather than that of the entire forest. 

C2 - The geometry was modelled as C1. An LAD was calculated for each tree using the appropriate 

annular volume. These profiles were then averaged.  The resulting LAD profile follows the trend 

shown in Fig. 6 with the values for LAD increased, approximately by a factor of 6.  

C3 - Although the model forest is comprised of 100 unique model trees, there are, broadly speaking, 

ten categories. The trees were divided into these categories and a characteristic LAD profile was 

produced for each. The appropriate profile was then included in each cylindrical porous sub-domain. 

 

Fig. 13. Geometry used in C1, C2 and C3.  

The U-arrow indicates the main component of the wind. 

 

The canopy representations used are summarised in Table 3.   

Table 3. Summary of canopy representations used. 

Name Geometry LAD averaging 

B1 Regular cuboid x,y,z 

B2 Regular cuboid x,y 

V1 Block with varying roof x,y,z 

V2 Block with varying roof x,y 

C1 100 x Cylinders x,y,z 

C2 100 x Cylinders x,y 

C3 100 x Cylinders By category 

 

4  Results 

4.1 Quality metrics 

The stereo-PIV measurement technique used in the wind tunnel produces a large quantity of data 

for the plane investigated. In the present study, a total of 43,200 measurements on a 3.2mm × 

3.2mm grid were available covering the region shown in Fig. 14. Data were not available for less that 

20mm above the tunnel floor or canopy as reflectance from the surfaces interfered with data 



capture. It was also not possible to capture data during the experiments for approx 2Hc up and 

down-stream of the forest as the trees obscured the stereoscopic view.  The stereo-PIV plane is 

centred on the forested area.   

 

Fig. 14. Elevation showing extent of stereo-PIV measurement plane in relation to the model forest.              

The U-arrow indicates the main component of the wind. 

 

For each of the data points on the plane in Fig. 14, the modulus of the mean wind speed, |𝑈|, was 

calculated as: 

 |𝑈| = √𝑈2+𝑉2+𝑊2 

         (13)  

Where 𝑈, 𝑉and 𝑊 in m/s are the mean wind speeds in the x, y and z directions, respectively. Values 

for k were calculated as: 

 𝑘= 
1

2
(𝑢′
2
+𝑣′

2
+𝑤′2) 

(14) 

Where, u', v' and w' are the fluctuations in m/s from the mean wind speeds 𝑈,𝑉 and 𝑊.  

Values for k and |𝑈|, were also extracted from each CFD model run for all grid points in order to 

assess the accuracy of each simulation. The Pearson Correlation Coefficient, R, was calculated for 

both k and |𝑈|for each simulation using Eq. 15: 

 𝑅= 
(𝐸− 𝐸)(𝑆−𝑆̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ )̅

𝜎𝐸𝜎𝑆
 

(15) 

Where, E, refers to experimental values, S, refers to simulated, an over-bar denotes an average and 

𝜎, the standard deviation. The values calculated for R are generally high due to the large number of 

points which are contained in the free-stream where simulation errors are typically small. It would 

be possible to define a smaller region of more perturbed flow in which to calculate R, however, the 

definition of this region may bias results toward a particular simulation. A detailed discussion of this 

issue can be found in Holmes (2011). 

Regardless of the high values obtained, R gives a non-subjective qualitative assessment of the 

accuracy of the various CFD model simulations. In order to visualise where the error occurs for each 



simulation, contour plots are also provided which display the Normalised Percentage Error (NPE) for 

each of the grid points considered. The value of NPE for each point was calculated as: 

 
|𝑆−𝐸|

𝑅𝑒𝑓
 × 100 

(16) 

The reference, Ref, values used are 4.5 m/s and 0.133 m2/s2 for |𝑈| and k respectively. Maximum 

NPE values of 25% and 150% are set for |𝑈|and k in order to maintain a meaningful scale in the 

contour plots.  Fig. 15 and Fig. 16 show contour plots for |𝑈|and k respectively for both the standard 

k-𝜀 and SST turbulence closures for the extent of the stereo-PIV plane detailed in Fig. 14. 

