SUPPLEMENTARY MATERIAL

A new anti-proliferative compound from an endophytic fungus, *Phoma* sp.

Hyeri Ku,^a Ji-Yun Baek,^b Ki Sung Kang^b and Sang Hee Shim^{a,*}

^aNatural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; ^bCollege of Korean Medicine, Gachon University, Seongnam, Republic of Korea

*Corresponding author: Sang Hee Shim sanghee_shim@snu.ac.kr

ABSTRACT: A new oxazole-type compound (1), named macrooxazole E, and three known macrooxazoles A-C (2-4), were isolated from ethyl acetate extracts of cultures of *Phoma* sp. JS0228, an endophytic fungus of *Morus alba*. Structures of the isolated compounds were determined by spectroscopic methods such as 1D-, 2D-NMR, and HRMS. Macrooxazole E (1) differed from macrooxazole C only in the presence of a methyl carboxylate instead of the free carboxylic acid. Macrooxazole C showed moderate anti-proliferative activities against MCF-7 and LNCaP cells with IC₅₀ values of 0.29 mM and 0.36 mM, respectively. This study presented possibility of the endophytic fungus, *Phoma* sp. JS0228 to produced new natural compounds with bioactivities.

KEYWORDS: Phoma sp.; endophyte; macrooxazole; structure elucidation

Content

Figure S1. ¹ H- ¹ H COSY and key HMBC correlations of compounds for 1 and 2
Figure S2. HPLC chromatogram of <i>Phoma</i> sp. JS0228 crude extracts (1: macrooxazole E, 2:
macrooxazole C)4
Figure S3. Comparison in inhibitory effects of macrooxazole C on the proliferation of MCF-7
(a) and LNCaP (b) cells. P < 0.05 compared to the control value
Figure S4. (+)HRESIMS spectrum of macrooxazole E (1)6
Figure S5. ¹ H NMR spectrum (800 MHz, CD ₃ OD) of macrooxazole E (1)7
Figure S6. ¹³ C NMR spectrum (200 MHz, CD ₃ OD) of macrooxazole E (1)7
Figure S7. ¹ H- ¹ H COSY spectrum (800 MHz, CD ₃ OD) of macrooxazole E (1)8
Figure S8. HSQC spectrum (800 MHz, CD ₃ OD) of macrooxazole E (1)8
Figure S9. HMBC spectrum (800 MHz, CD ₃ OD) of macrooxazole E (1)9
Figure S10. (+)HRESIMS spectrum of macrooxazole C (2)10
Figure S11. ¹ H NMR spectrum (500 MHz, CDCl ₃) of macrooxazole C (2)11
Figure S12. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of macrooxazole C (2)11
Figure S13. ¹ H- ¹ H COSY spectrum (500 MHz, CDCl ₃) of macrooxazole C (2)12
Figure S14. HSQC spectrum (500 MHz, CDCl ₃) of macrooxazole C (2)12
Figure S15. HMBC spectrum (500 MHz, CDCl ₃) of macrooxazole C (2)13
Figure S16. ESIMS Spectrum of macrooxazole E (1) and macrooxazole C (2)13
Figure S17. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of macrooxazole A (3)14
Figure S8. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of macrooxazole B (4)14
Table S1. NMR spectroscopic data of the isolated compounds 2-5. 15

Figure S1. ¹H-¹H COSY and key HMBC correlations of compound 1 and 2

Figure S2. HPLC chromatogram of *Phoma* sp. JS0228 crude extracts (1: macrooxazole E, 2: macrooxazole C).

Figure S4. (+)HRESIMS spectrum of macrooxazole E (1)

Compound Spectrum SmartFormula Report

+MS, 0.8-0.9min #48-53

x10 ⁴										+MS	, 0.8-0.9min	#48-53
1.5												
1.0					268,0584							
0.5					29	90.0408						
0.0		15	0 200	· · · ·	250	300	350		400		450	m/z
Me	eas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# Sigma	Score	rdb	e ⁻ Conf	N-Rule	
	268.0584	1	C11H6N7O2	268.0577	2.6	5.4	1	100.00	12.5	even	ok	
		2	C15H10NO4	268.0604	-7.4	11.2	2	39.83	11.5	even	ok	
		3	C10H10N3O6	268.0564	-7.6	15.6	3	35.09	7.5	even	ok	
		4	C16H6N5	268.0618	-12.4	24.9	4	9.02	16.5	even	ok	
		1	C13H11NNaO4	268.0580	-1.6	3.0	1	100.00	8.5	even	ok	
		2	C14H7N5Na	268.0594	-3.4	13.3	2	64.30	13.5	even	ok	
		3	C9H7N7NaO2	268.0553	11.6	15.8	3	11.40	9.5	even	ok	

