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ABSTRACT
Supplemental Online Material contains the proofs of Propositions 2.1 and 2.2 as
well as the details of the E step of the ECM algorithm in Section 2.3. Finally,
adaptations of the ECM algorithm to fit the particular models used in Section 3 are
briefly presented.

Supplemental Online Material A. Proofs

Proof of Proposition 2.1 The result in (a) follows from (5) and (4). For (b), the re-
sult follows directly from (a) upon applying the law of iterated expectations and using
well-known results about moments involving normal and gamma random variables. �

It is worth mentioning that expressions such as Πvi and λvi defined in (6) were
adapted from Corollary 2 of Theorem 1 in [1]. Moreover, other results found in the
literature were also applied for the measurement error model framework in (2) in
order to derive the marginal pdf of Zi. These results will be cited whenever needed.

Proof of Proposition 2.2 First, consider the expressions in (6). For the result in
(a), we use (5) to write Zi as

Zi|xi,Wei ∼ N2(a+ bxi,Σ/Wei) and xi|Wxi
∼ SN (ξ, ω2/Wxi

, λ),

where Wxi
∼ G (1/2ηx, 1/2ηx) and Wei ∼ G(1/2ηe , 1/2c(ηe)) with c(ηe) = ηe/(1−2ηe).

The result now holds from an application of Corollary 2 in [1] and after transforming
(Wxi

,Wei)
> to (Ui = Wxi

, Vi = Wxi
/Wei)

>. For (b), we use (a) to write the joint pdf of
(Z>i , Ui, Vi)

> as f(zi, ui, vi;θ) = f(zi|ui, vi;θ)f(ui, vi;θ) and after simplification, the
result follows. For (c), the result is obtained by integrating f(zi, ui, vi;θ) with respect
to ui by using Lemma 1 in [2]. Finally, for (d), we integrate out vi from f(zi, vi|θ)
given in (c). �

Supplemental Online Material B. Computing expectations in the E step

In this section, we describe how to compute all the expectations involved in (14). We
omit the subscript of each random variable to simplify the notation. Next, our strategy
is to obtain the joint distribution of the missing vector (x,D,U, V )> conditional on



the observed Z and then, use it to derive the desired expectations in the E step of the
ECM algorithm. Define, for v > 0,

Ωv = ψbb> + vΣ, ρv = (ψ−1 + b>Σ−1b/v)−1 and ζ2v = (1 + γ2b>Ω−1v b)
−1. (S1)

Using well-known matrix results [3, p. 467], one can verify that Ωv and ρv are
related by ρv = ψ − ψ2b>Ω−1v b and ρvb

>Σ−1/v = ψb>Ω−1v . In addition, ξv given in
(6) can be written in terms of (S1) as ξv = ζvγb

>Ω−1v ∆.

Proposition S1 Consider Z ∈ R2 as in (2), (S1) and the quantities given in Propo-
sition 2.2.

(a) The conditional pdf of V |Z is f(v|z;θ) = f(z, v;θ)/f(z;θ), v > 0.
(b) The conditional pdf of U |Z, V = v is f(u|z, v;θ) = f(z, u, v;θ)/f(z, v; θ),

u, v > 0.
(c) D|Z, U = u, V = v ∼ T N (ξvζv, ζ

2
v/u; (0,∞)).

(d) x|Z, D = d, U = u, V = v ∼ N (ξ + ψb>Ω−1v (Z − a− bξ) + ρvψ
−1γd, ρv/u).

Proof. For (a) and (b), we apply the definition of conditional pdf and using the
density functions in (a), (b) and (c) given in Proposition 2.2, the results hold. For
(c), from (7) we obtain Z|D = d, U = u, V = v ∼ N2(a + bξ + bγd,Ωv/u) and
D|U = u, V = v ∼ T N (0, 1/u; (0,+∞). Moreover, by applying the definition of
conditional pdf to D|Z, U, V , it follows that f(d|z, u, v;θ) ∝ f(z|d, u, v;θ)f(d|u, v;θ)
and by applying Lemma 2 in [1] to the product on the right side, we ob-
tain f(d|z, u, v;θ) ∝ φ2(z;a + bξ, (Ωv + γ2bb>)/u)2φ(d; ξvζv, ζ

2
v/u)I(d > 0).

