Supplementary Material

A new six-coordinate organotin(IV) complex of $\mathrm{OP}\left[\mathrm{NC}_{5} \mathrm{H}_{10}\right]_{3}$: a comparison with an analogous five-coordinate complex by means of X-ray crystallography, Hirshfeld surface analysis and DFT calculations

ATEKEH TARAHHOMI* and ARIE VAN DER LEE

Hirshfeld surface analysis:

The survey Hirshfeld surfaces show that H...H contacts in both $\mathbf{1}$ and IZOVIE are majority in the intermolecular interactions covering 90.8% and 75.9% of the total HS, respectively, where visible red spots on the HS of $\mathbf{1}$ are related to these H...H interactions while for IZOVIE not any red spot on the surface is found for such interactions. These H...H contacts are recognized by the points spread out in the center of FP providing the closest contacts. For 1, these closest contacts are manifested by a short sharp spike on the diagonal plot. Moreover, color change from blue to green in the regions of $d_{\mathrm{e}}=d_{\mathrm{i}}(\approx 1.0-1.7 \AA$ for $\mathbf{1}$ and $1.2-1.7 \AA$ for IZOVIE) on the plot diagonal indicates an increase of the occurrence frequency for $\mathrm{H} \ldots \mathrm{H}$ contacts.

Besides the $\mathrm{H} \ldots \mathrm{H}$ contacts, the presence of intermolecular interactions of type $\mathrm{C}-\mathrm{H} \ldots \mathrm{Cl}$ in the crystal structures is evident by the $\mathrm{H} . . . \mathrm{Cl} / \mathrm{Cl} . . \mathrm{H}$ FPs which comprise 9.1% of the total HS for 1 and 23.0% for IZOVIE (for example: $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \ldots \mathrm{Cl} 2, \mathrm{C} 10 \ldots \mathrm{Cl} 2=3.821$ (2) \AA, $\angle \mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}-\mathrm{Cl} 2=152.8^{\circ}$ and symmetry code: $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$ in IZOVIE). The related regions on HSs are represented as points in the regions of bottom right $\left(d_{\mathrm{e}}<d_{\mathrm{i}}, \mathrm{Cl} \ldots \mathrm{H}\right)$ and top left $\left(d_{\mathrm{e}}>d_{\mathrm{i}}, \mathrm{H} \ldots \mathrm{Cl}\right)$ on the corresponding plots. For IZOVIE, these regions are characterized as two wings with sharp tips, including some points scattered in the center of plot.

As mentioned above, in 1, red spots on the HS are only related to H...H contacts, whereas for IZOVIE, only two large red spot are visible on the HS which can be assigned to $\mathrm{Sn} . . . \mathrm{Cl} / \mathrm{Cl}$... Sn contacts ($\mathrm{Sn} 1 \ldots \mathrm{Cl} 2=3.2799$ (6) \AA; symmetry code: $-x+1,-y+1,-z$) with a characteristic shape as two thin boomerangs that are symmetric with respect to the diagonal of the plot in the
$\mathrm{Sn} \ldots \mathrm{Cl} / \mathrm{Cl} \ldots \mathrm{Sn}$ FP (figure 4). These contacts include minimum $d_{\mathrm{i}}+d_{\mathrm{e}}$ value of about $3.3 \AA$ which comprises 1.0% of the entire HS.

