SUPPLEMENTARY MATERIAL

A New Lactone from Mangrove Endophytic Fungus *Aspergillus* sp. GXNU-A9

Wenxiu Zhang ^{a, #}, Lili Hao ^{a, #}, Xiaoya Qin^a, Jiguo Huang ^b, Ruiyun Yang ^a, Jun Li ^{a, *}, Xishan Huang ^{a, *}

 ^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China;
 ^b Guangdong Industry Polytechnic, Guangzhou, P. R. China;

* Correspondence: lijun9593@gxnu.edu.cn; huangxishan13@foxmail.com; Tel.: +86-773-2120958 # Authors contributed equally to this work.

ABSTRACT: A new lactone, asperlactone A (1), and four known lactone derivatives 2-5 were isolated from the mangrove endophytic fungus *Aspergillus* sp. GXNU-A9. Their structures were elucidated based on high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) datum, extensive nuclear magnetic resonance (NMR) spectroscopic analysis, and comparison with literature data. The structure of 1 was further confirmed by single-crystal X-ray diffraction analysis, and the absolute configuration of 1 was established. Compounds 1-5 were evaluated for their anti-inflammatory activities against nitric oxide (NO) production, and compounds 1-5 showed moderate inhibitory activities with IC₅₀ values ranging from 15.87 to 30.48 μ M.

KEYWORDS: *Aspergillus* sp.; mangrove endophytic fungus; asperlactone A; anti-inflammatory effects

List of supporting information

Figure S1. UV (MeOH) spectrum of compound 1

Figure S2. IR (KBr) spectrum of compound 1

Figure S3. ¹H NMR (400 MHz, methanol-*d*₄) spectrum of compound 1

Figure S4. ¹³C NMR (100 MHz, methanol- d_4) spectrum of compound 1

Figure S5. ¹H-¹H COSY (methanol-*d*₄) spectrum of compound 1

Figure S6. HMQC (methanol-d₄) spectrum of compound 1

Figure S7. HMBC (methanol-d₄) spectrum of compound 1

Figure S8. NOESY spectrum of compound 1

Figure S9. HR-ESI-MS spectrum of compound 1

Figure S10. Key COSY and HMBC correlations of 1

Figure S11. Key NOESY correlations observed for compound 1 and ORTEP diagram showing the structure of 1 in the crystal

Figure S12. ¹H NMR (400 MHz, methanol-*d*₄) spectrum of compound 2

Figure S13. ¹³C NMR (100 MHz, methanol-*d*₄) spectrum of compound 2

Figure S14. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3

Figure S15. ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound 3

Figure S16. ¹H NMR (600 MHz, methanol-*d*₄) spectrum of compound 4

Figure S17. ¹³C NMR (150 MHz, methanol-d₄) spectrum of compound 4

Figure S18. ¹H NMR (400 MHz, methanol- d_4) spectrum of compound 5

Figure S19. ¹³C NMR (100 MHz, methanol-*d*₄) spectrum of compound 5

Table S1. NMR data for compound **1** (400 MHz, Methanol- d_4 , δ in ppm)

 Table S2. Inhibitory activities on NO of compounds 1-5 in LPS-induced RAW 264.7

 cells

Table S3.Crystal data for compound 1

Cell viability assay

NO production assay

Figure S1. UV (MeOH) spectrum of compound 1

Figure S2. IR (KBr) spectrum of compound 1

Figure S3. ¹H NMR (400 MHz, methanol-*d*₄) spectrum of compound 1

Figure S4. ¹³C NMR (100 MHz, methanol-*d*₄) spectrum of compound

Figure S5. ¹H-¹H COSY (methanol-*d*₄) spectrum of compound 1

Figure S6. HMQC (methanol-*d*₄) spectrum of compound

Figure S7. HMBC (methanol-*d*₄) spectrum of compound 1

Figure S8. NOESY spectrum of compound 1

Figure S9. HR-ESI-MS spectrum of compound 1

Figure S10. Key COSY and HMBC correlations of 1

Figure S11. Key NOESY correlations observed for compound 1 and ORTEP diagram showing the structure of 1 in the crystal

