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Abstract 
Motivation: The cis-defensins are a superfamily of small, cationic, cysteine-rich proteins, 

sharing a common scaffold, but highly divergent sequences and varied functions from 

host-defence to signalling. Superfamily members are most abundant in plants (with 

some genomes containing hundreds of members), but are also found across fungi and 

invertebrates. However, of the thousands of cis-defensin sequences in databases, only 

have a handful have solved structures or assigned activities. Non-phylogenetic 

sequence-analysis methods are therefore necessary to use the relationships within the 

superfamily to classify members, and to predict and engineer functions. 

Results: We show that the generation of a quantitative map of sequence space allows 

these highly divergent sequences to be usefully analysed. This information-rich 

technique can identify natural groupings of sequences with similar biophysical 

properties, detect interpretable covarying properties, and provide information on 

typical or intermediate sequences for each cluster. The cis-defensin superfamily contains 

clearly-defined groups, identifiable based on their biophysical properties and motifs. The 

organisation of sequences within this space also provides a foundation of understanding 

the evolution of the superfamily.  

Availability and Implementation: A webtool for exploring and querying this sequence 

space is hosted at TS404.shinyapps.io/DefSpace. 

Contact: T.Shafee@latrobe.edu.au 

Supplementary: Supplementary data available at the journal's web site 
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Introduction 

Defensins 

Defensins are small, cationic, disulphide-rich proteins found in almost all tissue types 

across animals, plants, fungi (Shafee et al., 2017). They are best known for their host-

defence and antimicrobial activities, but members have also been recruited to a variety 

of additional specialised functions including ion channel blocking, enzyme inhibition and 

cell signalling (Zhu et al., 2005; Van der Weerden and Anderson, 2013; Shafee et al., 

2017). Furthermore, the same function can be mediated by different mechanisms, even 

by closely related defensins (Vriens et al., 2014; Bleackley et al., 2016; Gao and Zhu, 

2012). 

The defensins actually consist of two superfamilies with independent evolutionary 

origins, the cis- and trans-defensins (Shafee, Lay, et al., 2016). The two superfamilies are 

defined by their structural similarity, secondary structure order, and disulphide topology 

(Shafee, Lay, et al., 2016). The most conserved feature of each superfamily is a pair of 

characteristic disulphides. In the cis-defensin superfamily, this disulphide pair is cis-

oriented (Figure 1A), and sometimes called a cysteine-stabilised αβ fold. The trans-

defensins have a trans-oriented pair of disulphides (Figure 1B), and include the 

defensins from humans and other vertebrates (Shafee, Lay, et al., 2016; Shafee et al., 

2017). Extensive divergent evolution within each superfamily has elaborated this 

scaffold to form multiple families, typically defined by disulphide class (cysteine motif 

and disulphide connectivity), resulting in an array of markedly different overall 

structures. Adding to this, the term ‘defensin’ has sometimes also been used as a 

general functional descriptor of any protein with host-defence activity (Parisi et al., 

2018). 

The cis-defensin superfamily is most characterised in plants, with thousands of members 

(sometimes hundreds in a genome) (Silverstein et al., 2005). This number is growing 

rapidly as more genomes are sequenced (e.g. the 1KP project), and is likely an 

underestimate, since they are under-annotated by current methods (Silverstein et al., 

2007). Additional cis-defensins are also widely distributed across cellular life in animals, 

fungi and bacteria  (Shafee et al., 2017, 2018). 

What are all these proteins doing? Few have been functionally characterised and, 

although they’re often assumed to be antimicrobial, even similar sequences can have 

very different activities (Vriens et al., 2014; Bleackley et al., 2016; Gao and Zhu, 2012; 

Zhu et al., 2014). Added to this, the sequences and structures of cis-defensins are 

extremely divergent (pairwise identities frequently <15% and typical length 35-60aa) 

due to their robust structures combined with strong selection pressures (Shafee, 

Robinson, et al., 2016). This diversity poses a problem for traditional sequence analysis 

methods, and specialised bioinformatic techniques often have to be used to address 

their limitations (Silverstein et al., 2007; Shafee, Robinson, et al., 2016). For example, 

phylogenetic analysis becomes unreliable for short, divergent, sequences under strong 

selection pressures, where similarities may be due to either common ancestry or 

convergence (homoplasy) (Wake, 1991; Rost, 1999). Sequence analysis has therefore 
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been limited to closely related families (Zhu, 2008; Ma et al., 2012; Takeuchi and 

Higashiyama, 2012; Cabezas-cruz et al., 2016; Van der Weerden and Anderson, 2013). 

Defensins are typically categorised into disulphide classes solely based on their cysteine 

spacing and connectivity. Although simple, this approach has several drawbacks. Many 

cysteine patterns contains members with different functions (e.g. the C6 class contains 

AMPs, toxins, and signalling proteins; The C8 class contains AMPs and sweet tasting 

proteins (Shafee et al., 2017)). Finally, the relationships between the classes remain ill-

defined. Consequently, the limited predictive power and biological meaning of the 

classes misses a global view of the superfamily’s sequence-function relationships. 

A better analysis approach for such a diverse superfamily is to build a quantitative map 

of protein sequence space, based on the biophysical properties of each residue in each 

sequence. In this work, I describe this analysis procedure, and its application to the cis-

defensin superfamily. 

Protein sequence space 

Protein sequence space is a conceptual arrangement all possible protein sequences in a 

highly multidimensional space (Smith, 1970). At its simplest, the space has one 

dimension per amino acid in the sequence, to represent all possible combinations of 

amino acids. Proteins can then be arranged in this space based on their residues, with 

functional proteins occupying a vanishingly small fraction of the total space (Keefe and 

Szostak, 2001; Stemmer, 1995). Protein evolution can be thought of as the movement 

though sequence space as mutations explore new regions of it, with selection retaining 

only fit variants (Romero and Arnold, 2009). It is often used in a qualitative sense to aid 

discussion (Harms and Thornton, 2013), but is difficult to directly analyse in a 

quantitative manner.  

Two key difficulties in generating quantitative maps of protein sequence space are a) 

how to ascribe meaningful, quantitative axes for the dimensions, and b) how to visualise 

and interpret such a high-dimensional space. Various metrics have been proposed for 

describing protein sequences numerically, from BLOSUM matrices (Casari et al., 1995), 

binary descriptors for each possible residue (Wang and Kennedy, 2014), and biophysical 

properties of residues or whole proteins (Rackovsky, 2009; Du et al., 2006). We favour 

the use of biophysical properties for each residue, since the resulting positions of 

sequences within sequence space more informative. The most divergent biophysical 

properties of the 20 naturally occurring amino acids were used in order to be easily 

interpretable (Atchley et al., 2005). 

The map of cis-defensin sequence space contains clear groups of sequences. 

