SUPPLEMENTARY MATERIAL

A new flavonol derivative and other compounds from the leaves of *Bauhinia thonningii* Schum with activity against multidrug-resistant bacteria

Guy Raphael Sado Nouemsi^a, Jean-Bosco Jouda^b, Peron Bosco Leutcha^a, Valaire Yemene Matieta^c, Virginie Flaure Tsague Tankeu^a, Jenifer Reine Ngnouzouba Kuete^d, İlhami Çelik^e, Victor Kuete^c; Norbert Sewald^f, Alain Meli Lanang^{b,g,*}

ABSTRACT

The Investigation of the leaves of *Bauhinia thonningii* Schum led to the isolation and identification of a new flavonol derivative, 6-C-methylquercetin-3,4'-dimethyl ether (1) together with eleven known compounds including nine flavonoids (2-10), one pentacyclic triterpenoid (11) and one steroid glycoside (12). Their structures were established by extensive spectroscopic analyses, like 1D and 2D NMR, and HR-ESI-MS. The antibacterial activity of compound 1 as well as the reference antibiotic, ciprofloxacin was tested on Gram-negative multidrug-resistant bacteria overexpressing active efflux pumps, and against methicillin-resistant strains of *Staphylococcus aureus* (MRSA). Samples were tested alone and in combination with an efflux pump inhibitor (EPI), phenylalanine-arginine- β -naphthylamide (PA β N). Results show that when compound 1 was tested alone, its inhibitor effects were obtained on 7/10 tested bacteria with the highest MIC value of 128 µg/mL whilst in the presence of EPI, this activity significantly increase in all the 10 bacteria, with MIC ranging from 8-4 µg/mL. An interesting antibacterial activity was obtained with compound 1 against *Klebsiella pneumoniae* ATCC11296 (MIC of 4 µg/mL), KP55 and *Staphylococcus aureus* MRSA6 (MIC of 8 µg/mL) in the presence of the PA β N.

Key words: Bauhinia thonningii, flavonoids, antibacterial activity.

^{*} Corresponding Author: Alain Meli Lannang, PO Box 454 Ngaoundere, E-mail address: alainmeli@yahoo.com

Table of contents

- **Table S1:** ¹³C (150 MHz) and ¹H NMR (CD₃OD, 600 MHz) [J (Hz), δ (ppm)] data for compound **1**
- **Table S2.** Minimal inhibitory concentrations (MIC) of compound 1 and ciprofloxacin alone and in the presence of an efflux pump inhibitor
- Figure S1. UV of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- Figure S2. HRESI-MS (+) of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- **Figure S3.** ¹H-NMR spectrum (600 MHz, CD₃OD) of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- **Figure S4.** ¹³C-NMR spectrum (150 MHz, CD₃OD) of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- Figure S5. HSQC spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- Figure S6. HMBC spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- Figure S7. COSY ¹H-¹H spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)
- Figure S8. ¹H-NMR spectrum (600 MHz, CD₃OD) of compound 2
- Figure S9. ¹³C-NMR spectrum (150 MHz, CD₃OD) of 6 compound 2
- **Figure S10.** ¹H-NMR spectrum (600 MHz, Acetone- d_6) of compound **3**
- Figure S11. ¹³C-NMR spectrum (150 MHz, Acetone-*d*₆) of compound **3**
- Figure S12. ¹H-NMR spectrum (600 MHz, Acetone-*d*₆) of compound 4
- Figure S13. HMBC of compound 4
- **Figure S14**. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound **5**
- Figure S15. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound 5
- Figure S16. ¹H-NMR spectrum (500 MHz, CD₃OD) of compound 6
- Figure S17. ¹³C-NMR spectrum (125 MHz, CD₃OD) of compound 6
- Figure S18. ¹H-NMR spectrum (500 MHz, CD₃OD) of compound 7
- Figure S19. ¹³C-NMR spectrum (125 MHz, CD₃OD) of compound 7
- Figure S20. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound 8
- Figure S21. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound 8
- Figure S22. ¹H-NMR spectrum (600 MHz, CD₃OD) of compound 9
- Figure S23. ¹³C-NMR spectrum (150 MHz, CD₃OD) of compound 9
- Figure S24. ¹H-NMR spectrum (600 MHz, Acetone-*d*₆) mixture of compounds 10 and 11
- Figure S25. ¹³C-NMR spectrum (150 MHz, Acetone-*d*₆) mixture of compound 10a and 11

- Figure S26. ¹H-NMR spectrum (600 MHz, Pyridine-*d*₅) of compound 12
- Figure S27. ¹³C-NMR spectrum (150 MHz, Pyridine-*d*₅) of compound 12
- Figure S28. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound 13
- Figure S29. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound 13
- Figure S30. ¹H-¹H COSY and HMBC correlations of compound 1.