Figure S12. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound

Figure S13. ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound 2

Figure S14. ¹H NMR (400 MHz, methanol-*d*₄) spectrum of compound 3

Figure S15. ¹³C NMR (100 MHz, methanol-*d*₄) spectrum of compound **3**

Figure S16. ¹H NMR (600 MHz, methanol-*d*₄) spectrum of compound 4

Figure S17. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of compound 4

Figure S18. ¹H NMR (400 MHz, methanol-*d*₄) spectrum of compound 5

Figure S19. ¹³C NMR (100 MHz, methanol-*d*₄) spectrum of compound 5

NO.	$\delta_{\mathrm{C},}$ Type	$\delta_{\rm H} (J \text{ in Hz})$
1	171.2, C	
2	40.7, CH ₂	<i>a</i> 2.74, dd (12.6, 3.6)
		<i>b</i> 2.52, dd (12.6, 3.8)
3	64.9, CH	4.33, dd (3.8, 3.6)
4	62.1, CH	3.29, br s
5	55.3, CH	2.91, dd (8.8, 2.2)
6	78.8, CH	3.04, t (8.9)
7	74.0, CH	3.57, td (8.9, 2.2)
8	41.6, CH ₂	1.95, m
9	74.6, CH	4.83, m
10	39.0, CH ₂	1.59, m
11	19.2, CH ₂	1.36, dq (7.6, 7.3)
12	14.3, CH ₃	0.94, t (7.3)

Table S1. NMR data of compound 1 (400 MHz, Methanol- d_4 , δ in ppm)

Table S2. Inhibitory activities on NO of compounds 1-5 in LPS-induced RAW 264.7cells ^a

Compounds	IC ₅₀ (µM)
1	16.69± 0.21
2	15.87 ± 0.23
3	30.48 ± 0.11
4	30.12 ± 1.02
5	20.95 ± 0.88
Dexamethasone ^b	4.12 ± 1.41

^a Values present mean ± SD of triplicate experiments. ^b Dexamethasone was used as a positive control.

Identification code	Compound 1	
Empirical formula	$C_{12}H_{20}O_{6}$	
Formula weight	260.28	
Temperature/K	100.15	
Crystal system	monoclinic	
Space group	P21	
a/Å	5.04170(10)	
b/Å	8.3524(2)	
c/Å	14.5892(3)	
a/°	90	
β/°	96.413(2)	
γ/°	90	
Volume/Å ³	610.51(2)	
Ζ	2	
$\rho_{calc}g/cm^3$	1.416	
µ/mm ⁻¹	0.955	
F(000)	280.0	
Crystal size/mm ³	$0.34~\times~0.26~\times~0.22$	
Radiation	CuKa ($\lambda = 1.54178$)	
2Θ range for data collection/°	6.096 to 148.482	
T	$-6 \ \le \ h \ \le \ 6, -10 \ \le \ k \ \le \ 10, -17 \ \le \ l \ \le$	
index ranges	14	
Reflections collected	5316	
Independent reflections	2369 [$R_{int} = 0.0313$, $R_{sigma} = 0.0358$]	
Data/restraints/parameters	2369/1/167	
Goodness-of-fit on F ²	1.089	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0321, wR_2 = 0.0857$	
Final R indexes [all data]	$R_1 = 0.0332, wR_2 = 0.0864$	
Largest diff. peak/hole / e Å ⁻³	0.17/-0.16	

Crystal Data for C₁₂H₂₀O₆ (M =260.28 g/mol): monoclinic, space group P2₁, a = 5.04170(10) Å, b = 8.3524(2) Å, c = 14.5892(3) Å, V = 610.51(2) Å³, Z = 2, T = 100.15 K, μ (CuK α) = 0.955 mm⁻¹, ρ calc = 1.416 g/cm³, 5316 reflections measured (6.096° $\leq 2\Theta \leq 148.482°$), 2369 unique ($R_{int} = 0.0597$, $R_{sigma} = 0.0586$) which were used in all calculations. Flack parameter [-0.09 (14)]. The final R_1 was 0.0321 (>2sigma(I)) and wR_2 was 0.0864 (all data). The CCDC number is 2026571.

Cell viability assay

RAW 264.7 cells viability was tested after treatment with the isolates and dexamethasone (positive control, Sigma) and measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Briefly, RAW 264.7 cells were cultured in 96-well plates at a density of 1×10^{5} cells per well (180 μ L per well) and incubated for 12 h. Then, the cells were treated with a series of compounds or dexamethasone for 24 h and then cultured with the MTT reagent for 4 h. Cell viability was measured by determining the absorbance at 560 nm using a microplate reader.

NO production assay

NO production was detected by the Griess assay. RAW 264.7 cells were seeded in 96-well plates at 20000 cells/well in triplicate. The next day, a series of diluted compounds or dexamethasone were added to the cells for 2 h, and then the cells were treated with 20 μ L of 1 μ g/mL LPS for 24 h.