Vibrational analysis

For 1, the highest experimental wavenumbers at $2962 \mathrm{~cm}^{-1}$ (calculated in the range $3187 \mathrm{~cm}^{-1}$ to $3197 \mathrm{~cm}^{-1}$) and $2847 \mathrm{~cm}^{-1}$ (calculated: 3069 and $3070 \mathrm{~cm}^{-1}$) are assigned to $\mathrm{C}-\mathrm{H}$ asymmetric and symmetric stretching vibrational modes for CH_{3} group in the $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$ group, respectively. The wavenumbers $2918 \mathrm{~cm}^{-1}$ and $2768 \mathrm{~cm}^{-1}$ correspond to the same modes for CH_{2} groups in the piperidine rings with theoretical values in the range $2982 \mathrm{~cm}^{-1}$ to $3147 \mathrm{~cm}^{-1}$. The bending (scissoring) modes are observed at $1452 \mathrm{~cm}^{-1}$ for CH_{2} groups and at $1354 \mathrm{~cm}^{-1}$ (asymmetric mode) and $1233 \mathrm{~cm}^{-1}$ (symmetric) for CH_{3} groups. This assignment is supported by the theoretical results in the range $1500 \mathrm{~cm}^{-1}$ to $1554 \mathrm{~cm}^{-1}$ for CH_{2} and in the range 1484 to $1495 \mathrm{~cm}^{-1}$ (asymmetric) and $1265,1266,1275 \mathrm{~cm}^{-1}$ (symmetric) for CH_{3}. The CH_{2} bending vibrational modes in the piperidine rings including wagging (experimental: $1304 \mathrm{~cm}^{-1}$, calculated: in the range $1372 \mathrm{~cm}^{-1}$ to $1422 \mathrm{~cm}^{-1}$), twisting (experimental: $1259 \mathrm{~cm}^{-1}$, calculated: $1292 \mathrm{~cm}^{-1}$ to $1357 \mathrm{~cm}^{-1}$) and rocking (experimental: $1157 \mathrm{~cm}^{-1}$, calculated: $1152 \mathrm{~cm}^{-1}$ to $1191 \mathrm{~cm}^{-1}$) are observable. However, the medium (m) or weak (w) bands in $870(\mathrm{~m}), 783(\mathrm{~m})$ and 613 (w) cm^{-1} for the CH_{2} rocking modes are also observed besides the strong band at $1157 \mathrm{~cm}^{-1}$. The experimental frequency for the stretching vibrational mode of $\mathrm{P}=\mathrm{O}$ bond is $1115 \mathrm{~cm}^{-1}$ compared to the theoretical value at $1001 \mathrm{~cm}^{-1}$. The various stretching and bending vibrational modes relative to the piperidine rings are found in the range $916 \mathrm{~cm}^{-1}$ to $1136 \mathrm{~cm}^{-1}$ appearing as five bands in IR spectrum (table 4) which are confirmed by the calculated values in the range $915 \mathrm{~cm}^{-1}$ to $1147 \mathrm{~cm}^{-1}$. The PN stretching vibrational modes besides the stretching modes of rings appear as a strong band at $964 \mathrm{~cm}^{-1}$ and a medium band at $731 \mathrm{~cm}^{-1}$ supported by the calculated data in the range $952 \mathrm{~cm}^{-1}$ to $964 \mathrm{~cm}^{-1}$ (for the former) and $634 \mathrm{~cm}^{-1}$ to $698 \mathrm{~cm}^{-1}$ (for the latter). A medium strong band at $845 \mathrm{~cm}^{-1}$ represents the vibrational rocking mode of CH_{3} groups corresponding to the calculated values in the range 836 to $865 \mathrm{~cm}^{-1}$. The medium strong
bands at $575 \mathrm{~cm}^{-1}$ (calculated: $562 \mathrm{~cm}^{-1}$) and $498 \mathrm{~cm}^{-1}$ (calculated: $491 \mathrm{~cm}^{-1}$) point to asymmetric and symmetric stretching vibrations of the $\mathrm{Sn}-\mathrm{C}$ bonds, respectively. The ring deformation mode at $478 \mathrm{~cm}^{-1}$ (calculated: $450 \mathrm{~cm}^{-1}$) as a medium band is as well distinguishable in the experimental IR spectrum.

As is seen in table 4, for IZOVIE similar calculated results are obtained in which the number of the calculated frequencies is halved relative to $\mathbf{1}$ as is expected by the presence of only one ligand in IZOVIE versus two in 1.

Table S1. Vibrational assignments of experimental FT-IR frequencies of $\mathbf{1}$ along with corresponding theoretical vibrational data $\left(\mathrm{cm}^{-1}\right)$ at B3LYP/SDD level for $\mathbf{1}$ and IZOVIE.