Importantly, the main functions of the superfamily (such as antimicrobial, immunogenic, 

or neurotoxic activities) are clearly separated, enabling identification of the key 

biophysical properties that determine those functions. Regions of sequence space that 

are densely or sparsely populated are clearly identifiable, as are sequences with 

intermediate properties between groups. It is therefore a useful method of classification 

and analysis for sequence-diverse superfamilies like the defensins. 
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Results 
A set of evolutionarily related cis-defensin sequences were gathered by a combination 

of structural and sequence similarity searches, as previously published (Shafee, Lay, et 

al., 2016). Sequences were aligned using methods specialised for CRP sequences, which 

constrain homologous cysteines (and therefore inter-cysteine regions) based on solved 

structures (Shafee, Robinson, et al., 2016). The resulting Multiple Sequence Alignment 

(MSA) contains indels mainly in solvent-exposed loop regions and is consistent with 

structure alignments and homologous secondary structure (Fig S1). 

To generate meaningful sequence space axes, residues must be placed along each axis in 

a meaningful order. In this work, proteins were placed in a quantitative sequence space 

using the biophysical properties of each residue in the MSA (charge, hydrophobicity, 

molecular weight, disorder propensity, disulphide potential, MSA column occupancy; 

Table S3). In this case, each defensin sequence was represented by a vector of its 

residues’ biophysical properties in a 1176-dimensional sequence space. This high-

dimensional space was then rotated and projected into a smaller number of dimensions 

that summarised the main sources of covarying properties by Principal Component 

Analysis (PCA). This process captured the important features of the sequence space in a 

human-comprehensible number of dimensions, analogous to a 3D shadow of a mega-

dimensional object. Within the projected sequence space, unsupervised learning was 

then used to identify naturally-occurring clusters of sequences with similar biophysical 

properties (Figure 1C). 

 
Figure 1 | Quantitative map of sequence space for the cis-defensin superfamily. 
Secondary structure and disulphide topology that define the (A) cis-defensin and (B) trans-
defensin superfamilies with conserved disulphides in yellow. (C) Each point represents a 
sequence. Axes are principal components 1, 2, and 3 of the mega-dimensional sequence space. 
Sequences are coloured according to the identified Bayesian model-based groups and named as 

1 Plant AMP

2 Plant AMP

7 Arthropod neurotoxin

6 Arthropod
AMP

3 Intermediate

5 Plant
his-rich

4 Plant signalling
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described in the text (Group 1 in blue, 2 in green, 3 in grey, 4 in purple, 5 in orange, 6 in maroon, 
7 in red). Rotatable image at TS404.shinyapps.io/DefSpace. AMP = antimicrobial protein, His-rich 
= histidine-rich. 

Key functions reside in well-defined regions of sequence 
space 

The axes of the projected sequence space (Principal Components, or PCs) summarise the 

most significant covarying sequence properties. The first three PC dimensions of the 

sequence space separate out three key features of the cis-defensin superfamily (Fig S2). 

PC1 separates the plant and animal sequences. PC2 separates the antimicrobial proteins 

from the neurotoxins. PC3 separates those defensins with signalling functions. The 

fourth PC further separates a group of histidine-rich defensins (Fig S3). Further variance 

is captured by subsequent PCs, however higher PCs do not give much additional 

separation into clusters (Fig S4).

The sequences form seven well-separated clusters in the sequence space (Table 1), with 

voids between them sparsely populated by sequences with intermediate properties. 

Groups were automatically assigned by Bayesian model-based clustering to identify 

naturally occurring groups of proteins. Each group was additionally analysed separately 

by repeating the PCA and clustering process to identify subclusters (Fig S5, Fig S6). This 

produced a broad hierarchy within the sequence space. Phylogenies could be resolved 

for some subclusters and illustrated how the subcluster had evolved through the 

sequence space (Fig S3E). This greatly extends on the standard classification system 

based on cysteine motifs, since sequences with the same motif are further organised 

within the clusters in sequence space and clear sets of covarying biophysical properties 

can be identified. 

Table 1 | The 7 main groups of cis-defensins in sequence space 

 
Description  Kingdom Colour in Fig. 1 Number 

in group 

Plant Fungal Animal Toxin Signal 

1 Plant AMP  Plant blue 223 100% - - - 1% 

2 Plant AMP  Plant green 677 93% - 7% - 3% 

3 Intermediate  Mixed grey 495 39% 5% 57% 31% 3% 

4 Plant signalling  Plant purple 190 100% - - - 100% 

5 Plant his-rich  Plant orange 56 100% - - - - 

6 Arthropod AMP  Animal maroon 134 - - 100% - - 

7 Arthropod toxin  Animal red 244 - - 100% 100% - 

 

Groups 1 and 2 contain most of the plant antimicrobial proteins. They are the only two 

groups that have a continuous set of intermediate sequences along the spectrum of 

properties between them (with no void). Group 1 consists of more hydrophilic, cationic 

proteins (e.g. MtDEF4), whilst group 2 is the largest cluster and contains most of the 

characterised plant defensins (e.g. NaD1). They contain mostly 8-cysteine defensins, but 

also include the 10-cysteine defensins from petunia (e.g. PhD1). The class II defensins 

are tightly clustered, whereas class I are distributed through groups 1 and 2 (Figure 2A), 

in line with their greater variety of mechanisms and efficacies (Payne et al., 2016; Parisi 

et al., 2018). Additionally, defensins that are known to enter the target cell during their 
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mechanism of action (e.g. NaD1 and MtDef4) tend to be high in the PC1 direction, 

whereas defensins that remain outside the cell during their mechanism are lower in PC1 

direction (e.g. RsAFP1) (Parisi et al., 2018). 

Group 3, the intermediate cluster, contains a mixture of plant, animal and fungal 

proteins and a mixture of functions. When the sequence space is analysed for just the 

group 3 proteins alone, clear subclusters are evident, such as the C6 defensins, macin 

defensins, fungal defensins, plant fusion defensins, and various classes of scorpion toxin 

(Figure 2C). The defensins with a C6 structures are similarly segregated into toxic and 

non-toxic subclusters (Figure 2C). Taxa are clearly organised within group 3, and the 

non-toxic C6 defensins are the only subcluster to contain a mixture of plant, fungal and 

animal members. 

 

 

Figure 2 | Groups 1, 2 and 3 separate different disulphide classes, taxa and functions. 

(A) Close-up of groups 1 and 2, with antimicrobial proteins in green (antifungal class I in light 
green, class II in dark green), allergen pollen proteins in grey, sweet tasting protein in pink, un-
tested function in white. Example sequences named. (B) Sequence space as in Figure 1 for 
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context. (C) Group 3 (‘intermediates’) isolated and re-analysed. C6 toxins in purple, non-C6 toxins 
in red, and non-toxic C6 defensins in blue. PDB codes for representative structures indicated 
where available. Axes are labelled as PC1b, 2b, 3b to emphasise that they are new principal 
component axes for group 3, distinct from those PCs found the overall sequence space.

