ja9b09102_si_001.pdf (2.66 MB)

A Synthetic Vesicle-to-Vesicle Communication System

Download (2.66 MB)
journal contribution
posted on 23.10.2019, 12:06 by Yudi Ding, Nicholas H. Williams, Christopher A. Hunter
A molecular signal displayed on the external surface of one population of vesicles was used to trigger a catalytic process on the inside of a second population of vesicles. The key recognition event is the transfer of a protein (NeutrAvidin) bound to vesicles displaying desthiobiotin to vesicles displaying biotin. The desthiobiotin–protein complex was used to anchor a synthetic transducer in the outer leaflet of the vesicles, and when the protein was displaced, the transducer translocated across the bilayer to expose a catalytic headgroup to the internal vesicle solution. As a result, an ester substrate encapsulated on the inside of this second population of vesicles was hydrolyzed to give a fluorescence output signal. The protein has four binding sites, which leads to multivalent interactions with membrane-anchored ligands and very high binding affinities. Thus, biotin, which has a dissociation constant 3 orders of magnitude higher than desthiobiotin, did not displace the protein from the membrane-anchored transducer, and membrane-anchored biotin displayed on the surface of a second population of vesicles was required to generate an effective input signal.