1						
Pos	δc	$\delta_{\rm H}$ (nH, mult., J)				
2	156.2	-				
3	138.2	-				
4	178.6	-				
5	158.4	-				
6	107.4	-				
7	162.5	-				
8	92.5	6.45 (1H, <i>s</i>)				
9	154.8	-				
10	104.4	-				
1'	121.6	-				
2'	111.5	7.70 (d, $J = 2.1$ Hz)				
3'	147.5	-				
4'	149.4	-				
5'	115.2	6.96 (1H, d, J = 8.4 Hz)				
6'	122.3	7.63 (1H, dd, <i>J</i> = 8.4, 2.1 Hz)				
6-Me	6.4	2.09 (3H, <i>s</i>)				
3-OMe	55.4	3.79 (3H, <i>s</i>)				
4'-OMe	59.5	3.95 (3H, <i>s</i>)				

Table S1: ¹³C (150 MHz) and ¹H NMR (CD₃OD, 600 MHz) [*J* (Hz), δ (ppm)] data for compound **1**

Bacterial strains	Samples, MIC values (in µg/mL) and fold increase of activity						
	1 alone	1+ΡΑβΝ	Fold increase	CIP alone	CIP+PAβN	Fold increase	
Escherichia coli							
ATCC10356	128	64	2	8	8	1	
AG102	>128	64	>2	128	2	64	
Klebsiella pneumoniae							
ATCC11296	32	4	8	64	2	32	
KP55	64	8	8	16	1	16	
Pseudomonas aeruginosa							
PA124	>128	32	>4	64	4	16	
PA01	128	32	4	64	2	32	
Providencia stuartii							
PS2636	>128	128	>1	128	4	32	
NEA16	128	32	4	32	2	16	
Staphylococcus aureus							
MRSA6	128	8	16	128	4	32	
MRSA3	128	128	1	128	8	16	

Table S2. Minimal inhibitory concentrations (MIC) of compound 1 and ciprofloxacin	1 alone
and in the presence of an efflux pump inhibitor.	

1: 6-C-methylquercetin-3,4'-dimethyl ether; CIP: ciprofloxacin; PA β N: phenylalanine-arginine- β -naphthylamide (an efflux pump inhibitor); Samples were tested alone or in the presence of PA β N at 20 µg/mL; Fold increase of activity was determined as the ratio of the MIC of Sample alone versus the sample in the presence of PA β N; MIC value in bold are significant antibacterial activity (Kuete, 2010).

Figure S1. UV spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S2. HRESI-MS (+) of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S3. ¹H-NMR spectrum (600 MHz, CD₃OD) of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S4. ¹³C-NMR spectrum (150 MHz, CD₃OD) of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S5. HSQC spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S6. HMBC spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S7. COSY ¹H-¹H spectrum of 6-C-methylquercetin-3,4'-dimethyl ether (1)

Figure S8. ¹H-NMR spectrum (600 MHz, CD₃OD) of compound 2

Figure S9. ¹³C-NMR spectrum (150 MHz, CD₃OD) of 6 compound 2

Figure S10. ¹H-NMR spectrum (600 MHz, Acetone-*d*₆) of compound 3

Figure S11. ¹³C-NMR spectrum (150 MHz, Acetone-*d*₆) of compound **3**

Figure S12. ¹H-NMR spectrum (600 MHz, Acetone-*d*₆) of compound 4

Figure S13. HMBC spectrum of compound 4

Figure S14. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound 5

Figure S15. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound 5

Figure S16. ¹H-NMR spectrum (500 MHz, CD₃OD) of compound 6

Figure S17. ¹³C-NMR spectrum (125 MHz, CD₃OD) of compound 6

Figure S18. ¹H-NMR spectrum (500 MHz, CD₃OD) of compound 7

Figure S19. ¹³C-NMR spectrum (125 MHz, CD₃OD) of compound 7

Figure S20. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound 8

Figure S21. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound 8

Figure S22. ¹H-NMR spectrum (600 MHz, CD₃OD) of compound 9

Figure S23. ¹³C-NMR spectrum (150 MHz, CD₃OD) of compound 9

Figure S24. ¹H-NMR spectrum (600 MHz, Acetone-*d*₆) mixture of compounds 10 and 11

Figure S25. ¹³C-NMR spectrum (150 MHz, Acetone-*d*₆) mixture of compounds 10 and 11

Figure S26. ¹H-NMR spectrum (600 MHz, Pyridine-*d*₅) of compound 12

Figure S27. ¹³C-NMR spectrum (150 MHz, Pyridine-*d*₅) of compound 12

Figure S28. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound 13

Figure S29. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound 13

Figure S30. ¹H-¹H COSY and HMBC correlations of compound **1**.

References

Kuete V. 2010. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med. 76(14):1479-1491.