Group 4 contains the majority of the plant signalling proteins involved in self/non-self 

recognition, which mediate sporophytic self-incompatibility during fertilisation. The 

cluster has a broad boundary with group 2 plant defensins, with the interface populated 

by sequences with intermediate properties, including the unusually disulphide bonded 

sex-locus g class (Shafee, Lay, et al., 2016).  

Group 5 contains a small cluster of plant defensins that have a significant enrichment of 

histidines (Fig S5E). It also contains two subclusters with intermediate numbers of 

histidines that they appear to have evolved from (Fig S3E). Currently none of these 

members are characterised, but given their unusual residue composition, it is likely that 

they will display interesting properties, possibly in addition to antimicrobial activity 

(Mirouze et al., 2006). 

Group 6 contains C6 defensins with long n-loops (Koehbach, 2017). These are primarily 

antibacterial insect defensins (such as sapecin) with a few mollusc, tick and lancelet 

variants. The short n-loop, primarily antifungal, C6 defensins (such as heliomicin) are 

distributed through subclusters of group 3 (Fig S5F). 

Group 7 contains the scorpion α-toxins and β-toxins. This group is particularly well-

separated from the others, with relatively few sequences in between. It has two main 

sub-clusters that separate the known α- and β-toxins (Gopalakrishnakone et al., 2015). 

The sequences that do fall in the relative void between groups 7 and 3 are the 

excitotoxins, which show similarities to the α- and β-toxins with elongated N-terminal 

loops (Oren et al., 1998). 

Clusters indicate viable combinations of biophysical 
properties 

The axes of the quantitative sequence space map are determined by covarying sets of 

residue biophysical properties (Table S1). The sequence and biophysical properties that 

most strongly determine a sequence’s position in the projected sequence space are 

summarised by the PC loadings that define each axis. 

Because the sequence space is built from an MSA, the data can be mapped onto known 

tertiary structures to give some spatiochemical information (Figure 3). For example, 

loadings indicate that antimicrobial activity is strongly influenced by having a 

hydrophobic within loop 5 with charge at either end (Table S1, MSA columns 108-149), a 

region involved in lipid binding in plant defensins (Poon et al., 2014; Payne et al., 2016). 

These covarying residue property sets correlate well with regions of biological 

importance. Variation in this region is also correlated with features on loop 1b and 4a 

the opposite face of the structure (MSA columns 40-42 and 77-80, Figure 3A), and 

extend previous work describing roles for these loops in overall antimicrobial function 

(Bleackley et al., 2016). 
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Disulphide potential and residue occupancy were amongst the most highly loaded 

properties for the first PC axes (Table S1), in agreement with the known disulphide 

classes. The additional biophysical properties are necessary to identify well-defined 

groups, since repeating the analysis using only occupancy and disulphide potential is 

insufficient to find clear clusters (Fig S4C,D). Similarly, properties that are highly 

conserved across the whole superfamily (such as the four cysteines that define the cis-

defensins) have low loading for the axes (Fig S8). The most useful information is 

contributed by residues that are not too constrained (e.g. the fully conserved cysteines) 

nor too unconstrained (e.g. positions where any residue is viable) (Fig S8). 

 

Figure 3 | Structures are well organised in sequence space. 

Representative structures with backbone ribbon thickness scaled by residue property loadings 
(summed across all biophysical properties) for the first four PC axes. The ribbon is thicker in 
sequence regions which are more important in determining the protein’s location in sequence 
space. (A) Property loadings for PC1 mapped onto a plant defensin (PDB:1MR4). (B) Property 
loadings for PC2 mapped onto scorpion toxin (PDB:1SN1). (C) Property loadings for PC3 mapped 
onto plant S-locus protein (PDB:1UGL). (D) Property loadings for PC4 mapped onto a histidine-
rich plant DLP (model). (E) Hierarchical clustering of superfamily members with solved structures 
based on tertiary structural similarity. Colours as in Figure 1. (F) Sequence space diagram with 
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structurally characterised defensins as larger spheres connected by the same structural 
dendrogram. Representative structures shown except for intermediate (grey) group, which 
contains multiple structural classes. 
 

Structural classes are well ordered in sequence space 

Structure is well known to be more evolutionarily conserved than sequence and is 

therefore extremely informative for long evolutionary timescales (Shafee, Lay, et al., 

2016; Undheim et al., 2016; Orengo and Thornton, 2005). Although the cis-defensin 

superfamily has a conserved overall fold, there are a diverse range of variations on the 

structure (including changes in disulphide number, loop length, and secondary structure 

elements). The sequence space analysis was performed using only a sequence alignment 

as an input, i.e. without using structural information (except for guiding the MSA) 

(Shafee, Robinson, et al., 2016). To test whether these similar structures cluster 

together into particular regions of sequence space or are distributed throughout, 

proteins with known structures were hierarchically clustered by their structural 

similarity. The resulting structural similarity dendrogram was threaded through the 

sequence space. 

Defensins with similar biophysical properties also shared more similar structures  (Figure 

3E,F), even for proteins of the same cysteine class (e.g. C8 defensins). Within proteins of 

the same cysteine motif, there are therefore distinct identifiable subclusters with shared 

biophysical and structural properties. Therefore disulphide classes, and groups of similar 

structures within classes, are inhabit distinct regions of sequence space. Although each 

group shares many biophysical properties, intermediate forms do exist between the 

more populated clusters. 

Comparisons with other sequence and structure analyses 

A maximum likelihood phylogeny using the MSA gave low bootstrap values, with an 

average bootstrap of 0.22 across all nodes of the tree (Fig S9a), and with deeper 

branches showing negligible bootstrap support (Fig S9b). These bootstrap values are in 

line with previously published defensin phylogenies (Van der Weerden and Anderson, 

2013; Zhu et al., 2005). Collapsing the tree at nodes with bootstrap >0.2 produced over 

100 separate families (median 9 members). This stems from well-established limitations 

of phylogenetics for short, divergent, strongly-selected sequences (Shafee, Robinson, et 

al., 2016). Indeed, for the seven largest phylogenetic clades, only 43% sequences fall 

into the same clade in each bootstrap repeat (Fig S10A). 

Conversely, in the sequence space map of each of the alternative MSAs, 86% of 

sequences remain in the same cluster in each bootstrap repeat (Fig S10B). Variation in 

the positions of sequences within the space upon bootstrapping is small enough that 

cluster prediction is perturbed for only a few sequences near the edges of clusters (Fig 

4A). This is in line with related multivariate analysis methods, which can be more 

accurate for more divergent sequences, robust to changes in dataset, and not as 

perturbed by intermediate or hybrid sequences (Higgins, 1992; Wallace and Higgins, 

2007). 
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Both phylogenetics and the methods presented here rely on an accurate MSA. A set of 

100 alternative MSAs using the same sequences were generated to test how variation 

on the starting MSA perturbs downstream analyses. The average bootstrap across all 

nodes of the phylogeny fell to 0.11, and the sequences placed into the same major 

clades fell from 43% to 32% (Fig S10D). The sequence space method proved more robust 

to alterations in the MSA fall from 86% to 83% (Fig S10C). This is largely because the 

properties that dominate the separations in sequence space are also those that are 

most consistently aligned in the alternative MSA. 

