SUPPLEMENTARY MATERIAL

A bioactive new protostane-type triterpenoid from *Alisma* plantago-aquatica subsp. orientale (Sam.) Sam.

Ya-Li Wang^{1,2,+}, Jia-Hao Liang^{2,+}, Jian-Chao Zhao^{1,2,+}, Xiang-Ge Tian², Xiao-Kui Huo², Lei Feng², Jing Ning², Chao Wang², Bao-Jing Zhang², Gang Chen^{1,*}, Ning Li^{1,*} and Cheng-Peng Sun^{2,*}

¹ Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China

² College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.

⁺*These authors contributed equally to this work.*

Abstract: A new protostane-type triterpenoid, 5β ,29-dihydroxy alisol A (1) was isolated from *Alisma plantago-aquatica* subsp. *orientale* (Sam.) Sam. as well as 12-deoxyphorbol-13 α -pentadecanoate (2). We first report the presence of compound 2 in the genus *Alisma*. Their structures were established on the basis of 1D and 2D NMR, and HRESIMS spectroscopic analyses. All the isolated compounds were assayed for their inhibitory effects against human carboxylesterase 2 (HCE-2). Compounds 1 and 2 displayed inhibitory activities against HCE-2 with IC₅₀ values of 29.2 and 4.6 μ M, respectively. The interaction mechanisms of HCE-2 with compounds 1 and 2 were investigated by molecular docking, respectively.

Keywords: Alisma orientale; protostane; HCE-2 inhibitor; molecular docking

List of supporting information

Table S1. ¹H (600 MHz) and ¹³C NMR (150 MHz) data of compound 1 in MeOH- d_4

Figure S1. Selected HMBC, COSY, and NOESY correlations of compound 1

Figure S2. Two possible configurations of compound 1 and key NOESY correlation

of H-1a with H-6a

Figure S3. Inhibitory HCE-2 effects of compounds 1 and 2

Figure S4. 2D (A) and 3D (B) structure of compound 1 with HCE-2.

Figure S5. 2D (A) and 3D (B) structure of compound 2 with HCE-2.

Figure S6. ¹H-NMR spectrum of 1 (600 MHz, MeOH- d_4)

Figure S7. ¹³C-NMR spectrum of 1 (150 MHz, MeOH- d_4)

Figure S8. HSQC spectrum of 1 (600 MHz, MeOH-*d*₄)

Figure S9. COSY spectrum of 1 (600 MHz, MeOH- d_4)

Figure S10. HMBC spectrum of 1 (600 MHz, MeOH-*d*₄)

Figure S11. NOESY spectrum of 1 (600 MHz, MeOH-*d*₄)

Figure S12. HRESIMS spectrum of 1

No.	$\delta_{ m C}$	$\delta_{\rm H} (J \text{ in Hz})$	No.	$\delta_{ m C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$
1	32.4	2.26 m	16	30.5	2.26 m
		2.16 m			2.19 m
2	34.8	2.82 m	17	137.0	
		2.22 m	18	24.7	1.04 s
3	223.7		19	26.5	1.11 s
4	52.6		20	30.0	2.83 m
5	84.5		21	20.9	1.03 d (6.8)
6	20.6	1.68 m	22	42.1	1.59 m
		1.36 m			1.48 m
7	35.8	2.05 m	23	70.5	3.73 m
		1.27 m	24	79.7	3.02 d (1.6)
8	41.7		25	74.8	
9	51.1	1.79 d (11.1)	26	27.3	1.21 s
10	38.1		27	26.7	1.20 s
11	70.7	3.81 m	28	23.7	1.24 s
12	35.2	2.79 m	29	66.2	4.00 d (11.6)
		2.05 m			3.49 d (11.6)
13	139.2		30	23.7	1.17 s
14	58.4				
15	31.8	1.93 m			
		1.33 m			

Table S1. ¹H (600 MHz) and ¹³C NMR (150 MHz) data of compound **1** in MeOH- d_4

Figure S1. Selected COSY, HMBC, and NOESY correlations of compound 1

Figure S2. Two possible configurations of compound **1** and key NOESY correlation of H-1a with H-6a

Figure S3. Inhibitory HCE-2 effects of compounds 1 and 2

Figure S4. 2D (A) and 3D (B) structure of compound 1 with HCE-2.

Figure S5. 2D (A) and 3D (B) structure of compound 2 with HCE-2.

Figure S6. ¹H-NMR spectrum of **1** (600 MHz, MeOH- d_4)

Figure S7. ¹³C-NMR spectrum of 1 (150 MHz, MeOH- d_4)

Figure S8. HSQC spectrum of 1 (600 MHz, MeOH- d_4)

Figure S9. COSY spectrum of 1 (600 MHz, MeOH- d_4)

Figure S10. HMBC spectrum of 1 (600 MHz, MeOH- d_4)

Figure S11. NOESY spectrum of 1 (600 MHz, MeOH- d_4)

Figure S12. HRESIMS spectrum of 1