4.2 Velocity   
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(a) SST (b) k−𝜀 

Fig. 15. These contour plots show the NPE between the |𝑼| calculated in the various CFD model 

simulations and the corresponding values from the wind tunnel. 

 

 



4.3  Turbulent kinetic energy 

 
 Key for NPE values: (%) 

 

B 

 
1 

R: 0.8458 Time: 67 min R: 0.7856 Time: 168 min 

 
2 

R: 0.8592  Time: 66 min R: 0.7887 Time: 167 min 

V 

 
1 

R: 0.8385 Time: 65 min R: 0.7735 Time: 180 min 

 
2 

R: 0.8585 Time: 64 min R: 0.7826 Time: 165 min 

C 

 
1 

R: 0.8276 Time: 70 min R: 0.7398 Time: 250 min 

 
2 

 
R: 0.8342 Time: 70 min R: 0.7478 Time: 248 min 

 
3 

 
R: 0.8603 Time: 69 min R: 0.7863 Time: 215 min 

  (a) SST (b) k-𝜀 

Fig. 16. These contour plots show the NPE between the turbulent kinetic energy values calculated in the 

various CFD model simulations and the corresponding values from the wind tunnel. 

 

 

 

 

 

 

 

 

 



5 Discussion 

As mentioned in Section 3.2, both inlet and local values were used for the k, ɤ and 𝜀 terms within 

Eqs. 10 -12.  It was found that using local values resulted in slightly worse agreement with the wind 

tunnel measurements.  This is most likely due to the feedback problem inherent in using local values 

as discussed in Section 3.2. Thus, all results shown in Fig. 15 and Fig. 16 were produced using inlet 

values for the k, ɤ and 𝜀 terms within Eqs. 10 -12. 

5.1 Velocity 

Examining the contour plots for velocity in Fig. 15 alone would indicate that the standard k-𝜀 model 

produces less error. However, this appraisal is not borne out by examination of corresponding R 

values for each canopy representation. This apparent contradiction is explained by Fig. 17, which 

shows the non-normalised |𝑈| profile measured in the tunnel at a distance of 10Hc behind the 

canopy, compared with corresponding profiles simulated using both SST and standard k-𝜀 

turbulence closures for the V1 canopy representation. 

 

Fig. 17. Velocity profiles for SST and standard k-𝜺 at 10Hc  for canopy representation V1 compared to tunnel 

measurements. 

We see in Fig. 17 that the magnitude of the error between the modelled and simulated |𝑈| is larger 

for the SST turbulence model than for the standard k-𝜀 model for heights of less than 1.5Hc. 

However, the SST model gives a better approximation of the gradient of the actual velocity profile 

whilst the standard k-𝜀 model does not capture this detail. However, both models perform quite 

well as can be observed from the high values of R and the fact that the error in the measurement 

campaign can be observed in the cyclical patterns in the contour plots which follow the positioning 

of adjacent stereo-PIV measurement planes. 

No reduction in error is observed by introducing increasing levels of geometry data with contour 

plots for B2, V2 and C3 in Fig. 15 being very similar. However, there is a reduction in error achieved 

by increasing the level of LAD data. This is particularly true for the results obtained using the SST 

turbulence model where there is a considerable improvement between contour plots B1 and B2, V1 

and V2, and C1 and C3 shown in Fig. 15(a).  
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5.2 Turbulent kinetic energy 

There is a much starker contrast observed between results produced using the SST turbulence model 

and the standard k-𝜀 model when we examine contour plots for k shown in Fig. 16. It is clear that the 

SST model performs considerably better at simulating both the gradient and magnitude of the 

measured k profiles. This is also seen in Fig. 18, which shows the k profile measured in the tunnel at 

a distance of 5Hc behind the canopy, compared with corresponding profiles simulated using both SST 

and standard k-𝜀 turbulence models for the C3 canopy representation. 

 

Fig. 18.  k profiles for SST and standard k-𝜺 at 5Hc  for canopy representation C3 compared to tunnel 

measurements. 