Sequence similarity networks (SSNs) represent an alternative method that does not 

require an MSA and is often informative for diverse protein superfamilies (Atkinson et 

al., 2009; Cheng et al., 2014). However SSNs struggle to organise defensins due to their 

low sequence similarities, causing the network to fracture into smaller sub-networks, 

even at a permissive expect value of 10-4 (Shafee, Lay, et al., 2016). These sub-networks 

agree well with the clustering found in the sequence space analysis (Fig S11), allowing 

them to be arranged relative to one another. However, the sequence space analysis also 

gives information on the biophysical determinants of the identified sequence groups. 

Finally, because the layout is deterministic, rather than stochastic, bootstrap and 

jackknife replicates can be used to check the sensitivity of the sequence locations or 

number of clusters to the dataset used (Figure 4). 
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Figure 4 | Repeatability of coordinates 
within the sequence space. 

(A) Sequence space diagram with spheres 
scaled to the variance in their coordinates 
from 100 bootstrap replicates. Colours 
indicate groups as in Figure 1C. (B) The 
goodness of fit for the number of groups 
based on Bayesian model based clustering. 
Error bars = stdev of 100 bootstrap 
replicates. (C) As in B, but with jackknife 
replicates. 

Defensin sequence space can be explored using a webtool  

To facilitate interactive viewing and query of the sequence space, a simple webtool is 

available at TS404.shinyapps.io/DefSpace (source code at github.com/TS404/DefSpace). 

This tool can interactively display the sequence space, and calculate the locations of 

query sequences (Fig S12). It also identifies whether a sequence is a cis- or trans-

defensin and which cysteine motifs the sequence contains (if any). Cysteine motifs are 

based on regular expressions that encompass 90% of the variation in known sequences 

(Table S2). This allows defensin sequences of interest to be quickly checked for their 

position in order to give some expectation of their function.  
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Discussion 
Defensins are found in most transcriptomes and genomes, yet predicting their function 

has remained elusive due to their highly diverse sequences and activities. 

The broader sequence-function relationships and evolutionary history of the cis-

defensins are only beginning to be understood. For example, mutagenesis studies have 

identified some of the sequence determinants that differentiate antimicrobial from 

neurotoxic activity in arthropod cis-defensins (Zhu et al., 2014). Conversely, 

conservation of antiplasmodal activity in a hypothetical ancestral defensin from the base 

of the chelicerates was demonstrated by ancestral sequence reconstruction (Cabezas-

cruz et al., 2016). This work allows for more ancient evolutionarily events in the 

superfamily’s history to be analysed. 

Implications for early defensin evolution 

The ancient evolution of the defensins is highly unclear. The recent separation into two 

separate superfamilies indicates independent origins for the cis-defensins and trans-

defensins (Shafee, Lay, et al., 2016). However, the early evolution within each 

superfamily remains obscured by their extreme sequence divergence. Some additional 

insight can be gained from the organisation of functions within the sequence space, 

which captures the limits of the viable sequence diversity. As mutations have generated 

sequences in new regions of sequence space, selection has constrained them to 

clustered regions where they retain or gain useful functions. 

The superfamily displays great sequence diversity and many clusters have proteins 

between them with intermediate properties. Nevertheless, there are clearly preferred 

regions of sequence space with several clear voids indicating unfavorable sequence 

property combinations. At the same time, some activities are achieved by proteins in 

distinct regions of sequence space, highlighting how the defensins have evolved multiple 

viable ways of achieving similar functions. It is also consistent with several independent 

recruitments of the fold to toxic function. 

The analysis also gives clues to the origins of the superfamily. The C6 defensins are 

clearly more similar to one another than they are to other defensins, even when present 

across multiple taxa (Shafee et al., 2017). This supports a scenario where the C6 

defensin scaffold is more ancient than the other disulphide classes, which represent 

elaborations of this more ancient fold (Figure 5). It is also in line with the possibility of a 

yet more ancient ancestral structure with only two disulphides (Shafee et al., 2018). The 

clustering of the C8 defensin fold is consistent with divergence from the C6 defensins 

before the separation of plants and animals, as opposed to multiple origins of the C8 

fold. 
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Figure 5 | Hypothetical evolutionary history of the cis-defensin superfamily. 

Flattened schematics of (A) the full superfamily’s sequence space, coloured as in Figure 1, and (B) 
just the intermediate group, coloured as in Figure 2. Structures shown where available. The most 
ancient scaffolds are likely the C6 defensins involved in host defence and antimicrobial activity, 
followed by the C8 defensins. Subsequent elaborations of those scaffolds gave rise to the variety 
of folds and functions now present in the superfamily. 
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Prediction of function from sequence 

Defensin sequences are not randomly distributed on sequence space, despite their 

extreme sequence diversity. Instead, the sequence space contains well-defined clusters 

of sequences with similar biophysical properties, separated by sparsely-populated voids. 

However, there remain plenty of sequences with intermediate properties. Groups 1 and 

2 are the exception to this, with a continuous transition of intermediates at their 

interface, in line with their similar microbial functions (though via varied mechanisms) 

(Parisi et al., 2018). The number of covarying residues indicate a high degree of 

cooperation in determining defensin function. 

The identified groups correlate well with currently known functions within the 

superfamily. There are clear separations between plant and animal defensins, as well as 

antimicrobial, signalling, and toxic functions. The PC axes that separate these groups 

also describe the key biophysical properties that characterise the different functions. 

This information will be useful in identifying likely biological roles of sequences, as well 

as which sequence elements determine that function, and whether it can be further 

engineered by mutagenesis. Newly identified sequences of interest can be added to the 

sequence space to identify their relative position, identify cluster centrality, and find 

nearby neighbours with known functions, mechanisms or structures. 

Plant, animal, and fungal sequences are largely segregated, and mostly form clearly 

identifiable clusters. Even the taxonomically diverse C6 class is organised within group 3, 

with the long n-loop C6 defensins further clustered in group 6. Key sequence properties 

of the C6 subclusters have therefore been conserved since the plant-fungal-animal split, 

despite extensive sequence change. 

The sequence space organisation lays the groundwork for improving our understanding 

of how divergent evolution gave rise to the superfamily’s functional diversity. How have 

the different antimicrobial mechanisms evolved? Is the ability of antimicrobial plant 

defensins to traverse cell walls and enter the nucleus related to their role in 

development, possibly by acting as transcription factors or inducing apoptosis? What is 

the function of the well-defined cluster of uncharacterised histidine-rich defensins? 