$\begin{aligned} & \text { Experimental } \\ & \left(\text { FT-IR, } \mathrm{cm}^{-1}\right) \end{aligned}$	Calculated	Calculated	Tentative assignment**
1	1	IZOVIE	
2962 (s)	3197, 3196, 3188, 3187	3199, 3198, 3170, 3149	Asym. CH Str. of CH_{3} groups (of $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$ segment)
2918 (s)	3147 to 3084 (30 frequencies)	3149 to 3092 (15 frequencies)	Asym. CH Str. of CH_{2} groups (of rings)
2847 (s)	3070, 3069	3065, 3064	Sym. CH Str. of CH_{3} groups
2768 (s)	3063 to 2982 (30 frequencies)	3056 to 2982 (15 frequencies)	Sym. CH Str. of CH_{2} groups
1452 (s)	1554 to 1500 (30 frequencies)	1534 to 1501 (15 frequencies)	CH_{2} Sciss. in rings
1354 (m)	1495, 1494, 1487, 1484	1493, 1488, 1487, 1484	Asym. CH_{3} Sciss. in $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$ segment
1304 (m)	1422 to 1372 (30 frequencies)	1428 to 1377 (15 frequencies)	CH_{2} Wagg. in rings
1259 (s)	1357 to 1292 (6 frequencies)	1314, 1306, 1297	CH_{2} Twist. in rings
1233 (w)	1275, 1266, 1265	1292, 1291, 1284	Sym. CH_{3} Sciss. in $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$ segment
1157 (s)	1191 to 1152 (6 frequencies)	1193, 1192, 1185	CH_{2} Rock. in rings
1136 (m)	1147 to 1132 (6 frequencies)	1148, 1144, 1138	CC Str. + CN Str. in rings
1115 (s)	1001	1001	$\mathrm{P}=\mathrm{O}$ Str.
1097 (s)	1121 to 1095 (6 frequencies)	1107, 1105, 1102	CN Str. + CCH Bend. in rings
1068 (w)	1094 to 1075 (6 frequencies)	1084, 1079, 1073	CC Str. + CNC Bend. + CCH Bend. in rings
964 (s)	964 to 952 (6 frequencies)	962, 958, 948	PN Str. + CC and CN Str. in rings
916 (m)	919 to 915 (6 frequencies)	918, 912, 911	CC Str. + CCH Bend. in rings
870 (m)	898 to 878 (6 frequencies)	873, 871, 870	CH_{2} Rock. in rings
845 (m)	865 to 836 (6 frequencies)	863, 851, 832	CH_{3} Rock. in $\mathrm{Cl}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$ segment
783 (m)	832 to 785 (6 frequencies)	831, 828, 826	CH_{2} Rock. in rings
731 (m)	698 to 634 (6 frequencies)	703, 697, 643	PN Str. + CN Str. in rings
613 (w)	571, 570	560	CH_{2} Rock. in rings
575 (m)	562	552	Asym. Sn-C Str.
498 (m)	491	506	Sym. Sn-C Str.
478 (m)	450	462	Ring def.

s: strong; m: medium; w: weak. ${ }^{ *}$ Sym.: symmetric; Asym.: asymmetric; Str.: stretching; Sciss.: Scissoring; Bend.: bending; Wagg.: wagging; Ring def.: ring deformation; Rock.: rocking; Twist.: twisting.

Table S2. Experimental isotropic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR chemical shifts for $\mathbf{1}$ and calculated values for $\mathbf{1}$ and IZOVIE in DMSO solvent on the HF/SDD/DGDZVP level.

$\mathbf{1}$		IZOVIE	
Experimental	Calculated	Calculated	Assignment
${ }^{1} \mathrm{H}-\mathrm{NMR}$			
$1.05(\mathrm{~s})$	$0.460,0.634,0.724$	$0.5412,0.622,0.650,0.656,0.673,0.713$	H atoms of $2 \mathrm{CH}_{3}$
$3.00(\mathrm{~m})$	$1.451,1.639,1.645,1.647,1.654,1.764$	$1.332,1.418,1.452,1.714,1.773,1.785$	$\mathrm{H}_{\text {para }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings
$3.51(\mathrm{~m})$	$1.439,1.465,1.573,1.602,1.639,1.649$,	$1.351,1.372,1.385,1.399,1.404,1.409$,	$\mathrm{H}_{\text {meta }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings
	$1.671,1.674,1.685,1.702,1.711,1.749$	$1.512,1.522,1.538,1.542,1.559,1.827$	
$3.77(\mathrm{~m})$	$2.682,2.697,2.745,2.788,3.815,2.849$,	$2.414,2.427,2.475,2.535,2.581,2.687$,	$\mathrm{H}_{\text {ortho }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings
	$2.899,2.925,3.092,3.293,3.407,3.597$	$2.762,2.764,2.799,3.030,3.439,3.499$	
${ }^{13} \mathrm{C}-\mathrm{NMR}$			
$25.33(\mathrm{~s})$	24.455	$32.002,32.035,32.377$	
$34.60(\mathrm{~s})$	$26.590,26.710,32.593$	$33.609,33.709,34.413$	$\mathrm{C}_{\text {para }}$ atoms of $\mathrm{Sn}^{\text {atoms of } \mathrm{NC}_{5} \mathrm{H}_{10} \text { rings }}$
$43.35(\mathrm{~s})$	$29.500,29.982,30.662$	$35.130,35.169,35.235$	$\mathrm{C}_{\text {meta }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings
$45.15(\mathrm{~s})$	$30.750,34.331,34.910$	$49.204,49.515,49.722$	$\mathrm{C}_{\text {meta }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings
$63.95(\mathrm{~s})$	$45.070,45.789,46.817$	$50.321,50.658,52.739$	$\mathrm{C}_{\text {ortho }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings
$67.03(\mathrm{~s})$	$46.826,50.105,50.537$		$\mathrm{C}_{\text {ortho }}$ atoms of $\mathrm{NC}_{5} \mathrm{H}_{10}$ rings