 

As can be seen in Fig. 18 , the SST model performs very well in capturing the magnitude of the 

turbulence which is often an area in which RANS simulations are poor. A significant proportion of the 

NPE in the highest quality simulation, i.e. C3 in Fig. 16(a), can in fact be attributed to the error due to 

the mismatch between the inlet k profile used in the tunnel and the CFD model, as discussed in 

Section 3.3, rather than the simulation of the effect of the canopy. 

Again, there is no observed reduction in error achieved by introducing increased levels of geometry 

data, with contour plots and R values for B2, V2 and C3 being very similar. However, a reduction in 

error is achieved by including increasing levels of LAD data. This trend can be observed in Fig. 16 (a) 

by comparing plots for B1 and B2 , V1 and V2, and C1 and C3.  
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5.3 Comparison to other canopy simulations 

There is a wealth of literature in which the flow around forests is investigated using numerical 

simulations, wind tunnel experiments and field studies. Through these investigations, authors have 

identified certain regions which are characteristic of canopy flows, an excellent review of which can 

be found in the literature survey presented in Lee (2000). In the following section, we will examine 

the observed flow field in the present study in order to ascertain if these characteristic regions are 

present. Thus, we will assess the applicability of the presented results to full scale canopy flows. 

As illustrated by Fig. 14, the stereo-PIV plane is limited to a distance of 13Hc behind the canopy and 

also does not cover regions close to surfaces. Thus, in order to carry out this comparison, we will 

examine results from the CFD model simulation which presents the least error. That is the simulation 

which used the C3 canopy representation along with the SST turbulence model. Elevation contour 

plots for this simulation are provided in Fig. 19 for both k and |𝑈|. The contour plots cover the entire 

CFD model domain and are on the same plane as the stereo-PIV measurements. 

The characteristics of the various canopy flow regions are discussed in this section and their 

approximate extents in the current study are illustrated in Fig. 19. The discussion will again focus on 

aspects of the flow which are directly relevant to wind resource assessment. 

 

Fig. 19. Contour plots for |𝑼| and k for the C3 canopy representation using the SST turbulence model. 

A – Developed canopy profile  

In Section 2.4, we calculated the canopy adjustment length Lc = 479 mm. In Fig. 19 we see that this is 

the approximate distance at which an internal boundary layer characteristic of the forest emerges. 

The subsequent region should thus be characteristic of a fully developed canopy flow. In order to 

investigate this flow region, a profile for mean horizontal wind speed is taken at a distance of Hc from 

the leeward canopy edge. Velocity values are normalised to the mean horizontal wind speed above 

the canopy, UHC,   and the mean canopy height Hc.  

The resulting normalised wind speed profile is shown in Fig. 20, where it is compared with 

characteristic developed canopy profiles as collated by Kaimal and Finnigan (1994). These 

Lc 

Lc 

5Hc 
22Hc 

45Hc 



characteristic profiles were measured in a number of wind tunnel and field studies examining 

canopy flows which are summarised in Table 4. 

Table 4. Summary of data presented in Fig. 20. 

Name: Canopy type Hc (m) 

WT strips Wind tunnel .060  

WT Wheat Wind tunnel .047  

WT Rods Wind tunnel .190  

Shaw Corn Corn field 2.6  

Wilson Corn Corn field 2.25 

Moga Forest 12 

Uriarra Forest 20  

Bordeaux Forest 13.5  

 

 

Fig. 20. Normalised flow profile in region A compared with profiles published in Kaimal and Finnigan 

(1994). 

As can be seen in Fig. 20, there is good agreement between the fully developed canopy profile 

simulated in the present study and the characteristic profiles presented in the literature. The 

simulated profile follows measurements in the WT Wheat data particularly well, except for the 

speed up simulated close to the surface. This speed up, which is also observed in the Bordeaux data 

set, is referred to as the sub-canopy jet and has been observed in canopy studies as early as Shaw 

(1977).  