What activities are exhibited by those defensins that lie in the sparsely populated inter-

cluster regions? 

Benefits and limitations 

The extreme sequence diversity of the cis-defensin superfamily affords both 

opportunities and difficulties. It provides excellent library of functional peptides, with a 

scaffold compatible with a range of different activities. Conversely, the same diversity 

limits the application of standard sequence analysis methods and protein engineering. 

Although any displayed sequence space is necessarily a simplification of the full mega-

dimensional sequence space, the simplified projections presented here retain a great 

deal of useful information, and are relatively intuitive to understand. 

This quantitative sequence space map of the cis-defensin superfamily provides a 

foundation for classifying defensins and understanding their sequence-function 

relationships. Biologically relevant clusters are clearly identifiable within the sequence 
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space, as well as sequences with intermediate properties. Sequence space axes report 

on key properties that separate proteins with a layout is deterministic rather than 

stochastic. 

Since an MSA is used, proteins analysed by this method must be related to one another, 

such that columns of the MSA contain homologous residues (unlike e.g. similarity 

networks where only pairwise alignments are needed). Proteins not derived from a 

common ancestor do not have homologous residues aligned and so cannot be 

compared. However, it may be cautiously extendable to sequences for which analogous 

residues can be confidently compared. 

Confidently resolving the “twilight zone” evolutionary relationships of highly divergent 

sequences is currently beyond the scope of either phylogenetic, or non-phylogenetic 

sequence analysis methods (Rost, 1999; Atkinson et al., 2009; Inkpen and Doolittle, 

2016; Pearson and Sierk, 2005). This method therefore forgoes an explicit evolutionary 

model, and so does not distinguish whether changes in sequences’ biophysical 

properties are conserved from an ancestral state or converged upon from different 

states (Jackson et al., 2018). Convergence of multiple biophysical properties would 

generate similar homoplasy to that which can occur in phylogenies. Particularly in the 

case of small CRPs, like the defensins, the strong selective pressures and high 

evolvability due to the scaffold’s structural robustness make it likely that some covarying 

property sets have been arrived upon in separate lineages. 
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Conclusions 
Quantitatively mapping the sequence space of the cis-defensins provides a useful and 

informative classification system. It identifies key biophysical properties that separate 

biological functions, and hierarchically clusters groups of sequences by their biophysical 

properties. Biological kingdoms and annotated functions are well organised within their 

own regions of the sequence space. The cluster-centrality of a sequence is clearly 

identifiable, as are intermediates between the main clusters. 

This sequence analysis technique may also be broadly applicable to other cysteine-rich 

protein superfamilies, whose sequences are similarly too diverse for standard 

classification techniques. When phylogenetics is applicable, sequence space maps 

provide complementary information on how the biophysical properties of a protein have 

evolved. 

The accompanying webtool facilitates easy identification of sequences of interest within 

the sequence space map and provides additionally information on superfamily and 

known motifs. 
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Methods 

Sequence gathering 

Homologous cis-defensin sequences were gathered as per reference (Shafee, Lay, et al., 

2016). Briefly, cis-defensin structures were gathered using DALI (Holm and Rosenström, 

2010), with the plant defensin NaD1 (PDB:1MR4) as the initial query. Unique proteins 

whose structures had Z-scores >2 were collected and used as queries in turn until no 

new structures were identified. These sequences were used as query sequences for 

BLASTp searches against the non-redundant protein database and Sol genomics network 

database (E-value cutoff <0.005) (Mueller et al., 2005). Additional rounds of sequence 

gathering were performed by using the least redundant sequences as queries for 

subsequent rounds of BLASTp until no new sequences were identified. This yielded 2019 

total sequences from 352 species. 

Sequence alignment 

Because defensin sequences have high sequence length variation, sequence alignments 

are more accurate when structurally homologous cysteines are constrained, allowing 

the homologous inter-cysteine loops to align (Shafee, Robinson, et al., 2016). Briefly, 

multiple sequence alignments were generated using the CysBar webserver (Shafee, 

Robinson, et al., 2016) and ClustalΩ (Sievers et al., 2011). Homologous cysteines were 

barcoded to constrain the alignment and allow the correct inter-cysteine loops to align. 

Overall protein structure was not used to otherwise inform the sequence alignment. 

Alternative alignments were compared with AlignStat (Shafee and Cooke, 2016). The 

final MSA (supplementary data file 1) was used for subsequent analyses (Fig S13). The 

MSA showed good alignment of homologous secondary structure elements, with indels 

mainly occurring in solvent-exposed loop regions, and with agreement with structure 

alignments. To test the dependence of the analyses on the MSA, a set of 100 alternative 

MSAs of the same sequences were also generated using Guidance2 as described later in 

the section. 

Structure similarity network 

Structure similarity was calculated as per reference (Shafee, Lay, et al., 2016). Briefly, for 

cis-defensins with known structure, pairwise structure alignment using combinatorial 

extension was performed with the proCKSI webserver to generate an RMSD distance 

matrix. This matrix was hierarchically clustered by neighbour joining of the most similar 

structures to generate a bifurcating dendrogram which was then mapped onto the 

sequence space coordinates in [R]. Disulphide classes were annotated based on cysteine 

motif and connectivity (Shafee et al., 2017). 

Homology model structure 

Published protein structures are used with the exception for NbD2 (no structures have 

yet been solved for any his-rich group 5 protein). For illustrations, a simple homology 

model was made of NbD2 using SWISS-model, with PDB:3PSM selected as the best 

template structure (Arnold et al., 2006). 
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Phylogeny 

A maximum likelihood phylogeny with 1000 bootstraps was generated based on the 

MSA using RaxML (Stamatakis, 2014). The optimal substitution model was identified 

using ProtTest as Whelan and Goldman model with a gamma distribution (Darriba et al., 

2011; Whelan and Goldman, 2001). A strictly trimmed alignment (using trimAl (Capella-

Gutiérrez et al., 2009)) did not give notably different results from the full alignment. 

Phylogenies were annotated using iTOL (Letunic and Bork, 2016). 

Numericisation 

To quantitatively place sequences in a multidimensional sequence space, each residue 

of each sequence in the MSA was described by its biophysical properties. The variables 

used were R-group molecular weight (Daltons), net charge (Coulombs), hydrophobicity 

(Doolittle index) (Kyte and Doolittle, 1982), disorder propensity (TOP-IDP) (Campen et 

al., 2008), disulphide potential (binary descriptor), and occupancy (binary descriptor).  

These properties encompass the main differences between the naturally occurring 

amino acids. Disulphide potential is included in this case since disulphides are 

particularly important to defensin structures. MSA column occupancy accounts for 

different sequence lengths. See supplementary table S3 for the values used. Note that 

this is also compatible with non-natural amino acids, or additional biophysical properties 

of interest. 