Figure S5. ¹H NMR spectrum (800 MHz, CD₃OD) of macrooxazole E (1)

Figure S6. ¹³C NMR spectrum (200 MHz, CD₃OD) of macrooxazole E (1)

Figure S7. ¹H-¹H COSY spectrum (800 MHz, CD₃OD) of macrooxazole E (1)

Figure S8. HSQC spectrum (800 MHz, CD₃OD) of macrooxazole E (1)

Figure S9. HMBC spectrum (800 MHz, CD₃OD) of macrooxazole E (1)

Figure S10. (+)HRESIMS spectrum of macrooxazole C (2)

Compound Spectrum SmartFormula Report

+MS, 0.8-0.9min #49-53

Intens.										+MS	, 0.8-0.9min	#49-53
100												
4												
3					282	9739						
2												
1												
10	0	15	0 200		250	300	350		400		450	m/z
N	leas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# Sigma	Score	rdb	e ⁻ Conf	N-Rule	
	282.0739	1	C11H12N3O6	282.0721	6.5	1.9	- 1	53.95	7.5	even	ok	
		2	C8H4N13	282.0707	-11.3	5.5	2	15.79	13.5	even	ok	
		3	C12H8N7O2	282.0734	1.8	12.5	3	100.00	12.5	even	ok	
		4	C16H12NO4	282.0761	-7.8	25.7	4	25.85	11.5	even	ok	
		5	C17H8N5	282.0774	12.5	39.0	5	5.27	16.5	even	ok	
		1	C10H9N7NaO2	282.0710	10.3	3.0	1	19.26	9.5	even	ok	
		2	C14H13NNaO4	282.0737	-0.8	13.1	2	100.00	8.5	even	ok	
		3	C15H9N5Na	282.0750	-4.0	26.6	3	47.27	13.5	even	ok	

Figure S11. ¹H NMR spectrum (500 MHz, CDCl₃) of macrooxazole C (2)

Figure S12. ¹³C NMR spectrum (125 MHz, CDCl₃) of macrooxazole C (2)

Figure S14. HSQC spectrum (500 MHz, CDCl₃) of macrooxazole C (2)

Figure S15. HMBC spectrum (500 MHz, CDCl₃) of macrooxazole C (2)

Figure S16. ESIMS Spectrum of macrooxazole E (1) and macrooxazole C (2)

13

Figure S18. ¹H NMR spectrum (500 MHz, CD₃OD) of macrooxazole B (4)

No.		2	3	4	5
	$\delta_{\rm C,}$ Type	$\delta_{ m H} (J ext{ in Hz})$		$\delta_{\rm H} \left(J \text{ in Hz} \right)$	
1	-	-	-	-	-
2	162.3, C	-	-	-	-
3	-	-	-	-	7.16, d (3.5)
4	127.0, C	-	-	-	6.47, d (3.5)
5	154.4, C	-	-	-	4.57, s
6	33.8, CH ₂	4.05, s	4.00, s	4.04, s	-
7	126.4, C	-	-	-	-
8	130.0, CH	7.13, d (9.0)	7.10, d (8.4)	7.12, d (8.0)	-
9	115.7, CH	6.76, d (9.0)	6.73, d (8.4)	6.73, d (8.0)	-
10	155.1, C	-	-	-	-
11	115.7, CH	6.76, d (9.0)	6.73, d (8.4)	6.73, d (8.0)	-
12	130.0, CH	7.13, d (9.0)	7.10, d (8.4)	7.12, d (8.0)	-
13	162.2, C	-	-	-	-
14	121.9, CH	7.15, dd (18, 12)	3.19, t (6.8)	5.33, t (6.5)	-
15	120.2, CH ₂	5.55, dd (12, 1.1) 5.95, dd (18, 1.1)	3.80, t (6.8)	3.73, dd (12, 6.5)	
OCH ₃	52.2, CH ₃	3.90, s	3.87, s	3.89, s	

Table S1. NMR spectroscopic data of the isolated compounds 2-5.