The sub-canopy jet is expected in canopies with a sparse trunk space and is characterised by a sharp 

peak in velocity above the floor at the windward edge of the obstruction. This peak then reduces 

exponentially as the flow moves through the canopy. In the present study, this initial peak and 

subsequent decay is observed within the trunk space at a distance of approximately 5mm above the 

tunnel floor. However, the jet is not fully eradicated before reaching the leeward canopy edge. This 

is most likely due to the sparse nature of the canopy, discussed in Section 2.4, which does not pose a 

sufficient blockage in the trunk space to oppose the flow. Energy cascades from the more 
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significantly obstructed crown space and results in a sub-canopy jet which persists for 2Hc behind 

the forest into flow region B. 

B – Quiet zone 

In this characteristic canopy flow region, the velocity profile is significantly affected by the presence 

of the canopy. The shelter effect results in a region of low speed flow beneath the canopy height and 

increased turbulence levels experienced at approximately Hc . This is a transition region where there 

is relatively little change as the flow has not yet begun to adjust to the new surface roughness.  

Lee (2000) indicates that this region can persist for 4 – 7Hc. In the present study, a distance of 5Hc 

can be estimated as seen in Fig. 19.  

C – Mixing zone  

The strong shear caused by the velocity deficit beneath the canopy height causes the region of 

turbulence at Hc to increase in extent. Lee (2000) describes this as self destructive turbulence as it 

eradicates the very shear which is creating it by allowing energy to cascade from the free-stream and 

encourage the velocity to return to a logarithmic profile. This region is characterised by this 

increased mixing and the fact that the effect of the canopy is still present in the velocity profile.  

D – Re-equilibrium zone 

At this stage, the effect of the canopy on the velocity profile has been completely eradicated 

through mixing of the boundary layer and a logarithmic profile is once again observed. Lee (2000) 

gives a range of possible values at which this will occur. He points to a wind tunnel study (Chen et al., 

1995) in which flow from a forest to a very flat field was simulated and the wake was found to 

persist to 22Hc. This value can be taken as an upper range, with Raynor (1971) approximating a value 

of 5Hc based on full-scale measurements of flow in the lee of a coniferous forest transitioning into an 

open field with a more realistic roughness length. 

In the present study, a logarithmic profile was re-established at 22Hc, which is marked on Fig. 19 and 

is in line with the findings of (Chen et al., 1995). However, values of k do not return to within 25% of 

ambient levels until approximately 45Hc. This distance is marked in Fig. 19 as the upper range of flow 

region D. This is a considerable distance which is influenced by the low ambient turbulence levels in 

the simulation due to the aerodynamic roughness length used.   

In a recent experimental campaign presented in Lee and Lee (2012), the flow around a bank of three 

fir trees of Hc = 150mm was investigated in a wind tunnel study using stereo-PIV. Although the 

presented blockage was far below the relevant canopy adjustment length, the effect of the wake on 

the velocity profile was found to persist until 10Hc in the lee of the blockage. In this context, the 

values of 22Hc and 50Hc  for |𝑼|  and k respectively, as simulated by the CFD model, would not 

appear unreasonable. 

 

 

 



6 Conclusions 

It was noted in Lopes da Costa (2007) and Wylie (2013) that the best turbulence model for predicting 

k is not usually the best for predicting velocity when considering canopy flows. This is not the case for 

the present study where SST is found to consistently outperform the standard k-𝜀 turbulence closure 

model. The SST model is known to perform well when simulating adverse pressure gradients and 

separating flow (Menter, 1994) as it switches between k-ε and k-ω equations depending on  

the proximity to roughness elements. It would appear that this ability has allowed the SST model to 

capture the turbulent fluctuations created by the extreme roughness which the canopy presents.   

The greater computational expense of the standard k-𝜀 simulations indicates that this turbulence 

model struggled to resolve the turbulence generated by the canopy and this is further evidenced by 

the poor results presented in Fig. 16. This is unsurprising given the difficulties experienced with the k-

𝜀 model when considering flows near surface elements and lends further weight to the argument that 

this model should not be used when considering flows within the atmospheric boundary layer. 

 

Despite the strong performance of the SST turbulence model in capturing the detail of the flow 

above and in the lee of the forest, a divergence between simulated and measured data is observed, 

even for the best simulations, near the floor in the final 4Hc of the stereo-PIV measurement plane. 