The MSA with 2019 sequences and 196 columns was therefore converted into a 

numerical matrix with 2019 rows and 1176 columns (196 × n where n is the number of 

biophysical properties used, in this case, n=6 leading to 196 × 6 = 1176 columns). The 

resulting matrix of numerical values was used to represent the raw protein sequence 

space before multidimensional scaling. 

Values were normalised within each property. Gaps were given the average value of 

their column for each property (other than occupancy) such that they had no effect on 

subsequent multidimensional scaling.  

Multidimensional scaling 

The highly multidimensional, numericised protein sequence space was analysed using 

Principal Components Analysis (PCA) to summarise the main covarying sets of properties 

(using [R] prcomp) (Dev. Core Team, 2011). The resulting principal components describe 

covarying sets of residue properties. 

Bayesian clustering 

Bayesian clustering was performed using the Gaussian finite mixture method (using [R] 

mclust) (Fraley and Raftery, 2012). The first 40 PCs were used for clustering since they 

summarised the most important 30% of the information contained in the 1176 

dimensions.  

Briefly, this algorithm calculates the models the distribution of data points as a set of 

spheroid clusters with varied sizes, elongation and orientation. The optimal number of 

clusters is chosen based on goodness of fit (Bayesian Information Criterion). Adding 
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clusters to the model improves the models fit to the data until an optimal number of 

clusters is reached, after which additional clusters fail to improve the model’s fit.  

Repeatability metrics 

Bootstraps of the sequence space were generated by iteratively ignoring 10% of 

columns in the same MSA and generating the sequence space each time. Variation in 

the coordinates in the sequence space were reported as well as the optimal number of 

Bayesian clusters to summarise the data. Similarly jack-knife replicates were performed 

by randomly ignoring 10% of sequences in the MSA. 

To further assess the dependence of the methods on the input MSA, 100 alternative 

MSAs were generated using Guidance2, which generates plausible variant alignments of 

indels (Sela et al., 2015). These MSAs were used to generate maximum likelihood 

phylogenies and sequence space maps as described below. 

To assess phylogenetic dependence on the input MSA, each of the 100 alternative MSAs 

was used to generate a maximum likelihood phylogeny using the same model 

parameters as for the original tree. For each of the 100 trees, the 7 largest clades were 

identified by ward clustering in [R] and compared for repeatability. 

To assess SeqSpace dependence on the input MSA, the 100 were each numericised, 

scaled and clustered as described above. The Bayesian clusters found in each repeat 

were then compared for repeatability in [R]. 

Sequence similarity networks do not depend on an MSA (rather they typically use all-vs-

all pairwise alignments) so a comparable measure was not possible in this regard. 

Visualisation 

Data was visualised with custom [R] scripts based on rgl, ggplots, igraph, and phytools 

(Revell, 2012; Csárdi and Nepusz, 2006; Adler et al., 2012; Wickham, 2009). Structures 

were visualised with Pymol.  
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https://doi.org/10.1093/bioinformatics/bty697 
 

 25 

Supplementary figures 

 

 

Figure S1 | Multiple sequence alignment property overview. 
MSA of 2019 sequences coloured by residue type. Yellow = Cysteine; Blue = Cationic (K,R); Red =Anionic (D,E); Dark 
grey = polar (T,S,Q,N,H,Y); Light grey = hydrophobic (A,G,P,F,I,L,M,V,W); White = gap. Fasta file of alignment in 
supplementary data file 1. 
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Figure S2 | Functions segregate along the axes of the projected sequence space. 
(A) Principal component axis 1. Plant in green, animal in blue. (B) Principal component axis 2. Toxin in red, non-toxin 
in blue. (C) Principal component axis 3. Signalling in red, non-signalling in blue. 
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Figure S3 | Loadings variance and histidine-rich group 5. 
(A) Scree plot of the variance that is encompassed by first 20 principal components. (B) The number of histidines per 
sequence in each group. (C). Principal component axis 4. Histidine-rich (>5), histidine-poor (≤4) in blue. (D) Sequence 
space plot using PCs 4-6 showing separation of the His-rich group (coloured by group as in Fig 1). (E) Subclusters 
within group 5 overlayed with an unrooted UPGMA tree of their sequences. Point size indicates the number of 
histidines (min = 2, max = 10). Colours indicate the four subclusters. 
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Figure S4 | Additional representations of defensin sequence space. 
(A) Sequence space plot using PCs 10:12 showing random spread without well-separated groups (coloured by group 
as in Fig 1). (B) Sequence space of cis-defensin MSA using Cys and NGAP only (ignoring charge, hydrophobicity, 
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disorder propensity and molecular weight). Separate groups are not discernible. (C) 2,000 random sequences of 
length 50aa. 
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Figure S5 | Subclusters identified upon reanalysis of each main group. 
Subclusters are clearly identifiable when the sequence space is calculated separately for each of the seven main 
groups. (A) Group 1 plant AMPs, (B) Group 2 plant AMPs, (C) Group 3 intermediate, (D) Group 4 plant signalling (E) 
Group 5 plant his-rich. Arranged by principal components of the group. Coloured by subclusters. (H) a summary the 
seven main clusters for reference. 
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Figure S6 | Number of subclusters in each main cluster. 
The goodness of fit when modelling different numbers of subclusters 
within each group’s sequence space (as per Fig S5). Bars are standard 
error of 10 bootstraps. Number indicates the optimal number of 
subgroups within each of the 7 main clusters. 
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Figure S7 | Subclusters of group 2 separate C8 defensins from different taxa. 
Subclusters of group 2 when the group’s sequence space is calculated separately, with plant C8 defensins coloured 
green, mollusc C8 defensins coloured yellow, and insect C8 defensins coloured purple. 
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Figure S8 | The effect of sequence diversity 
upon residue property loading. 
The dependency of loading weight up on 
property variance for (A) PC1, (B) PC2, (C) PC3, 
and (D) PC4. In general, more variable 
properties are more highly loaded. This can be 
seem more clearly for (E) the average loadings 
for the first 10 PCs. Notable residue properties 
highlighted: 11 and 160 are the terminal 
cysteines present in C8 defensins. Properties of 
77 and 109 vary by kingdom and function. 105 
is a conserved glycine that is nearly invariant 
except for the S-locus proteins where it is a 
cysteine. 
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Figure S9 | Bootstrap support of maximum-likelihood phylogeny. 
(A) branches with <20% bootstrap support in red, >20% in black. (B) main groups coloured onto phylogeny (note: 
low bootstraps as indicated in part A should be taken into account for the centre-most nodes). (C) Distribution of 
bootstrap values of all nodes for 1000 bootstrap repeats using same MSA. (D) Distribution of ‘pseudo-bootstrap’ 
values of all nodes for repeats using 100 alternative MSAs of same sequences.  
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Figure S10 | Cluster stability upon bootstrap repeats or alternative MSAs.  