Then, we can see that the pdf of D|Z, U, V is proportional to the pdf of the
T N (ξvζv, ζ

2
v/u; (0,∞)) distribution evaluated at d. Therefore, this establishes

the desired conditional distribution. For (d), from a similar manner to (c),
we use (7) to obtain Z|x,D = d, U = u, V = v ∼ N2(a + bx, vΣ/u) and
x|D = d, U = u ∼ N (ξ + γd, ψ/u). By applying the definition of conditional pdf to
x|Z, D, U, V , it follows that f(x|z, d, u, v;θ) ∝ f(z|x, d, u, v;θ)f(x|d, u;θ). Then, us-
ing again Lemma 2 in [1], we obtain that f(x|z, d, u, v;θ) ∝ φ2(Z;a+bξ+bγd,Ωv/u)
φ(x; ξ + γd+ ρvb

>Σ−1(Z − a− bξ − bγd)/v, ρv/u). Using (S1), we simplify the mean
in the second pdf. Thus, we notice that the pdf of x|Z, D, U, V is proportional to the
pdf of the N (ξ +ψb>Ω−1v (Z − a− bξ) + ρvψ

−1γd, ρv/u) distribution evaluated at x.
Therefore, it follows that this must also be the conditional distribution of x|Z, D, U, V
and the result holds. �

Proposition S2 Consider Z ∈ R2 as defined in (2), (6) and the quantities in Propo-
sition S1. Then, we have the following conditional expectations on Z and V .

(a) For an integer k such that η∗ + 2k > 0,

E[Uk|Z, V ] = 2k
Γ((η∗ + 2k)/2)

Γ(η∗/2)

Ft(ξV [(η∗ + 2k)/ςV ]1/2; η∗ + 2k)

ςkV Ft(ξV [η∗/ςV ]1/2; η∗)
.
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(b) For an integer k such that η∗ + k > 0,

E

[
Uk/2

φ(ξV U
1/2)

Φ(ξV U1/2)
|Z, V

]
=

2(k−1)/2

π1/2
Γ((η∗ + k)/2)

Γ(η∗/2)

×
ς
η∗/2
V

(ςV + ξ2V )(η∗+k)/2 Ft(ξV [η∗/ςV ]1/2; η∗)
.

(c) For an integer k such that η∗ + 2k > 1,

E[DUk|Z, V ] = ζV

{
ξVE[Uk|Z, V ] + E

[
U (2k−1)/2 φ(ξV U

1/2)

Φ(ξV U1/2)
|Z, V

]}
.

(d) For an integer k such that η∗ + 2k > 2,

E[D2Uk|Z, V ] = ζ2VE[Uk−1|Z, V ] + ξV ζVE[DUk|Z, V ].

(e) E[xDU |Z, V ] =
(
ξ + ψb>Ω−1V ∆

)
E[DU |Z, V ] + ρV ψ

−1γE[D2U |Z, V ].

(f) E[xU |Z, V ] =
(
ξ + ψb>Ω−1V ∆

)
E[U |Z, V ] + ρV ψ

−1γE[DU |Z, V ].

(g) E[x2U |Z, V ] = τ∗E[xU |Z, V ] +
{

1 + ψ−1γE[xDU |Z, V ]
}
ρV , where τ∗ = ξ +

∆>Σ−1bρV /V .

Proof. For (a), from the definition of expectation, we can write E[Uk|z, v] =∫∞
0 ukf(u|z, v;θ)du. Then, from Proposition S1 and by applying Lemma 1 in [2],

we have after lengthy algebra that the result follows. For (b), as in (a), we use again
the definition of conditional expectation and Proposition S1. After some algebraic ma-
nipulations, the result follows by making use of the gamma integral. For (c), using the
law of iterated expectations we can write

E[DUk|z, v] = E[Uk E[D| z, v, U ]| z, v]. (S2)

Using part (c) of Proposition S1 and properties about moments of a truncated normal
random variable [4, Section 10.1], we can write the inner expectation as E[D|z, v, u]
= ζv[ξv + u−1/2 φ(ξvu

1/2)/Φ(ξvu
1/2)]. The result now follows after substituting this

expression into (S2). For (d)–(g), we proceed in a similar manner as in (c). Using
Proposition S1, the result in [4, Section 10.1] and the law of the iterated expectations
along with Ω−1v bψ = Σ−1bρv/v, the results follow after simplifications. �

Finally, to compute expectations required in the E step of the ECM algorithm,
first we compute the expectation conditional on (Z>, V )> using Proposition S2 and
then average it over the conditional distribution of (V |Z). This computation requires
a unidimensional numerical integration and here it was computed using the statmod

package [5] implemented in the R language [6]. All the expectations are evaluated at
θ∗ = θ∗(r).

Supplemental Online Material C. Adapting the ECM algorithm for
some particular models

In this section, we briefly point out how the ECM algorithm was modified to fit each
one of the particular models used in this work. According to Section 2.2, we have the
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following models: (a) STN MEM, (b) TcT MEM, (c) TN MEM and (d) NN MEM.
Recall that the values of ηx and ηe were fixed according to each specific model. In case
(a), the gamma distribution for We = U/V is not needed, so that we can apply the
algorithm after setting U/V ≡ 1. In case (b), the algorithm works by setting γ = 0 in
the expected log-likelihood given in (13) and omitting the CM step 3. In case (c), the
modifications we need are as in cases (a) and (b) and can be applied after modifying
the expected log-likelihood in (13). Finally, in case (d), the gamma distribution for
Wx = U is not required, so that we can apply the ECM algorithm after setting U ≡ 1
and by using the modifications as in cases (a) and (b).
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