This can be observed in Fig. 15(a) for the B2, V2 and C3 contour plots. By examining velocity profiles 

in this region it was found that the recovery of the flow predicted by the CFD simulation is slower 

than that observed in the tunnel. As the velocity profile is modelled accurately near the floor closer 

to the forest, this may indicate that the modelling constants used in the SST model require 

adjustment. However, given the cyclical nature of the error, which corresponds to the positioning of 

the stereo-PIV planes, it is possible that this divergence is due to experimental error. 

This cyclic error in the experimental measurements can be dampened by further linearization of the 

data between successive stereo-PIV panes. However, this was deemed to be undesirable for the 

present study where the stated aim is to avoid unnecessary tuning. Also, despite this discrepancy, 

the improvement in CFD simulation quality by including additional morphology data is clearly 

observed in Fig. 15 and Fig. 16. This trend would not be significantly altered by removing the cyclic 

error from the experimental data. 

In Section 5.3, the canopy flow produced by the forest of architectural model trees used for this 

study was compared with various other wind tunnel canopy models and field measurements. It was 

shown that the observed flow field and the recovery of the wake are similar to the characteristic 

canopy flows presented in the literature. This would indicate that the architectural model trees are a 

good candidate for wind tunnel experimentation of heterogeneous canopy flows. In addition, the 

use of the Tree Analyser software to capture the required LAD data allowed accurate simulation of 

the flow without the need to tune the CFD model. This is encouraging for cross-model validation and 

may allow other features of the flow field, such as the turbulent structures, to be investigated using 

LES and other unsteady CFD models. 

Results indicate that the inclusion of accurate LAD profile data can significantly improve simulation 

quality without incurring additional computational expense. Unfortunately, the inclusion of realistic 

geometry data yields only minor improvements and, in the case of the standard k-ε turbulence 

model, significant computational expense. However, it is important to note that accurate geometry 



data, such as tree height, diameter, location and forest footprint, were vital when deriving LAD 

profiles which precisely captured the variation of canopy density with height and, in the case of C3, 

in the three dimensions.   

There may be some cause for concern in the interpretation of these results given the mismatch in 

the tunnel and CFD inlet turbulent kinetic energy profiles as shown in Fig. 8 (b). Whilst we wished to 

avoid any tuning of the turbulence models during this study, it is desirable to investigate the effect 

of removing this mismatch by adjusting the value of Cμ. Thus, the simulations were also run using a 

Cμ value of 0.04. It was found that whilst the quality of the simulations was generally improved, the 

observed trend, with regards the desirable level of canopy morphology and the relative performance 

of the SST and standard k-𝜀  model, remained the same. 

From the results presented, it is clear that simulation quality of forested terrain can be improved by 

including data which captures the heterogeneous nature of forest canopies. These data can be 

derived using a combination of canopy geometry and LAD measurements. For robust numerical 

simulations for the purpose of wind resource assessment, it may be desirable to capture the 

seasonal, annual and forestry management variations associated with forests.  

Fortunately, cheap and effective tools exist to effectively capture these morphology data, a review 

of which can be found in Jonckheere et al. (2004). These tools, which were developed for the 

forestry industry, would seem to provide a financially and computational inexpensive method of 

reducing uncertainty for the resource assessment industry. 

Future work will address some of the shortcomings of the research presented in this paper. 

Specifically, additional stereo-PIV measurements will be taken in order to identify the point of flow 

reattachment in the lee of the canopy and assess the ability of the CFD models to predict this. 

Transient CFD runs will also be conducted using Large Eddy Simulation in order to investigate the 

turbulent structures generated by the canopy. In addition, there is scope to investigate the effect of 

atmospheric stability on canopy flows and the ability of CFD models to capture this detail by 

conducting stratified experiments in the EnFlo tunnel facility at the University of Surrey. 

Finally, validation experiments using a similar methodology will be conducted using field data in 

order to assess if the results presented in this paper are valid at full scale. 
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