The proportion of sequences are found in the same cluster in 100 bootstrap repeats of the same MSA 

using for (A) the sequence space method examining the 7 Bayesian clusters, and for (B) the maximum 

likelihood phylogeny, examining the seven largest clades. (C,D) The same analysis performed for 100 

analyses run on alternative MSAs of the same sequences   
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Figure S11 | Sequence space representation separates sequences with low similarity. 
Most defensin sequences have very low sequence similarity, however the sequence space method arranges 
sequences over a wide dynamic range for (A) the first 3 PCs and (B) the first 10 PCs 
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Figure S12 | Overview of webtool interface. 
In addition to some basic background information (not shown) two tabs exist. (A) The view tab opens an interactive 
diagram of the sequence space. (B) The find tab indicates the location of a query sequence within the sequence 
space. If the user is unsure of the whether the sequence is from the cis- or trans- defensin superfamily, the program 
will attempt to assign it based on cysteine motifs and sequence similarities. In both cases, activating ‘selection mode’ 
allows the user to select one or more sequences to view them in a multiple sequence alignment. 
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Figure S13 | Flow chart of sequence space analysis workflow. 
See methods section for details of individual processes. Rectangles indicate processes, parallelograms indicate 
inputs/outputs. Upward triangles indicate data splitting, downward triangles indicate data merging. 
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Supplementary tables 
Table S1 | Sequence space residue properties for the first 4 principal components. 
Most highly loaded residue properties for the first four PC axes. MSA column refers to the MSA in 
supplementary data Fig S1. RMW = side chain molecular weight, HPATH = hydropathy, CHRG = 
charge, DISORD = disorder propensity, CYS = cysteine, NGAP = occupancy. 
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C 11 CYS 0.40   - 173 CYS 0.28   G 105 CYS 0.31   G 105 CYS -0.26 

C 160 CYS 0.38   F 40 CYS 0.28   C 73 CYS -0.31   C 73 CYS 0.25 

- 173 CYS -0.19   - 38 NGAP 0.17   - 111 NGAP 0.20   - 76 NGAP 0.23 

F 40 CYS -0.18   - 155 NGAP 0.17   - 110 NGAP 0.20   V 72 HPATH -0.16 

C 11 NGAP 0.18   - 39 NGAP 0.16   - 102 NGAP 0.16   - 13 CHRG 0.15 

- 10 NGAP 0.18   F 151 DISORD -0.16   E 77 CHRG 0.16   Y 106 HPATH 0.15 

- 12 NGAP 0.18   F 151 RMW 0.15   F 80 DISORD 0.15   F 80 RMW -0.15 

- 9 NGAP 0.17   F 40 NGAP 0.15   - 134 DISORD 0.14   G 109 RMW 0.14 

- 13 NGAP 0.17   - 154 NGAP 0.13   - 8 NGAP 0.13   T 153 DISORD -0.14 

C 160 NGAP 0.17   - 165 NGAP 0.13   - 101 NGAP 0.13   - 48 NGAP -0.13 

- 37 NGAP 0.16   - 173 NGAP 0.13   - 112 NGAP 0.13   G 104 RMW 0.12 

G 42 RMW -0.16   C 11 CYS 0.13   R 149 HPATH 0.12   R 148 CHRG -0.12 

- 14 NGAP 0.15   - 172 NGAP 0.13   - 154 DISORD -0.12   - 110 NGAP 0.12 

E 77 CHRG -0.13   - 170 NGAP 0.13   - 134 HPATH -0.12   G 109 CHRG 0.12 

- 81 NGAP -0.10   - 164 NGAP 0.13   F 80 RMW -0.12   A 66 HPATH -0.12 

- 61 NGAP -0.10   - 166 NGAP 0.13   G 104 RMW 0.12   T 153 RMW 0.12 

R 149 RMW 0.09   - 163 NGAP 0.13   G 109 RMW 0.12   - 111 NGAP 0.12 

- 163 NGAP -0.09   - 161 NGAP 0.13   - 41 CHRG -0.12   - 12 DISORD -0.11 

- 169 NGAP -0.09   - 169 NGAP 0.13   R 149 CHRG -0.12   F 40 HPATH -0.11 

- 157 NGAP -0.09   C 160 CYS 0.12   - 7 NGAP 0.12   - 134 DISORD 0.11 

- 164 NGAP -0.09   - 41 NGAP 0.12   V 72 HPATH -0.11   - 155 DISORD 0.11 

- 103 NGAP 0.09   G 45 HPATH 0.12   - 154 HPATH 0.11   - 154 CHRG -0.11 

- 165 NGAP -0.09   - 157 NGAP 0.12   - 133 NGAP 0.11   - 8 NGAP -0.11 

- 161 NGAP -0.09   - 103 NGAP -0.12   - 47 NGAP 0.11   - 134 RMW -0.11 

- 170 NGAP -0.09   - 156 NGAP 0.12   - 154 CHRG -0.11   - 133 DISORD -0.10 

- 173 NGAP -0.09   F 80 RMW -0.11   D 62 NGAP -0.11   K 74 CHRG 0.10 

- 156 NGAP -0.09   - 162 NGAP 0.11   - 48 NGAP 0.11   - 13 RMW 0.10 

- 172 NGAP -0.09   - 81 NGAP 0.10   - 6 NGAP 0.10   R 149 RMW -0.10 

R 149 CHRG 0.08   - 134 NGAP 0.10   - 100 NGAP 0.10   - 154 DISORD -0.10 

E 77 DISORD 0.08   G 45 DISORD -0.10   C 11 CYS 0.10   - 7 NGAP -0.10 

- 166 NGAP -0.08   F 80 HPATH 0.10   G 105 RMW 0.10   Y 106 DISORD -0.09 

R 149 HPATH -0.08   E 77 CHRG -0.10   G 45 RMW -0.09   V 72 RMW 0.09 

- 162 NGAP -0.08   - 61 NGAP -0.09   E 77 DISORD -0.09   E 77 DISORD -0.09 

F 40 DISORD -0.08   V 72 HPATH 0.09   F 151 DISORD 0.09   C 160 CYS 0.09 

F 40 RMW 0.08   G 109 DISORD -0.09   G 45 DISORD 0.09   - 103 CHRG 0.09 

R 148 RMW 0.08   - 47 NGAP -0.09   A 66 RMW 0.09   S 63 DISORD -0.09 

F 80 RMW 0.08   - 60 NGAP -0.09   G 79 RMW 0.08   - 101 NGAP -0.09 

R 148 CHRG 0.08   R 148 RMW 0.09   - 49 NGAP 0.08   G 45 DISORD 0.09 

G 42 DISORD 0.08   - 58 NGAP -0.09   F 151 HPATH -0.08   G 45 HPATH -0.09 

- 155 DISORD 0.08   K 74 HPATH -0.09   C 73 DISORD -0.08   - 103 HPATH -0.09 

F 80 DISORD -0.08   - 59 NGAP -0.09   - 9 CHRG -0.08   - 102 NGAP -0.09 

- 38 NGAP 0.08   - 48 NGAP -0.08   G 45 HPATH -0.08   - 6 NGAP -0.09 

- 155 HPATH -0.08   T 153 CHRG -0.08   C 73 RMW 0.07   - 13 HPATH -0.08 

- 39 NGAP 0.07   - 135 RMW -0.08   F 80 HPATH -0.07   - 47 NGAP -0.08 

- 154 CHRG 0.07   - 155 HPATH 0.08   R 149 DISORD -0.07   - 14 NGAP 0.08 

- 154 RMW 0.07   G 109 RMW 0.08   - 134 NGAP 0.07   R 148 HPATH 0.08 

F 40 NGAP 0.07   - 53 NGAP -0.08   - 14 NGAP -0.07   F 40 RMW 0.08 

G 109 RMW -0.07   N 64 RMW 0.08   R 149 RMW -0.07   - 49 NGAP -0.08 

- 135 RMW 0.06   - 14 NGAP 0.07   - 113 NGAP 0.07   - 154 HPATH 0.08 
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Y 106 DISORD 0.06   N 64 DISORD -0.07   - 156 NGAP 0.06   G 105 RMW -0.08 

 

Table S2 | Cysteine motifs found in the two defensin superfamilies. 
Motifs encompass variation from the 5th percentile to the 95th percentile (full ranges are skewed 
by outliers). Motifs written as regular expressions for text searches. Accessions are PDB IDs where 
available, Genbank ID otherwise. 

Description Motif Example Accession 

C8 defensin C.{10}C.{5}C.{3}C.{9,10}C.{6,8}C.C.{3}C NaD1 1MR4 

C6 defensin C.{5,12}C.{3}C.{9,10}C.{4,5}C.C NvD1 2KOZ 

Petunia defensin C.{3}C.{6}C.{5}C.{2}CC.{9,11}C.{6}C.C.{3}C PhD1 1N4N 

Mollusc defensin C.{6}C.{3}C.{4,5}C.{4}C.{8}C.C.{2}C MgD1 1FJN 

Hydra defensin C.{6}C.{14}C.{3}C.{9}C.{6}C.{8}C.C Hydramacin1 2K35 

Annelid defensin C.{6}C.{14}C.{3}C.{1,2}C.{7}C.{6,7}C.{5,9}C.C.{11,16}C Theromacin 2LN8 

alpha-toxin C.{3}C.{5,6}C.{3}C.{9}C.{6,9}C.C.{14,15}C BmK M1 1SN1 

Maurotoxin C.{5}C.{3}C.{5}C.{4}C.{4}C.C.{2}C Maurotoxin 1TXM 

Excitotoxin C.{10}C.{3}C.{10}CC.{3}C.C.{19}C Bj-xtrIT 1BCG 

Small-toxin C.{2}C.{10}C.{2}CC.{5,6}C.{4}C.C Insectotoxin 15A 1SIS 

S-locus 11 C.{3,9}C.{6,7}C.{3,15}C.{1,9}C.{8,9}C.C.{3,14}C S8-SP11 1UGL 

alpha-defensin .C.C.{4}C.{9}C.{9}C. HD5 2LXZ 

beta-defensin .{4}C.{6}C.{3,4}C.{9}C.{5,6}C. HBD1 1IJV 

theta-defensin .C.C.{4}C Retrocyclin2 2ATG 

Big defensin .{45,51}C.{6}C.{3}C.{13}C.{4}C. TtBigDef 2RNG 

Plant fusion defensin C.{3,5}C.{4,8}C.{3}C.{9,11}C.{5,9}CCC MtD36 357449491 

Fungal N-ter defensin C.{5}C.{7}C.{3}C.{10}C.{5}C.{5}C.C Cglosin 1N 88178907 

Fungal C-ter defensin CC.{9}CC.{3}C.{9,10}C.{5}C.C Cglosin 1C 88178907 

S-locus 11 b C.{9}C.{7}C.{14}C.C.C.{8}C.C.C.C BoS14 283131299 

S-locus 11 c C.{9}C.{9}C.{16}C.C.{9}C.C.{3}C.{2}CC PtS2 550331862 

S-locus 11 d C.C.{8}C.{7}C.{15}C.C.{8}C.C.{4}C.{6}C BrS14 90819164 

S-locus 11 e C.{9}C.{6}C.{7}C.{6}C.C.{8,11}C.C BoS7 283131295 

S-locus 11 f C.{5,9}C.{7}C.{12,17}C.C.{1,2}C.{6,10}C.C EsS2 557114862 

S-locus 11 g C.{9,10}C.{7,8}C.{13,17}C.C.{9,12}C.C.{3,4}C AtS32 254763280 

 +CCC C.{10}C.{5}C.{3}C.{9,10}C.{6,8}CCC AtPDF1.3 15225238  

 +CxCC C.{10}C.{5}C.{3}C.{9,10}C.{6,8}C.CC DLP96 332659178  

 +CxCxC C.{10}C.{5}C.{3}C.{9,10}C.{6,8}C.C.C Fabatin-2 3913646 
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Table S3 | Residue properties used to characterise defensin sequences. 
Net charge in Coulombs, disorder propensity as in TOP-IDP (Campen et al., 2008), hydrophobicity 
as in the Doolittle index (Kyte and Doolittle, 1982), molecular weight of [R] group in Daltons, and 
disulphide potential and occupancy as binary descriptors.  

Net 
charge 

Disorder 
propensity 

Hydro- 
phobicity 

Molecular 
weight (R) 

Disulphide 
potential 

Occupancy 

A 0 0.06 1.8 15.09 0 1 

C 0 0.02 2.5 47.16 1 1 

D -1 0.19 -3.5 59.10 0 1 

E -1 0.74 -3.5 73.13 0 1 

F 0 -0.70 2.8 91.19 0 1 

G 0 0.17 -0.4 1.07 0 1 

H 0 0.30 -3.2 81.16 0 1 

I 0 -0.49 4.5 57.18 0 1 

K 1 0.59 -3.9 72.19 0 1 

L 0 -0.33 3.8 57.18 0 1 

M 0 -0.40 1.9 75.21 0 1 

N 0 0.01 -3.5 58.12 0 1 

P 0 0.99 -1.6 41.13 0 1 

Q 0 0.32 -3.5 72.15 0 1 

R 1 0.18 -4.5 100.2 0 1 

S 0 0.34 -0.8 31.09 0 1 

T 0 0.06 -0.7 45.12 0 1 

V 0 -0.12 4.2 43.15 0 1 

W 0 -0.88 -0.9 130.23 0 1 

Y 0 -0.51 -1.3 107.19 0 1 

X 0 0.03 -0.5 62.90 0 1 

- NA NA NA NA NA 0 
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